This repository has been archived by the owner on Jan 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
enhance.py
executable file
·587 lines (482 loc) · 31.3 KB
/
enhance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python3
""" _ _
_ __ ___ _ _ _ __ __ _| | ___ _ __ | |__ __ _ _ __ ___ ___
| '_ \ / _ \ | | | '__/ _` | | / _ \ '_ \| '_ \ / _` | '_ \ / __/ _ \
| | | | __/ |_| | | | (_| | | | __/ | | | | | | (_| | | | | (_| __/
|_| |_|\___|\__,_|_| \__,_|_| \___|_| |_|_| |_|\__,_|_| |_|\___\___|
"""
#
# Copyright (c) 2016, Alex J. Champandard.
#
# Neural Enhance is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
# Public License version 3. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
__version__ = '0.3'
import io
import os
import sys
import bz2
import glob
import math
import time
import pickle
import random
import argparse
import itertools
import threading
import collections
# Configure all options first so we can later custom-load other libraries (Theano) based on device specified by user.
parser = argparse.ArgumentParser(description='Generate a new image by applying style onto a content image.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
add_arg = parser.add_argument
add_arg('files', nargs='*', default=[])
add_arg('--zoom', default=2, type=int, help='Resolution increase factor for inference.')
add_arg('--rendering-tile', default=80, type=int, help='Size of tiles used for rendering images.')
add_arg('--rendering-overlap', default=24, type=int, help='Number of pixels padding around each tile.')
add_arg('--rendering-histogram',default=False, action='store_true', help='Match color histogram of output to input.')
add_arg('--type', default='photo', type=str, help='Name of the neural network to load/save.')
add_arg('--model', default='default', type=str, help='Specific trained version of the model.')
add_arg('--train', default=False, type=str, help='File pattern to load for training.')
add_arg('--train-scales', default=0, type=int, help='Randomly resize images this many times.')
add_arg('--train-blur', default=None, type=int, help='Sigma value for gaussian blur preprocess.')
add_arg('--train-noise', default=None, type=float, help='Radius for preprocessing gaussian blur.')
add_arg('--train-jpeg', default=[], nargs='+', type=int, help='JPEG compression level & range in preproc.')
add_arg('--epochs', default=10, type=int, help='Total number of iterations in training.')
add_arg('--epoch-size', default=72, type=int, help='Number of batches trained in an epoch.')
add_arg('--save-every', default=10, type=int, help='Save generator after every training epoch.')
add_arg('--batch-shape', default=192, type=int, help='Resolution of images in training batch.')
add_arg('--batch-size', default=15, type=int, help='Number of images per training batch.')
add_arg('--buffer-size', default=1500, type=int, help='Total image fragments kept in cache.')
add_arg('--buffer-fraction', default=5, type=int, help='Fragments cached for each image loaded.')
add_arg('--learning-rate', default=1E-4, type=float, help='Parameter for the ADAM optimizer.')
add_arg('--learning-period', default=75, type=int, help='How often to decay the learning rate.')
add_arg('--learning-decay', default=0.5, type=float, help='How much to decay the learning rate.')
add_arg('--generator-upscale', default=2, type=int, help='Steps of 2x up-sampling as post-process.')
add_arg('--generator-downscale',default=0, type=int, help='Steps of 2x down-sampling as preprocess.')
add_arg('--generator-filters', default=[64], nargs='+', type=int, help='Number of convolution units in network.')
add_arg('--generator-blocks', default=4, type=int, help='Number of residual blocks per iteration.')
add_arg('--generator-residual', default=2, type=int, help='Number of layers in a residual block.')
add_arg('--perceptual-layer', default='conv2_2', type=str, help='Which VGG layer to use as loss component.')
add_arg('--perceptual-weight', default=1e0, type=float, help='Weight for VGG-layer perceptual loss.')
add_arg('--discriminator-size', default=32, type=int, help='Multiplier for number of filters in D.')
add_arg('--smoothness-weight', default=2e5, type=float, help='Weight of the total-variation loss.')
add_arg('--adversary-weight', default=5e2, type=float, help='Weight of adversarial loss compoment.')
add_arg('--generator-start', default=0, type=int, help='Epoch count to start training generator.')
add_arg('--discriminator-start',default=1, type=int, help='Epoch count to update the discriminator.')
