-
Notifications
You must be signed in to change notification settings - Fork 45
/
main.py
1245 lines (1041 loc) · 45.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
6.819 Advances in Computer Vision
Bill Freeman, Antonio Torralba
Final Project - Optical Music Recognition Program
cadenCV
"""
__author__ = "Afika Nyati"
__status__ = "Prototype"
# cv2.imshow("Input", no_staff_img)
# cv2.waitKey(0)
#-------------------------------------------------------------------------------
# Import Statements
#-------------------------------------------------------------------------------
import sys
import cv2
import numpy as np
from matplotlib import pyplot as plt
from collections import Counter
from copy import deepcopy
from PIL import Image
from midiutil.MidiFile import MIDIFile
from best_match import match
from box import BoundingBox
from staff import Staff
from primitive import Primitive
from bar import Bar
#-------------------------------------------------------------------------------
# Template Paths
#-------------------------------------------------------------------------------
clef_paths = {
"treble": [
"resources/template/clef/treble_1.jpg",
"resources/template/clef/treble_2.jpg"
],
"bass": [
"resources/template/clef/bass_1.jpg"
]
}
accidental_paths = {
"sharp": [
"resources/template/sharp-line.png",
"resources/template/sharp-space.png"
],
"flat": [
"resources/template/flat-line.png",
"resources/template/flat-space.png"
]
}
note_paths = {
"quarter": [
"resources/template/note/quarter.png",
"resources/template/note/solid-note.png"
],
"half": [
"resources/template/note/half-space.png",
"resources/template/note/half-note-line.png",
"resources/template/note/half-line.png",
"resources/template/note/half-note-space.png"
],
"whole": [
"resources/template/note/whole-space.png",
"resources/template/note/whole-note-line.png",
"resources/template/note/whole-line.png",
"resources/template/note/whole-note-space.png"
]
}
rest_paths = {
"eighth": ["resources/template/rest/eighth_rest.jpg"],
"quarter": ["resources/template/rest/quarter_rest.jpg"],
"half": ["resources/template/rest/half_rest_1.jpg",
"resources/template/rest/half_rest_2.jpg"],
"whole": ["resources/template/rest/whole_rest.jpg"]
}
flag_paths = ["resources/template/flag/eighth_flag_1.jpg",
"resources/template/flag/eighth_flag_2.jpg",
"resources/template/flag/eighth_flag_3.jpg",
"resources/template/flag/eighth_flag_4.jpg",
"resources/template/flag/eighth_flag_5.jpg",
"resources/template/flag/eighth_flag_6.jpg"]
barline_paths = ["resources/template/barline/barline_1.jpg",
"resources/template/barline/barline_2.jpg",
"resources/template/barline/barline_3.jpg",
"resources/template/barline/barline_4.jpg"]
#-------------------------------------------------------------------------------
# Template Images
#-------------------------------------------------------------------------------
# Clefs
clef_imgs = {
"treble": [cv2.imread(clef_file, 0) for clef_file in clef_paths["treble"]],
"bass": [cv2.imread(clef_file, 0) for clef_file in clef_paths["bass"]]
}
# Time Signatures
time_imgs = {
"common": [cv2.imread(time, 0) for time in ["resources/template/time/common.jpg"]],
"44": [cv2.imread(time, 0) for time in ["resources/template/time/44.jpg"]],
"34": [cv2.imread(time, 0) for time in ["resources/template/time/34.jpg"]],
"24": [cv2.imread(time, 0) for time in ["resources/template/time/24.jpg"]],
"68": [cv2.imread(time, 0) for time in ["resources/template/time/68.jpg"]]
}
# Accidentals
sharp_imgs = [cv2.imread(sharp_files, 0) for sharp_files in accidental_paths["sharp"]]
flat_imgs = [cv2.imread(flat_file, 0) for flat_file in accidental_paths["flat"]]
# Notes
quarter_note_imgs = [cv2.imread(quarter, 0) for quarter in note_paths["quarter"]]
half_note_imgs = [cv2.imread(half, 0) for half in note_paths["half"]]
whole_note_imgs = [cv2.imread(whole, 0) for whole in note_paths['whole']]
