Skip to content

Latest commit

 

History

History
75 lines (60 loc) · 2.38 KB

README.md

File metadata and controls

75 lines (60 loc) · 2.38 KB

Similarity of Neural Networks with Gradients


This folder contains code for comparing trained neural networks using both feature and gradient information, as detailed in the paper (link):

Similarity of Neural Networks with Gradients

by S. Tang, W. Maddox, C. Dickens, T. Diethe and A. Damianou.

Please cite our work if you find it useful:

@article{tang2020similarity,
  title={Similarity of Neural Networks with Gradients},
  author={Tang, Shuai and Maddox, Wesley J and Dickens, Charlie and Diethe, Tom and Damianou, Andreas},
  journal={arXiv preprint arXiv:2003.11498},
  year={2020}
}

Introduction

The implementation relies on the following three files:

sketched_kernels.py computes the sketched kernel matrices of individual residual blocks based on a pretrained ImageNet model and a given dataset.

sim_indices.py computes the similarity scores between two residual blocks.

utils.py provides two helper functions, including load_model for loading an ImageNet model and load_dataset for creating a dataloader object.

Requirements

python >= 3.5
torch >= 1.0
torchvision
numpy

Example

Generate our proposed kernel matrices for individual residual blocks given a pretrained ImageNet model and a dataset (cifar10 below)

CUDA_VISIBLE_DEVICES=0 python -u cwt_kernel_mat.py \
        --datapath data/ \
        --modelname resnet18 \
        --pretrained \
        --seed 1111 \
        --task cifar10 \
        --split test \
        --bsize 256 \
        --num-buckets-sketching 128 \
        --num-buckets-per-sample 1

Given sketched kernel matrices calculated on one dataset (cifar10 below), compute a heatmap in which each entry is the similarity score between two residual blocks

python -u compute_similarity.py \
        --loadpath sketched_kernel_mat/ \
        --filename1 resnet18_test_cifar10_1111.npy \
        --simindex cka

Given sketched kernel matrices calculated on two datasets (cifar10 and cifar100 below), compute a heatmap in which each entry is the similarity score between two residual blocks

python -u compute_similarity.py \
        --loadpath sketched_kernel_mat/ \
        --filename1 resnet18_test_cifar10_1111.npy \
        --filename2 resnet18_test_cifar100_1111.npy \
        --simindex cka

Authors

Shuai Tang