add_arg('--adversarial-start', default=2, type=int, help='Epoch for generator to use discriminator.')
add_arg('--device', default='cpu', type=str, help='Name of the CPU/GPU to use, for Theano.')
args = parser.parse_args()
#----------------------------------------------------------------------------------------------------------------------
# Color coded output helps visualize the information a little better, plus it looks cool!
class ansi:
WHITE = '\033[0;97m'
WHITE_B = '\033[1;97m'
YELLOW = '\033[0;33m'
YELLOW_B = '\033[1;33m'
RED = '\033[0;31m'
RED_B = '\033[1;31m'
BLUE = '\033[0;94m'
BLUE_B = '\033[1;94m'
CYAN = '\033[0;36m'
CYAN_B = '\033[1;36m'
ENDC = '\033[0m'
def error(message, *lines):
string = "\n{}ERROR: " + message + "{}\n" + "\n".join(lines) + ("{}\n" if lines else "{}")
print(string.format(ansi.RED_B, ansi.RED, ansi.ENDC))
sys.exit(-1)
def warn(message, *lines):
string = "\n{}WARNING: " + message + "{}\n" + "\n".join(lines) + "{}\n"
print(string.format(ansi.YELLOW_B, ansi.YELLOW, ansi.ENDC))
def extend(lst): return itertools.chain(lst, itertools.repeat(lst[-1]))
print("""{} {}Super Resolution for images and videos powered by Deep Learning!{}
- Code licensed as AGPLv3, models under CC BY-NC-SA.{}""".format(ansi.CYAN_B, __doc__, ansi.CYAN, ansi.ENDC))
# Load the underlying deep learning libraries based on the device specified. If you specify THEANO_FLAGS manually,
# the code assumes you know what you are doing and they are not overriden!
os.environ.setdefault('THEANO_FLAGS', 'floatX=float32,device={},force_device=True,allow_gc=True,'\
'print_active_device=False'.format(args.device))
# Scientific & Imaging Libraries
import numpy as np
import scipy.ndimage, scipy.misc, PIL.Image
# Numeric Computing (GPU)
import theano, theano.tensor as T
T.nnet.softminus = lambda x: x - T.nnet.softplus(x)
# Support ansi colors in Windows too.
if sys.platform == 'win32':
import colorama
# Deep Learning Framework
import lasagne
from lasagne.layers import Conv2DLayer as ConvLayer, Deconv2DLayer as DeconvLayer, Pool2DLayer as PoolLayer
from lasagne.layers import InputLayer, ConcatLayer, ElemwiseSumLayer, batch_norm
print('{} - Using the device `{}` for neural computation.{}\n'.format(ansi.CYAN, theano.config.device, ansi.ENDC))
#======================================================================================================================
# Image Processing
#======================================================================================================================
class DataLoader(threading.Thread):
def __init__(self):
super(DataLoader, self).__init__(daemon=True)
self.data_ready = threading.Event()
self.data_copied = threading.Event()
self.orig_shape, self.seed_shape = args.batch_shape, args.batch_shape // args.zoom
self.orig_buffer = np.zeros((args.buffer_size, 3, self.orig_shape, self.orig_shape), dtype=np.float32)
self.seed_buffer = np.zeros((args.buffer_size, 3, self.seed_shape, self.seed_shape), dtype=np.float32)
self.files = glob.glob(args.train)
if len(self.files) == 0:
error("There were no files found to train from searching for `{}`".format(args.train),
" - Try putting all your images in one folder and using `--train=data/*.jpg`")
self.available = set(range(args.buffer_size))
self.ready = set()
self.cwd = os.getcwd()
self.start()
def run(self):
while True:
random.shuffle(self.files)
for f in self.files:
self.add_to_buffer(f)
def add_to_buffer(self, f):
filename = os.path.join(self.cwd, f)
try:
orig = PIL.Image.open(filename).convert('RGB')
scale = 2 ** random.randint(0, args.train_scales)
if scale > 1 and all(s//scale >= args.batch_shape for s in orig.size):
orig = orig.resize((orig.size[0]//scale, orig.size[1]//scale), resample=PIL.Image.LANCZOS)
if any(s < args.batch_shape for s in orig.size):
raise ValueError('Image is too small for training with size {}'.format(orig.size))
except Exception as e:
warn('Could not load `{}` as image.'.format(filename),
' - Try fixing or removing the file before next run.')
