diff --git a/Stdlib/Data/List.juvix b/Stdlib/Data/List.juvix index 6596def2..31de9aa8 100644 --- a/Stdlib/Data/List.juvix +++ b/Stdlib/Data/List.juvix @@ -24,7 +24,10 @@ eqListI {A} {{Eq A}} : Eq (List A) := | nil nil := true | nil _ := false | _ nil := false - | (x :: xs) (y :: ys) := ite (Eq.eq x y) (go xs ys) false; + | (x :: xs) (y :: ys) := + if + | Eq.eq x y := go xs ys + | else := false; in mkEq go; isMember {A} {{Eq A}} (elem : A) (list : List A) : Bool := isElement (Eq.eq) elem list; diff --git a/Stdlib/Data/List/Base.juvix b/Stdlib/Data/List/Base.juvix index e900074f..f415483c 100644 --- a/Stdlib/Data/List/Base.juvix +++ b/Stdlib/Data/List/Base.juvix @@ -180,7 +180,7 @@ all {A} (predicate : A -> Bool) : (list : List A) -> Bool | else := false; --- 𝒪(1). Returns ;true; if the ;List; is empty. -null {A} (list : List A) : Bool := +isEmpty {A} (list : List A) : Bool := case list of | nil := true | _ := false; diff --git a/Stdlib/Data/Map.juvix b/Stdlib/Data/Map.juvix index bf9083d7..d441d85e 100644 --- a/Stdlib/Data/Map.juvix +++ b/Stdlib/Data/Map.juvix @@ -4,18 +4,16 @@ import Stdlib.Data.Pair open; import Stdlib.Data.Maybe open; import Stdlib.Data.List open; import Stdlib.Data.Nat open; +import Stdlib.Data.Bool open; import Stdlib.Trait.Functor open; -import Stdlib.Trait.Foldable open; +import Stdlib.Trait.Foldable open hiding {foldr; foldl}; import Stdlib.Trait.Ord open; import Stdlib.Function open; -import Stdlib.Data.Set as Set; -open Set using {Set}; - -import Stdlib.Data.Set.AVL as AVL; -open AVL using {AVLTree}; +import Stdlib.Data.Set as Set open using {Set}; +import Stdlib.Data.Set.AVL as AVL open using {AVLTree}; import Stdlib.Data.BinaryTree as Tree; @@ -34,6 +32,7 @@ toPair {Key Value} (binding : Binding Key Value) : Pair Key Value := key binding instance bindingKeyOrdering {Key Value} {{Ord Key}} : Ord (Binding Key Value) := mkOrd@{ + {-# inline: true #-} cmp (b1 b2 : Binding Key Value) : Ordering := Ord.cmp (key b1) (key b2) }; @@ -54,31 +53,162 @@ insertWith mkMap tree := let fun' (binding1 binding2 : Binding Key Value) : Binding Key Value := - case binding1, binding2 of mkBinding a b1, mkBinding _ b2 := mkBinding a (fun b1 b2); + case binding1, binding2 of mkBinding k b1, mkBinding _ b2 := mkBinding k (fun b1 b2); binding := mkBinding key value; in mkMap (Set.insertWith fun' binding tree); -insert {A B : Type} {{Ord A}} : A -> B -> Map A B -> Map A B := insertWith λ {old new := new}; +--- 𝒪(log 𝓃). Inserts an element into a ;Map; at a given key. +{-# inline: true #-} +insert {Key Value : Type} {{Ord Key}} : Key -> Value -> Map Key Value -> Map Key Value := + insertWith \ {old new := new}; + +--- 𝒪(log 𝓃). Queries whether a given key is in a ;Map;. +{-# specialize: [1] #-} +lookup {Key Value} {{Ord Key}} (lookupKey : Key) (container : Map Key Value) : Maybe Value := + case container of mkMap s := map value (Set.lookupWith key lookupKey s); +--- 𝒪(log 𝓃). Queries whether a given key is in a ;Map;. {-# specialize: [1] #-} -lookup {A B} {{Ord A}} (k : A) : Map A B -> Maybe B - | (mkMap s) := map value (Set.lookupWith key k s); +isMember {Key Value} {{Ord Key}} (key : Key) (container : Map Key Value) : Bool := + isJust (lookup key container); {-# specialize: [1, f] #-} -fromListWith {A B} {{Ord A}} (f : B -> B -> B) (xs : List (Pair A B)) : Map A B := - for (acc := empty) (k, v in xs) - insertWith f k v acc; +fromListWithKey + {Key Value} + {{Ord Key}} + (f : Key -> Value -> Value -> Value) + (xs : List (Pair Key Value)) + : Map Key Value := for (acc := empty) (k, v in xs) {insertWith (f k) k v acc}; -fromList {A B} {{Ord A}} : List (Pair A B) -> Map A B := fromListWith λ {old new := new}; +{-# inline: true #-} +fromListWith + {Key Value} + {{Ord Key}} + (f : Value -> Value -> Value) + (xs : List (Pair Key Value)) + : Map Key Value := fromListWithKey (const f) xs; -toList {A B} : Map A B -> List (Pair A B) - | (mkMap s) := map (x in Set.toList s) toPair x; +{-# inline: true #-} +fromList {Key Value} {{Ord Key}} : List (Pair Key Value) -> Map Key Value := + fromListWith λ {old new := new}; -size {A B} : Map A B -> Nat - | (mkMap s) := Set.size s; +toList {Key Value} (container : Map Key Value) : List (Pair Key Value) := + case container of mkMap s := map (x in Set.toList s) {toPair x}; -delete {A B} {{Ord A}} (k : A) : Map A B -> Map A B - | m@(mkMap s) := Set.deleteWith key k s |> mkMap; +{-# specialize: [1, f] #-} +fromSet {Key Value} {{Ord Key}} (f : Key -> Value) (set : Set Key) : Map Key Value := + for (acc := empty) (k in set) {insert k (f k) acc}; + +--- 𝒪(1). Checks if a ;Map; is empty. +{-# inline: true #-} +isEmpty {Key Value} (container : Map Key Value) : Bool := + case container of mkMap s := Set.isEmpty s; + +--- 𝒪(𝓃). Returns the number of elements of a ;Map;. +{-# inline: true #-} +size {Key Value} (container : Map Key Value) : Nat := case container of mkMap s := Set.size s; + +--- 𝒪(log 𝓃). Removes a key assignment from a ;Map;. +{-# inline: true #-} +delete {Key Value} {{Ord Key}} (deleteKey : Key) (container : Map Key Value) : Map Key Value := + case container of mkMap s := mkMap (Set.deleteWith key deleteKey s); + +keys {Key Value} (container : Map Key Value) : List Key := + case container of mkMap s := map (x in Set.toList s) {key x}; + +values {Key Value} (container : Map Key Value) : List Value := + case container of mkMap s := map (x in Set.toList s) {value x}; + +keySet {Key Value} {{Ord Key}} (container : Map Key Value) : Set Key := + case container of mkMap s := Set.map (x in s) {key x}; + +valueSet {Key Value} {{Ord Value}} (container : Map Key Value) : Set Value := + case container of mkMap s := Set.map (x in s) {value x}; + +{-# specialize: [f] #-} +mapValuesWithKey + {Key Value1 Value2} (f : Key -> Value1 -> Value2) (container : Map Key Value1) : Map Key Value2 := + case container of + mkMap s := mkMap (Set.Internal.unsafeMap \ {(mkBinding k v) := mkBinding k (f k v)} s); + +{-# inline: true #-} +mapValues + {Key Value1 Value2} (f : Value1 -> Value2) (container : Map Key Value1) : Map Key Value2 := + mapValuesWithKey (const f) container; + +{-# inline: true #-} +singleton {Key Value} {{Ord Key}} (key : Key) (value : Value) : Map Key Value := + insert key value empty; + +{-# inline: true #-} +foldr + {Key Value Acc} (f : Key -> Value -> Acc -> Acc) (acc : Acc) (container : Map Key Value) : Acc := + case container of mkMap s := rfor (acc := acc) (x in s) {f (key x) (value x) acc}; + +{-# inline: true #-} +foldl + {Key Value Acc} (f : Acc -> Key -> Value -> Acc) (acc : Acc) (container : Map Key Value) : Acc := + case container of mkMap s := for (acc := acc) (x in s) {f acc (key x) (value x)}; + +syntax iterator all {init := 0; range := 1}; +--- 𝒪(𝓃). Returns ;true; if all key-element pairs in the ;Map; satisfy the predicate. +{-# inline: true #-} +all {Key Value} (predicate : Key -> Value -> Bool) (container : Map Key Value) : Bool := + case container of mkMap s := Set.all (x in s) {predicate (key x) (value x)}; + +syntax iterator any {init := 0; range := 1}; +--- 𝒪(𝓃). Returns ;true; if some key-element pair in the ;Map; satisfies the predicate. +{-# inline: true #-} +any {Key Value} (predicate : Key -> Value -> Bool) (container : Map Key Value) : Bool := + case container of mkMap s := Set.any (x in s) {predicate (key x) (value x)}; + +syntax iterator filter {init := 0; range := 1}; +--- 𝒪(n log n). Returns a ;Map; containing all key-element pairs of the given +--- map container that satisfy the predicate. +{-# inline: true #-} +filter + {Key Value} + {{Ord Key}} + (predicate : Key -> Value -> Bool) + (container : Map Key Value) + : Map Key Value := + case container of mkMap s := mkMap (Set.filter (x in s) {predicate (key x) (value x)}); + +syntax iterator partition {init := 0; range := 1}; +{-# inline: true #-} +partition + {Key Value} + {{Ord Key}} + (predicate : Key -> Value -> Bool) + (container : Map Key Value) + : Pair (Map Key Value) (Map Key Value) := + case container of + mkMap s := + case Set.partition (x in s) {predicate (key x) (value x)} of + left, right := mkMap left, mkMap