# Rests
eighth_rest_imgs = [cv2.imread(eighth, 0) for eighth in rest_paths["eighth"]]
quarter_rest_imgs = [cv2.imread(quarter, 0) for quarter in rest_paths["quarter"]]
half_rest_imgs = [cv2.imread(half, 0) for half in rest_paths["half"]]
whole_rest_imgs = [cv2.imread(whole, 0) for whole in rest_paths['whole']]
# Eighth Flag
eighth_flag_imgs = [cv2.imread(flag, 0) for flag in flag_paths]
# Bar line
bar_imgs = [cv2.imread(barline, 0) for barline in barline_paths]
#-------------------------------------------------------------------------------
# Template Thresholds
#-------------------------------------------------------------------------------
# Clefs
clef_lower, clef_upper, clef_thresh = 50, 150, 0.88
# Time
time_lower, time_upper, time_thresh = 50, 150, 0.85
# Accidentals
sharp_lower, sharp_upper, sharp_thresh = 50, 150, 0.70
flat_lower, flat_upper, flat_thresh = 50, 150, 0.77
# Notes
quarter_note_lower, quarter_note_upper, quarter_note_thresh = 50, 150, 0.70
half_note_lower, half_note_upper, half_note_thresh = 50, 150, 0.70
whole_note_lower, whole_note_upper, whole_note_thresh = 50, 150, 0.7011
# Rests
eighth_rest_lower, eighth_rest_upper, eighth_rest_thresh = 50, 150, 0.75 # Before was 0.7
quarter_rest_lower, quarter_rest_upper, quarter_rest_thresh = 50, 150, 0.70
half_rest_lower, half_rest_upper, half_rest_thresh = 50, 150, 0.80
whole_rest_lower, whole_rest_upper, whole_rest_thresh = 50, 150, 0.80
# Eighth Flag
eighth_flag_lower, eighth_flag_upper, eighth_flag_thresh = 50, 150, 0.8
# Bar line
bar_lower, bar_upper, bar_thresh = 50, 150, 0.85
#-------------------------------------------------------------------------------
# Mapping Functions
#-------------------------------------------------------------------------------
pitch_to_MIDI = {
"C8": 108,
"B7": 107,
"Bb7": 106,
"A#7": 106,
"A7": 105,
"Ab7": 104,
"G#7": 104,
"G7": 103,
"Gb7": 102,
"F#7": 102,
"F7": 101,
"E7": 100,
"Eb7": 99,
"D#7": 99,
"D7": 98,
"Db7": 97,
"C#7": 97,
"C7": 96,
"B6": 95,
"Bb6": 94,
"A#6": 94,
"A6": 93,
"Ab6": 92,
"G#6": 92,
"G6": 91,
"Gb6": 90,
"F#6": 90,
"F6": 89,
"E6": 88,
"Eb6": 87,
"D#6": 87,
"D6": 86,
"Db6": 85,
"C#6": 85,
"C6": 84,
"B5": 83,
"Bb5": 82,
"A#5": 82,
"A5": 81,
"Ab5": 80,
"G#5": 80,
"G5": 79,
"Gb5": 78,
"F#5": 78,
"F5": 77,
"E5": 76,
"Eb5": 75,
"D#5": 75,
"D5": 74,
"Db5": 73,
"C#5": 73,
"C5": 72,
"B4": 71,
"Bb4": 70,
"A#4": 70,
"A4": 69,
"Ab4": 68,
"G#4": 68,
"G4": 67,
"Gb4": 66,
"F#4": 66,
"F4": 65,
"E4": 64,
"Eb4": 63,
"D#4": 63,
"D4": 62,
"Db4": 61,
"C#4": 61,
"C4": 60,
"B3": 59,
"Bb3": 58,
"A#3": 58,
"A3": 57,
"Ab3": 56,
"G#3": 56,
"G3": 55,
"Gb3": 54,
"F#3": 54,
"F3": 53,
"E3": 52,
"Eb3": 51,
"D#3": 51,
"D3": 50,
"Db3": 49,
"C#3": 49,
"C3": 48,
"B2": 47,
"Bb2": 46,
"A#2": 46,
"A2": 45,
"Ab2": 44,
"G#2": 44,
"G2": 43,
"Gb2": 42,
"F#2": 42,
"F2": 41,
"E2": 40,
"Eb2": 39,
"D#2": 39,
"D2": 38,
"Db2": 37,
"C#2": 37,
"C2": 36,
"B1": 35,
"Bb1": 34,
"A#1": 34,
"A1": 33,
"Ab1": 32,
"G#1": 32,
"G1": 31,
"Gb1": 30,
"F#1": 30,
"F1": 29,
"E1": 28,
"Eb1": 27,
"D#1": 27,
"D1": 26,
"Db1": 25,
"C#1": 25,
"C1": 24,
"B0": 23,
"Bb0": 22,
"A#0": 22,
"A0": 21
}
MIDI_to_pitch = {
108: "C8",
107: "B7",
106: "A#7",
105: "A7",
104: "G#7",
103: "G7",
102: "F#7",
101: "F7",
100: "E7",
99: "D#7",
98: "D7",
97: "C#7",
96: "C7",
95: "B6",
94: "A#6",
93: "A6",
92: "G#6",
91: "G6",
90: "F#6",
89: "F6",
88: "E6",
87: "D#6",
86: "D6",
85: "C#6",
84: "C6",
83: "B5",
82: "A#5",
81: "A5",
80: "G#5",
79: "G5",
78: "F#5",
77: "F5",
76: "E5",
75: "D#5",
74: "D5",
73: "C#5",
72: "C5",
71: "B4",
70: "A#4",
69: "A4",
68: "G#4",
67: "G4",
66: "F#4",
65: "F4",
64: "E4",
63: "D#4",
62: "D4",
61: "C#4",
60: "C4",
59: "B3",
58: "A#3",
57: "A3",
56: "G#3",
55: "G3",
54: "F#3",
53: "F3",
52: "E3",
51: "D#3",
50: "D3",
49: "C#3",
48: "C3",
47: "B2",
46: "A#2",
45: "A2",
44: "G#2",
43: "G2",
42: "F#2",
41: "F2",
40: "E2",
39: "D#2",
38: "D2",