self.files.remove(f)
return
seed = orig
if args.train_blur is not None:
seed = seed.filter(PIL.ImageFilter.GaussianBlur(radius=random.randint(0, args.train_blur*2)))
if args.zoom > 1:
seed = seed.resize((orig.size[0]//args.zoom, orig.size[1]//args.zoom), resample=PIL.Image.LANCZOS)
if len(args.train_jpeg) > 0:
buffer, rng = io.BytesIO(), args.train_jpeg[-1] if len(args.train_jpeg) > 1 else 15
seed.save(buffer, format='jpeg', quality=args.train_jpeg[0]+random.randrange(-rng, +rng))
seed = PIL.Image.open(buffer)
orig = scipy.misc.fromimage(orig).astype(np.float32)
seed = scipy.misc.fromimage(seed).astype(np.float32)
if args.train_noise is not None:
seed += scipy.random.normal(scale=args.train_noise, size=(seed.shape[0], seed.shape[1], 1))
for _ in range(seed.shape[0] * seed.shape[1] // (args.buffer_fraction * self.seed_shape ** 2)):
h = random.randint(0, seed.shape[0] - self.seed_shape)
w = random.randint(0, seed.shape[1] - self.seed_shape)
seed_chunk = seed[h:h+self.seed_shape, w:w+self.seed_shape]
h, w = h * args.zoom, w * args.zoom
orig_chunk = orig[h:h+self.orig_shape, w:w+self.orig_shape]
while len(self.available) == 0:
self.data_copied.wait()
self.data_copied.clear()
i = self.available.pop()
self.orig_buffer[i] = np.transpose(orig_chunk.astype(np.float32) / 255.0 - 0.5, (2, 0, 1))
self.seed_buffer[i] = np.transpose(seed_chunk.astype(np.float32) / 255.0 - 0.5, (2, 0, 1))
self.ready.add(i)
if len(self.ready) >= args.batch_size:
self.data_ready.set()
def copy(self, origs_out, seeds_out):
self.data_ready.wait()
self.data_ready.clear()
for i, j in enumerate(random.sample(self.ready, args.batch_size)):
origs_out[i] = self.orig_buffer[j]
seeds_out[i] = self.seed_buffer[j]
self.available.add(j)
self.data_copied.set()
#======================================================================================================================
# Convolution Networks
#======================================================================================================================
class SubpixelReshuffleLayer(lasagne.layers.Layer):
"""Based on the code by ajbrock: https://github.com/ajbrock/Neural-Photo-Editor/
"""
def __init__(self, incoming, channels, upscale, **kwargs):
super(SubpixelReshuffleLayer, self).__init__(incoming, **kwargs)
self.upscale = upscale
self.channels = channels
def get_output_shape_for(self, input_shape):
def up(d): return self.upscale * d if d else d
return (input_shape[0], self.channels, up(input_shape[2]), up(input_shape[3]))
def get_output_for(self, input, deterministic=False, **kwargs):
out, r = T.zeros(self.get_output_shape_for(input.shape)), self.upscale
for y, x in itertools.product(range(r), repeat=2):
out=T.inc_subtensor(out[:,:,y::r,x::r], input[:,r*y+x::r*r,:,:])
return out
class Model(object):
def __init__(self):
self.network = collections.OrderedDict()
self.network['img'] = InputLayer((None, 3, None, None))
self.network['seed'] = InputLayer((None, 3, None, None))
config, params = self.load_model()
self.setup_generator(self.last_layer(), config)
if args.train:
concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
self.setup_perceptual(concatenated)
self.load_perceptual()
self.setup_discriminator()
self.load_generator(params)
self.compile()
#------------------------------------------------------------------------------------------------------------------
# Network Configuration
#------------------------------------------------------------------------------------------------------------------
def last_layer(self):
return list(self.network.values())[-1]
def make_layer(self, name, input, units, filter_size=(3,3), stride=(1,1), pad=(1,1), alpha=0.25):
conv = ConvLayer(input, units, filter_size, stride=stride, pad=pad, nonlinearity=None)
prelu = lasagne.layers.ParametricRectifierLayer(conv, alpha=lasagne.init.Constant(alpha))
self.network[name+'x'] = conv
self.network[name+'>'] = prelu
return prelu
def make_block(self, name, input, units):
self.make_layer(name+'-A', input, units, alpha=0.1)
# self.make_layer(name+'-B', self.last_layer(), units, alpha=1.0)
return ElemwiseSumLayer([input, self.last_layer()]) if args.generator_residual else self.last_layer()