37: "C#2",
36: "C2",
35: "B1",
34: "A#1",
33: "A1",
32: "G#1",
31: "G1",
30: "F#1",
29: "F1",
28: "E1",
27: "D#1",
26: "D1",
25: "C#1",
24: "C1",
23: "B0",
22: "A#0",
21: "A0"
}
key_signature_changes = {
"sharp": ["", "F", "FC", "FCG", "FCGD", "FCGDA", "FCGDAE", "FCGDAEB"],
"flat": ["", "B", "BE", "BEA", "BEAD", "BEADG", "BEADGC", "BEADGCF"]
}
#-------------------------------------------------------------------------------
# General Functions
#-------------------------------------------------------------------------------
def deskew(img):
skew_img = cv2.bitwise_not(img) # Invert image
# grab the (x, y) coordinates of all pixel values that
# are greater than zero, then use these coordinates to
# compute a rotated bounding box that contains all
# coordinates
coords = np.column_stack(np.where(skew_img > 0))
angle = cv2.minAreaRect(coords)[-1]
# the `cv2.minAreaRect` function returns values in the
# range [-90, 0); as the rectangle rotates clockwise the
# returned angle trends to 0 -- in this special case we
# need to add 90 degrees to the angle
if angle < -45:
angle = -(90 + angle)
# otherwise, just take the inverse of the angle to make
# it positive
else:
angle = -angle
# rotate the image to deskew it
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (w, h),
flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return angle, rotated
def get_ref_lengths(img):
num_rows = img.shape[0] # Image Height (number of rows)
num_cols = img.shape[1] # Image Width (number of columns)
rle_image_white_runs = [] # Cumulative white run list
rle_image_black_runs = [] # Cumulative black run list
sum_all_consec_runs = [] # Cumulative consecutive black white runs
for i in range(num_cols):
col = img[:, i]
rle_col = []
rle_white_runs = []
rle_black_runs = []
run_val = 0 # (The number of consecutive pixels of same value)
run_type = col[0] # Should be 255 (white) initially
for j in range(num_rows):
if (col[j] == run_type):
# increment run length
run_val += 1
else:
# add previous run length to rle encoding
rle_col.append(run_val)
if (run_type == 0):
rle_black_runs.append(run_val)
else:
rle_white_runs.append(run_val)
# alternate run type
run_type = col[j]
# increment run_val for new value
run_val = 1
# add final run length to encoding
rle_col.append(run_val)
if (run_type == 0):
rle_black_runs.append(run_val)
else:
rle_white_runs.append(run_val)
# Calculate sum of consecutive vertical runs
sum_rle_col = [sum(rle_col[i: i + 2]) for i in range(len(rle_col))]
# Add to column accumulation list
rle_image_white_runs.extend(rle_white_runs)
rle_image_black_runs.extend(rle_black_runs)
sum_all_consec_runs.extend(sum_rle_col)
white_runs = Counter(rle_image_white_runs)
black_runs = Counter(rle_image_black_runs)
black_white_sum = Counter(sum_all_consec_runs)
line_spacing = white_runs.most_common(1)[0][0]
line_width = black_runs.most_common(1)[0][0]
width_spacing_sum = black_white_sum.most_common(1)[0][0]
assert (line_spacing + line_width == width_spacing_sum), "Estimated Line Thickness + Spacing doesn't correspond with Most Common Sum "
return line_width, line_spacing
def find_staffline_rows(img, line_width, line_spacing):
num_rows = img.shape[0] # Image Height (number of rows)
num_cols = img.shape[1] # Image Width (number of columns)
row_black_pixel_histogram = []
# Determine number of black pixels in each row
for i in range(num_rows):
row = img[i]
num_black_pixels = 0
for j in range(len(row)):
if (row[j] == 0):
num_black_pixels += 1
row_black_pixel_histogram.append(num_black_pixels)
# plt.bar(np.arange(num_rows), row_black_pixel_histogram)
# plt.show()
all_staff_row_indices = []
num_stafflines = 5
threshold = 0.4
staff_length = num_stafflines * (line_width + line_spacing) - line_spacing
iter_range = num_rows - staff_length + 1