def setup_generator(self, input, config):
for k, v in config.items(): setattr(args, k, v)
args.zoom = 2**(args.generator_upscale - args.generator_downscale)
units_iter = extend(args.generator_filters)
units = next(units_iter)
self.make_layer('iter.0', input, units, filter_size=(7,7), pad=(3,3))
for i in range(0, args.generator_downscale):
self.make_layer('downscale%i'%i, self.last_layer(), next(units_iter), filter_size=(4,4), stride=(2,2))
units = next(units_iter)
for i in range(0, args.generator_blocks):
self.make_block('iter.%i'%(i+1), self.last_layer(), units)
for i in range(0, args.generator_upscale):
u = next(units_iter)
self.make_layer('upscale%i.2'%i, self.last_layer(), u*4)
self.network['upscale%i.1'%i] = SubpixelReshuffleLayer(self.last_layer(), u, 2)
self.network['out'] = ConvLayer(self.last_layer(), 3, filter_size=(7,7), pad=(3,3), nonlinearity=None)
def setup_perceptual(self, input):
"""Use lasagne to create a network of convolution layers using pre-trained VGG19 weights.
"""
offset = np.array([103.939, 116.779, 123.680], dtype=np.float32).reshape((1,3,1,1))
self.network['percept'] = lasagne.layers.NonlinearityLayer(input, lambda x: ((x+0.5)*255.0) - offset)
self.network['mse'] = self.network['percept']
self.network['conv1_1'] = ConvLayer(self.network['percept'], 64, 3, pad=1)
self.network['conv1_2'] = ConvLayer(self.network['conv1_1'], 64, 3, pad=1)
self.network['pool1'] = PoolLayer(self.network['conv1_2'], 2, mode='max')
self.network['conv2_1'] = ConvLayer(self.network['pool1'], 128, 3, pad=1)
self.network['conv2_2'] = ConvLayer(self.network['conv2_1'], 128, 3, pad=1)
self.network['pool2'] = PoolLayer(self.network['conv2_2'], 2, mode='max')
self.network['conv3_1'] = ConvLayer(self.network['pool2'], 256, 3, pad=1)
self.network['conv3_2'] = ConvLayer(self.network['conv3_1'], 256, 3, pad=1)
self.network['conv3_3'] = ConvLayer(self.network['conv3_2'], 256, 3, pad=1)
self.network['conv3_4'] = ConvLayer(self.network['conv3_3'], 256, 3, pad=1)
self.network['pool3'] = PoolLayer(self.network['conv3_4'], 2, mode='max')
self.network['conv4_1'] = ConvLayer(self.network['pool3'], 512, 3, pad=1)
self.network['conv4_2'] = ConvLayer(self.network['conv4_1'], 512, 3, pad=1)
self.network['conv4_3'] = ConvLayer(self.network['conv4_2'], 512, 3, pad=1)
self.network['conv4_4'] = ConvLayer(self.network['conv4_3'], 512, 3, pad=1)
self.network['pool4'] = PoolLayer(self.network['conv4_4'], 2, mode='max')
self.network['conv5_1'] = ConvLayer(self.network['pool4'], 512, 3, pad=1)
self.network['conv5_2'] = ConvLayer(self.network['conv5_1'], 512, 3, pad=1)
self.network['conv5_3'] = ConvLayer(self.network['conv5_2'], 512, 3, pad=1)
self.network['conv5_4'] = ConvLayer(self.network['conv5_3'], 512, 3, pad=1)
def setup_discriminator(self):
c = args.discriminator_size
self.make_layer('disc1.1', batch_norm(self.network['conv1_2']), 1*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc1.2', self.last_layer(), 1*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc2', batch_norm(self.network['conv2_2']), 2*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc3', batch_norm(self.network['conv3_2']), 3*c, filter_size=(3,3), stride=(1,1), pad=(1,1))
hypercolumn = ConcatLayer([self.network['disc1.2>'], self.network['disc2>'], self.network['disc3>']])
self.make_layer('disc4', hypercolumn, 4*c, filter_size=(1,1), stride=(1,1), pad=(0,0))
self.make_layer('disc5', self.last_layer(), 3*c, filter_size=(3,3), stride=(2,2))
self.make_layer('disc6', self.last_layer(), 2*c, filter_size=(1,1), stride=(1,1), pad=(0,0))
self.network['disc'] = batch_norm(ConvLayer(self.last_layer(), 1, filter_size=(1,1),
nonlinearity=lasagne.nonlinearities.linear))
#------------------------------------------------------------------------------------------------------------------
# Input / Output
#------------------------------------------------------------------------------------------------------------------
def load_perceptual(self):
"""Open the serialized parameters from a pre-trained network, and load them into the model created.
"""
vgg19_file = os.path.join(os.path.dirname(__file__), 'vgg19_conv.pkl.bz2')
if not os.path.exists(vgg19_file):
error("Model file with pre-trained convolution layers not found. Download here...",
"https://github.com/alexjc/neural-doodle/releases/download/v0.0/vgg19_conv.pkl.bz2")
data = pickle.load(bz2.open(vgg19_file, 'rb'))
layers = lasagne.layers.get_all_layers(self.last_layer(), treat_as_input=[self.network['percept']])
for p, d in zip(itertools.chain(*[l.get_params() for l in layers]), data): p.set_value(d)
def list_generator_layers(self):
for l in lasagne.layers.get_all_layers(self.network['out'], treat_as_input=[self.network['img']]):
if not l.get_params(): continue
name = list(self.network.keys())[list(self.network.values()).index(l)]
yield (name, l)
def get_filename(self, absolute=False):
filename = 'ne%ix-%s-%s-%s.pkl.bz2' % (args.zoom, args.type, args.model, __version__)
return os.path.join(os.path.dirname(__file__), filename) if absolute else filename
def save_generator(self):
def cast(p): return p.get_value().astype(np.float16)
params = {k: [cast(p) for p in l.get_params()] for (k, l) in self.list_generator_layers()}
config = {k: getattr(args, k) for k in ['generator_blocks', 'generator_residual', 'generator_filters'] + \
['generator_upscale', 'generator_downscale']}
pickle.dump((config, params), bz2.open(self.get_filename(absolute=True), 'wb'))
print(' - Saved model as `{}` after training.'.format(self.get_filename()))
def load_model(self):
if not os.path.exists(self.get_filename(absolute=True)):
if args.train: return {}, {}
error("Model file with pre-trained convolution layers not found. Download it here...",
"https://github.com/alexjc/neural-enhance/releases/download/v%s/%s"%(__version__, self.get_filename()))
print(' - Loaded file `{}` with trained model.'.format(self.get_filename()))
return pickle.load(bz2.open(self.get_filename(absolute=True), 'rb'))
def load_generator(self, params):
if len(params) == 0: return
for k, l in self.list_generator_layers():
assert k in params, "Couldn't find layer `%s` in loaded model.'" % k
assert len(l.get_params()) == len(params[k]), "Mismatch in types of layers."
for p, v in zip(l.get_params(), params[k]):
assert v.shape == p.get_value().shape, "Mismatch in number of parameters for layer {}.".format(k)
p.set_value(v.astype(np.float32))
#------------------------------------------------------------------------------------------------------------------
# Training & Loss Functions
#------------------------------------------------------------------------------------------------------------------
def loss_perceptual(self, p):
return lasagne.objectives.squared_error(p[:args.batch_size], p[args.batch_size:]).mean()
def loss_total_variation(self, x):
return T.mean(((x[:,:,:-1,:-1] - x[:,:,1:,:-1])**2 + (x[:,:,:-1,:-1] - x[:,:,:-1,1:])**2)**1.25)
def loss_adversarial(self, d):
return T.mean(1.0 - T.nnet.softminus(d[args.batch_size:]))
def loss_discriminator(self, d):
return T.mean(T.nnet.softminus(d[args.batch_size:]) - T.nnet.softplus(d[:args.batch_size]))
def compile(self):