# Find stafflines by finding sum of rows that occur according to
# staffline width and staffline space which contain as many black pixels
# as a thresholded value (based of width of page)
#
# Filter out using condition that all lines in staff
# should be above a threshold of black pixels
current_row = 0
while (current_row < iter_range):
staff_lines = [row_black_pixel_histogram[j: j + line_width] for j in
range(current_row, current_row + (num_stafflines - 1) * (line_width + line_spacing) + 1,
line_width + line_spacing)]
pixel_avg = sum(sum(staff_lines, [])) / (num_stafflines * line_width)
for line in staff_lines:
if (sum(line) / line_width < threshold * num_cols):
current_row += 1
break
else:
staff_row_indices = [list(range(j, j + line_width)) for j in
range(current_row,
current_row + (num_stafflines - 1) * (line_width + line_spacing) + 1,
line_width + line_spacing)]
all_staff_row_indices.append(staff_row_indices)
current_row = current_row + staff_length
return all_staff_row_indices
def find_staffline_columns(img, all_staffline_vertical_indices, line_width, line_spacing):
num_rows = img.shape[0] # Image Height (number of rows)
num_cols = img.shape[1] # Image Width (number of columns)
# Create list of tuples of the form (column index, number of occurrences of width_spacing_sum)
all_staff_extremes = []
# Find start of staff for every staff in piece
for i in range(len(all_staffline_vertical_indices)):
begin_list = [] # Stores possible beginning column indices for staff
end_list = [] # Stores possible end column indices for staff
begin = 0
end = num_cols - 1
# Find staff beginning
for j in range(num_cols // 2):
first_staff_rows_isolated = img[all_staffline_vertical_indices[i][0][0]:all_staffline_vertical_indices[i][4][
line_width - 1], j]
num_black_pixels = len(list(filter(lambda x: x == 0, first_staff_rows_isolated)))
if (num_black_pixels == 0):
begin_list.append(j)
# Find maximum column that has no black pixels in staff window
list.sort(begin_list, reverse=True)
begin = begin_list[0]
# Find staff beginning
for j in range(num_cols // 2, num_cols):
first_staff_rows_isolated = img[all_staffline_vertical_indices[i][0][0]:all_staffline_vertical_indices[i][4][
line_width - 1], j]
num_black_pixels = len(list(filter(lambda x: x == 0, first_staff_rows_isolated)))
if (num_black_pixels == 0):
end_list.append(j)
# Find maximum column that has no black pixels in staff window
list.sort(end_list)
end = end_list[0]
staff_extremes = (begin, end)
all_staff_extremes.append(staff_extremes)
return all_staff_extremes
def remove_stafflines(img, all_staffline_vertical_indices):
no_staff_img = deepcopy(img)
for staff in all_staffline_vertical_indices:
for line in staff:
for row in line:
# Remove top and bottom line to be sure
no_staff_img[row - 1, :] = 255
no_staff_img[row, :] = 255
no_staff_img[row + 1, :] = 255
return no_staff_img
def open_file(path):
img = Image.open(path)
img.show()
def locate_templates(img, templates, start, stop, threshold):
locations, scale = match(img, templates, start, stop, threshold)
img_locations = []
for i in range(len(templates)):
w, h = templates[i].shape[::-1]
w *= scale
h *= scale
img_locations.append([BoundingBox(pt[0], pt[1], w, h) for pt in zip(*locations[i][::-1])])
return img_locations
def merge_boxes(boxes, threshold):
filtered_boxes = []
while len(boxes) > 0:
r = boxes.pop(0)
boxes.sort(key=lambda box: box.distance(r))
merged = True
while (merged):
merged = False
i = 0
for _ in range(len(boxes)):
if r.overlap(boxes[i]) > threshold or boxes[i].overlap(r) > threshold:
r = r.merge(boxes.pop(i))
merged = True
elif boxes[i].distance(r) > r.w / 2 + boxes[i].w / 2:
break
else:
i += 1
filtered_boxes.append(r)
return filtered_boxes
if __name__ == "__main__":
#-------------------------------------------------------------------------------
# Image Preprocessing (Blurring, Noise Removal, Binarization, Deskewing)
#-------------------------------------------------------------------------------