# Helper function for rendering test images during training, or standalone inference mode.
input_tensor, seed_tensor = T.tensor4(), T.tensor4()
input_layers = {self.network['img']: input_tensor, self.network['seed']: seed_tensor}
output = lasagne.layers.get_output([self.network[k] for k in ['seed','out']], input_layers, deterministic=True)
self.predict = theano.function([seed_tensor], output)
if not args.train: return
output_layers = [self.network['out'], self.network[args.perceptual_layer], self.network['disc']]
gen_out, percept_out, disc_out = lasagne.layers.get_output(output_layers, input_layers, deterministic=False)
# Generator loss function, parameters and updates.
self.gen_lr = theano.shared(np.array(0.0, dtype=theano.config.floatX))
self.adversary_weight = theano.shared(np.array(0.0, dtype=theano.config.floatX))
gen_losses = [self.loss_perceptual(percept_out) * args.perceptual_weight,
self.loss_total_variation(gen_out) * args.smoothness_weight,
self.loss_adversarial(disc_out) * self.adversary_weight]
gen_params = lasagne.layers.get_all_params(self.network['out'], trainable=True)
print(' - {} tensors learned for generator.'.format(len(gen_params)))
gen_updates = lasagne.updates.adam(sum(gen_losses, 0.0), gen_params, learning_rate=self.gen_lr)
# Discriminator loss function, parameters and updates.
self.disc_lr = theano.shared(np.array(0.0, dtype=theano.config.floatX))
disc_losses = [self.loss_discriminator(disc_out)]
disc_params = list(itertools.chain(*[l.get_params() for k, l in self.network.items() if 'disc' in k]))
print(' - {} tensors learned for discriminator.'.format(len(disc_params)))
grads = [g.clip(-5.0, +5.0) for g in T.grad(sum(disc_losses, 0.0), disc_params)]
disc_updates = lasagne.updates.adam(grads, disc_params, learning_rate=self.disc_lr)
# Combined Theano function for updating both generator and discriminator at the same time.
updates = collections.OrderedDict(list(gen_updates.items()) + list(disc_updates.items()))
self.fit = theano.function([input_tensor, seed_tensor], gen_losses + [disc_out.mean(axis=(1,2,3))], updates=updates)
class NeuralEnhancer(object):
def __init__(self, loader):
if args.train:
print('{}Training {} epochs on random image sections with batch size {}.{}'\
.format(ansi.BLUE_B, args.epochs, args.batch_size, ansi.BLUE))
else:
if len(args.files) == 0: error("Specify the image(s) to enhance on the command-line.")
print('{}Enhancing {} image(s) specified on the command-line.{}'\
.format(ansi.BLUE_B, len(args.files), ansi.BLUE))
self.thread = DataLoader() if loader else None
self.model = Model()
print('{}'.format(ansi.ENDC))
def imsave(self, fn, img):
scipy.misc.toimage(np.transpose(img + 0.5, (1, 2, 0)).clip(0.0, 1.0) * 255.0, cmin=0, cmax=255).save(fn)
def show_progress(self, orign, scald, repro):
os.makedirs('valid', exist_ok=True)
for i in range(args.batch_size):
self.imsave('valid/%s_%03i_origin.png' % (args.model, i), orign[i])
self.imsave('valid/%s_%03i_pixels.png' % (args.model, i), scald[i])
self.imsave('valid/%s_%03i_reprod.png' % (args.model, i), repro[i])
def decay_learning_rate(self):
l_r, t_cur = args.learning_rate, 0
while True:
yield l_r
t_cur += 1
if t_cur % args.learning_period == 0: l_r *= args.learning_decay
def train(self):
seed_size = args.batch_shape // args.zoom
images = np.zeros((args.batch_size, 3, args.batch_shape, args.batch_shape), dtype=np.float32)
seeds = np.zeros((args.batch_size, 3, seed_size, seed_size), dtype=np.float32)
learning_rate = self.decay_learning_rate()
try:
average, start = None, time.time()
for epoch in range(args.epochs):
total, stats = None, None
l_r = next(learning_rate)
if epoch >= args.generator_start: self.model.gen_lr.set_value(l_r)
if epoch >= args.discriminator_start: self.model.disc_lr.set_value(l_r)
for _ in range(args.epoch_size):
self.thread.copy(images, seeds)
output = self.model.fit(images, seeds)
losses = np.array(output[:3], dtype=np.float32)
stats = (stats + output[3]) if stats is not None else output[3]
total = total + losses if total is not None else losses
l = np.sum(losses)
assert not np.isnan(losses).any()
average = l if average is None else average * 0.95 + 0.05 * l
print('↑' if l > average else '↓', end='', flush=True)
scald, repro = self.model.predict(seeds)
self.show_progress(images, scald, repro)
total /= args.epoch_size
stats /= args.epoch_size
totals, labels = [sum(total)] + list(total), ['total', 'prcpt', 'smthn', 'advrs']
gen_info = ['{}{}{}={:4.2e}'.format(ansi.WHITE_B, k, ansi.ENDC, v) for k, v in zip(labels, totals)]
print('\rEpoch #{} at {:4.1f}s, lr={:4.2e}{}'.format(epoch+1, time.time()-start, l_r, ' '*(args.epoch_size-30)))
print(' - generator {}'.format(' '.join(gen_info)))
real, fake = stats[:args.batch_size], stats[args.batch_size:]
print(' - discriminator', real.mean(), len(np.where(real > 0.5)[0]),
fake.mean(), len(np.where(fake < -0.5)[0]))
if epoch == args.adversarial_start-1:
print(' - generator now optimizing against discriminator.')