# Noise Removal: https://docs.opencv.org/3.3.1/d5/d69/tutorial_py_non_local_means.html
# Deskewing: https://www.pyimagesearch.com/2017/02/20/text-skew-correction-opencv-python/
# Binarization + Blurring (Otsu): https://docs.opencv.org/3.3.1/d7/d4d/tutorial_py_thresholding.html
# ============ Read Image ============
img_file = sys.argv[1:][0]
img = cv2.imread(img_file, 0)
# ============ Noise Removal ============
img = cv2.fastNlMeansDenoising(img, None, 10, 7, 21)
# ============ Binarization ============
# Global Thresholding
# retval, img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# Otsu's Thresholding
retval, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imwrite('binarized.jpg', img)
# ============ Deskewing ============
# angle, img = deskew(img)
# print("[INFO] Deskew Angle: {:.3f}".format(angle))
# cv2.imshow("Input", img)
# cv2.waitKey(0)
# ============ Reference Lengths ============
# Reference lengths staff line thickness (staffline_height)
# and vertical line distance within the same staff (staffspace_height)
# computed, providing the basic scale for relative size comparisons
# Use run-length encoding on columns to estimate staffline height and staffspace height
line_width, line_spacing = get_ref_lengths(img)
print("[INFO] Staff line Width: ", line_width)
print("[INFO] Staff line Spacing: ", line_spacing)
#-------------------------------------------------------------------------------
# Staff Line Detection
#-------------------------------------------------------------------------------
# In practice, several horizontal projections on images with slightly different
# rotation angles are computed to deal with not completely horizontal staff lines.
# The projection with the highest local maxima is then chosen.
# ============ Find Staff Line Rows ============
all_staffline_vertical_indices = find_staffline_rows(img, line_width, line_spacing)
print("[INFO] Found ", len(all_staffline_vertical_indices), " sets of staff lines")
# ============ Find Staff Line Columns ============
# Find column with largest index that has no black pixels
all_staffline_horizontal_indices = find_staffline_columns(img, all_staffline_vertical_indices, line_width, line_spacing)
print("[INFO] Found all staff line horizontal extremes")
# ============ Show Detected Staffs ============
staffs = []
half_dist_between_staffs = (all_staffline_vertical_indices[1][0][0] - all_staffline_vertical_indices[0][4][line_width - 1])//2
for i in range(len(all_staffline_vertical_indices)):
# Create Bounding Box
x = all_staffline_horizontal_indices[i][0]
y = all_staffline_vertical_indices[i][0][0]
width = all_staffline_horizontal_indices[i][1] - x
height = all_staffline_vertical_indices[i][4][line_width - 1] - y
staff_box = BoundingBox(x, y, width, height)
# Create Cropped Staff Image
staff_img = img[max(0, y - half_dist_between_staffs): min(y+ height + half_dist_between_staffs, img.shape[0] - 1), x:x+width]
# Normalize Staff line Numbers to Cropped Image
pixel = half_dist_between_staffs
normalized_staff_line_vertical_indices = []
for j in range(5):
line = []
for k in range(line_width):
line.append(pixel)
pixel += 1
normalized_staff_line_vertical_indices.append(line)
pixel += line_spacing + 1
staff = Staff(normalized_staff_line_vertical_indices, staff_box, line_width, line_spacing, staff_img)
staffs.append(staff)
staff_boxes_img = img.copy()
staff_boxes_img = cv2.cvtColor(staff_boxes_img, cv2.COLOR_GRAY2RGB)
red = (0, 0, 255)
box_thickness = 2
for staff in staffs:
box = staff.getBox()
box.draw(staff_boxes_img, red, box_thickness)
x = int(box.getCorner()[0] + (box.getWidth() // 2))
y = int(box.getCorner()[1] + box.getHeight() + 35)
cv2.putText(staff_boxes_img, "Staff", (x, y), cv2.FONT_HERSHEY_DUPLEX, 0.9 , red)
cv2.imwrite('output/detected_staffs.jpg', staff_boxes_img)
# open_file('output/detected_staffs.jpg')
print("[INFO] Saving detected staffs onto disk")