self.model.adversary_weight.set_value(args.adversary_weight)
running = None
if (epoch+1) % args.save_every == 0:
print(' - saving current generator layers to disk...')
self.model.save_generator()
except KeyboardInterrupt:
pass
print('\n{}Trained {}x super-resolution for {} epochs.{}'\
.format(ansi.CYAN_B, args.zoom, epoch+1, ansi.CYAN))
self.model.save_generator()
print(ansi.ENDC)
def match_histograms(self, A, B, rng=(0.0, 255.0), bins=64):
(Ha, Xa), (Hb, Xb) = [np.histogram(i, bins=bins, range=rng, density=True) for i in [A, B]]
X = np.linspace(rng[0], rng[1], bins, endpoint=True)
Hpa, Hpb = [np.cumsum(i) * (rng[1] - rng[0]) ** 2 / float(bins) for i in [Ha, Hb]]
inv_Ha = scipy.interpolate.interp1d(X, Hpa, bounds_error=False, fill_value='extrapolate')
map_Hb = scipy.interpolate.interp1d(Hpb, X, bounds_error=False, fill_value='extrapolate')
return map_Hb(inv_Ha(A).clip(0.0, 255.0))
def process(self, original):
# Snap the image to a shape that's compatible with the generator (2x, 4x)
s = 2 ** max(args.generator_upscale, args.generator_downscale)
by, bx = original.shape[0] % s, original.shape[1] % s
original = original[by-by//2:original.shape[0]-by//2,bx-bx//2:original.shape[1]-bx//2,:]
# Prepare paded input image as well as output buffer of zoomed size.
s, p, z = args.rendering_tile, args.rendering_overlap, args.zoom
image = np.pad(original, ((p, p), (p, p), (0, 0)), mode='reflect')
output = np.zeros((original.shape[0] * z, original.shape[1] * z, 3), dtype=np.float32)
# Iterate through the tile coordinates and pass them through the network.
for y, x in itertools.product(range(0, original.shape[0], s), range(0, original.shape[1], s)):
img = np.transpose(image[y:y+p*2+s,x:x+p*2+s,:] / 255.0 - 0.5, (2, 0, 1))[np.newaxis].astype(np.float32)
*_, repro = self.model.predict(img)
output[y*z:(y+s)*z,x*z:(x+s)*z,:] = np.transpose(repro[0] + 0.5, (1, 2, 0))[p*z:-p*z,p*z:-p*z,:]
print('.', end='', flush=True)
output = output.clip(0.0, 1.0) * 255.0
# Match color histograms if the user specified this option.
if args.rendering_histogram:
for i in range(3):
output[:,:,i] = self.match_histograms(output[:,:,i], original[:,:,i])
return scipy.misc.toimage(output, cmin=0, cmax=255)
if __name__ == "__main__":
if args.train:
args.zoom = 2**(args.generator_upscale - args.generator_downscale)
enhancer = NeuralEnhancer(loader=True)
enhancer.train()
else:
enhancer = NeuralEnhancer(loader=False)
for filename in args.files:
print(filename, end=' ')
img = scipy.ndimage.imread(filename, mode='RGB')
out = enhancer.process(img)
out.save(os.path.splitext(filename)[0]+'_ne%ix.png' % args.zoom)
print(flush=True)
print(ansi.ENDC)