#-------------------------------------------------------------------------------
# Symbol Segmentation, Object Recognition, and Semantic Reconstruction
#-------------------------------------------------------------------------------
# The score is then divided into regions of interest to localize and isolate the musical primitives.
# Music score is analyzed and split by staves
# Primitive symbols extracted
# Find all primitives on each stave first
# then move from left to right and create structure
# ============ Determine Clef, Time Signature ============
staff_imgs_color = []
for i in range(len(staffs)):
red = (0, 0, 255)
box_thickness = 2
staff_img = staffs[i].getImage()
staff_img_color = staff_img.copy()
staff_img_color = cv2.cvtColor(staff_img_color, cv2.COLOR_GRAY2RGB)
# ------- Clef -------
for clef in clef_imgs:
print("[INFO] Matching {} clef template on staff".format(clef), i + 1)
clef_boxes = locate_templates(staff_img, clef_imgs[clef], clef_lower, clef_upper, clef_thresh)
clef_boxes = merge_boxes([j for i in clef_boxes for j in i], 0.5)
if (len(clef_boxes) == 1):
print("[INFO] Clef Found: ", clef)
staffs[i].setClef(clef)
# print("[INFO] Displaying Matching Results on staff", i + 1)
clef_boxes_img = staffs[i].getImage()
clef_boxes_img = clef_boxes_img.copy()
for boxes in clef_boxes:
boxes.draw(staff_img_color, red, box_thickness)
x = int(boxes.getCorner()[0] + (boxes.getWidth() // 2))
y = int(boxes.getCorner()[1] + boxes.getHeight() + 10)
cv2.putText(staff_img_color, "{} clef".format(clef), (x, y), cv2.FONT_HERSHEY_DUPLEX, 0.9, red)
break
else:
# A clef should always be found
print("[INFO] No clef found on staff", i+1)
# # ------- Time -------
for time in time_imgs:
print("[INFO] Matching {} time signature template on staff".format(time), i + 1)
time_boxes = locate_templates(staff_img, time_imgs[time], time_lower, time_upper, time_thresh)
time_boxes = merge_boxes([j for i in time_boxes for j in i], 0.5)
if (len(time_boxes) == 1):
print("[INFO] Time Signature Found: ", time)
staffs[i].setTimeSignature(time)
# print("[INFO] Displaying Matching Results on staff", i + 1)
for boxes in time_boxes:
boxes.draw(staff_img_color, red, box_thickness)
x = int(boxes.getCorner()[0] - (boxes.getWidth() // 2))
y = int(boxes.getCorner()[1] + boxes.getHeight() + 20)
cv2.putText(staff_img_color, "{} time".format(time), (x, y), cv2.FONT_HERSHEY_DUPLEX, 0.9, red)
break
elif (len(time_boxes) == 0 and i > 0):
# Take time signature of previous staff
previousTime = staffs[i-1].getTimeSignature()
staffs[i].setTimeSignature(previousTime)
print("[INFO] No time signature found on staff", i + 1, ". Using time signature from previous staff line: ", previousTime)
break
else:
print("[INFO] No time signature available for staff", i + 1)
staff_imgs_color.append(staff_img_color)
# ============ Find Primitives ============
# always assert that notes in a bar equal duration dictated by time signature
for i in range(len(staffs)):
print("[INFO] Finding Primitives on Staff ", i+1)
staff_primitives = []
staff_img = staffs[i].getImage()
staff_img_color = staff_imgs_color[i]
red = (0, 0, 255)
box_thickness = 2
# ------- Find primitives on staff -------
print("[INFO] Matching sharp accidental template...")
sharp_boxes = locate_templates(staff_img, sharp_imgs, sharp_lower, sharp_upper, sharp_thresh)
sharp_boxes = merge_boxes([j for i in sharp_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in sharp_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "sharp"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
sharp = Primitive("sharp", 0, box)
staff_primitives.append(sharp)
print("[INFO] Matching flat accidental template...")
flat_boxes = locate_templates(staff_img, flat_imgs, flat_lower, flat_upper, flat_thresh)
flat_boxes = merge_boxes([j for i in flat_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in flat_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "flat"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
flat = Primitive("flat", 0, box)
staff_primitives.append(flat)
print("[INFO] Matching quarter note template...")
quarter_boxes = locate_templates(staff_img, quarter_note_imgs, quarter_note_lower, quarter_note_upper, quarter_note_thresh)
quarter_boxes = merge_boxes([j for i in quarter_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in quarter_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/4 note"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
pitch = staffs[i].getPitch(round(box.getCenter()[1]))
quarter = Primitive("note", 1, box, pitch)
staff_primitives.append(quarter)
print("[INFO] Matching half note template...")
half_boxes = locate_templates(staff_img, half_note_imgs, half_note_lower, half_note_upper, half_note_thresh)
half_boxes = merge_boxes([j for i in half_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in half_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/2 note"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
pitch = staffs[i].getPitch(round(box.getCenter()[1]))
half = Primitive("note", 2, box, pitch)
staff_primitives.append(half)
print("[INFO] Matching whole note template...")
whole_boxes = locate_templates(staff_img, whole_note_imgs, whole_note_lower, whole_note_upper, whole_note_thresh)
whole_boxes = merge_boxes([j for i in whole_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in whole_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1 note"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
pitch = staffs[i].getPitch(round(box.getCenter()[1]))
whole = Primitive("note", 4, box, pitch)
staff_primitives.append(whole)
print("[INFO] Matching eighth rest template...")
eighth_boxes = locate_templates(staff_img, eighth_rest_imgs, eighth_rest_lower, eighth_rest_upper, eighth_rest_thresh)
eighth_boxes = merge_boxes([j for i in eighth_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in eighth_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/8 rest"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
eighth = Primitive("rest", 0.5, box)
staff_primitives.append(eighth)
print("[INFO] Matching quarter rest template...")
quarter_boxes = locate_templates(staff_img, quarter_rest_imgs, quarter_rest_lower, quarter_rest_upper, quarter_rest_thresh)
quarter_boxes = merge_boxes([j for i in quarter_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in quarter_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/4 rest"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
quarter = Primitive("rest", 1, box)
staff_primitives.append(quarter)
print("[INFO] Matching half rest template...")
half_boxes = locate_templates(staff_img, half_rest_imgs, half_rest_lower, half_rest_upper, half_rest_thresh)
half_boxes = merge_boxes([j for i in half_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in half_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/2 rest"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
half = Primitive("rest", 2, box)
staff_primitives.append(half)
print("[INFO] Matching whole rest template...")
whole_boxes = locate_templates(staff_img, whole_rest_imgs, whole_rest_lower, whole_rest_upper, whole_rest_thresh)
whole_boxes = merge_boxes([j for i in whole_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in whole_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1 rest"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))
y = int(box.getCorner()[1] + box.getHeight() + 20)
cv2.putText(staff_img_color, text, (x, y), font, fontScale=0.7, color=red, thickness=1)
whole = Primitive("rest", 4, box)
staff_primitives.append(whole)
print("[INFO] Matching eighth flag template...")
flag_boxes = locate_templates(staff_img, eighth_flag_imgs, eighth_flag_lower, eighth_flag_upper, eighth_flag_thresh)
flag_boxes = merge_boxes([j for i in flag_boxes for j in i], 0.5)
print("[INFO] Displaying Matching Results on staff", i + 1)
for box in flag_boxes:
box.draw(staff_img_color, red, box_thickness)
text = "1/8 flag"
font = cv2.FONT_HERSHEY_DUPLEX
textsize = cv2.getTextSize(text, font, fontScale=0.7, thickness=1)[0]
x = int(box.getCorner()[0] - (textsize[0] // 2))