right; + +{-# specialize: true, inline: case #-} +instance +functorMapI {Key} : Functor (Map Key) := + mkFunctor@{ + map {A B} (f : A -> B) (container : Map Key A) : Map Key B := mapValues f container + }; + +{-# specialize: true, inline: case #-} +instance +foldableMapI {Key Value} : Foldable (Map Key Value) (Pair Key Value) := + mkFoldable@{ + {-# inline: true #-} + for {B} (f : B -> Pair Key Value -> B) (acc : B) (container : Map Key Value) : B := + foldl \ {a k v := f a (k, v)} acc container; + + {-# inline: true #-} + rfor {B} (f : B -> Pair Key Value -> B) (acc : B) (container : Map Key Value) : B := + foldr \ {k v a := f a (k, v)} acc container + }; instance eqMapI {A B} {{Eq A}} {{Eq B}} : Eq (Map A B) := mkEq (Eq.eq on toList); + +instance +ordMapI {A B} {{Ord A}} {{Ord B}} : Ord (Map A B) := mkOrd (Ord.cmp on toList); diff --git a/Stdlib/Data/Set/AVL.juvix b/Stdlib/Data/Set/AVL.juvix index 2d6f9fc1..9e837825 100644 --- a/Stdlib/Data/Set/AVL.juvix +++ b/Stdlib/Data/Set/AVL.juvix @@ -14,9 +14,9 @@ import Stdlib.Data.Nat open; import Stdlib.Data.Int open; import Stdlib.Data.Bool open; import Stdlib.Data.Pair open; -import Stdlib.Data.List open hiding {isMember}; +import Stdlib.Data.List open using {List; nil; ::; filter; ++; catMaybes}; import Stdlib.Data.String open; -import Stdlib.Trait.Foldable open; +import Stdlib.Trait.Foldable open hiding {foldr; foldl}; import Stdlib.Function open; --- A self-balancing binary search tree. @@ -38,70 +38,90 @@ height {A} (tree : AVLTree A) : Nat := | empty := 0 | node@{height} := height; -type BalanceFactor := - | --- Left child is higher. - LeanLeft - | --- Equal heights of children. - LeanNone - | --- Right child is higher. - LeanRight; - -diffFactor {A} (tree : AVLTree A) : Int := - case tree of - | empty := 0 - | node@{left; right} := intSubNat (height right) (height left); - -{-# inline: true #-} -balanceFactor' {A} (left right : AVLTree A) : BalanceFactor := - let - h1 := height left; - h2 := height right; - in if - | h1 < h2 := LeanRight - | h2 < h1 := LeanLeft - | else := LeanNone; - ---- 𝒪(1). Computes the balance factor, i.e., the height of the right subtree ---- minus the height of the left subtree. -balanceFactor {A} (tree : AVLTree A) : BalanceFactor := - -- We avoid `diffFactor` here for efficiency. - case tree of - | empty := LeanNone - | node@{left; right} := balanceFactor' left right; - ---- 𝒪(1). Helper function for creating a node. -mkNode {A} (value : A) (left : AVLTree A) (right : AVLTree A) : AVLTree A := - node value (1 + max (height left) (height right)) left right; - ---- 𝒪(1). Left rotation. -rotateLeft {A} (tree : AVLTree A) : AVLTree A := - case tree of - | node x _ a (node z _ b c) := mkNode z (mkNode x a b) c - | n := n; - ---- 𝒪(1). Right rotation. -rotateRight {A} (tree : AVLTree A) : AVLTree A := - case tree of - | node z _ (node y _ x t3) t4 := mkNode y x (mkNode z t3 t4) - | n := n; - ---- 𝒪(1). Applies local rotations if needed. -balance {A} (tree : AVLTree A) : AVLTree A := - case tree of - | empty := empty - | node@{element; height; left; right} := - case balanceFactor' left right of - | LeanRight := - case balanceFactor right of { - | LeanLeft := rotateLeft (mkNode element left (rotateRight right)) - | _ := rotateLeft tree - } - | LeanLeft := - case balanceFactor left of { - | LeanRight := rotateRight (mkNode element (rotateLeft left) right) - | _ := rotateRight tree - } - | LeanNone := tree; +module Internal; + --- 𝒪(n). Maps a function over an ;AVLTree;. Does not check if + --- after mapping the order of the elements is preserved. It is the + --- responsibility of the caller to ensure that `f` preserves the ordering. + unsafeMap {A B} (f : A -> B) (tree : AVLTree A) : AVLTree B := + let + go : AVLTree A -> AVLTree B + | empty := empty + | node@{element; height; left; right} := + -- TODO: we cannot use record creation syntax here because of a bug in the type-checker (https://github.com/anoma/juvix/issues/3112) + node + (f element) + height + (go left) + (go right); + in go tree; + + type BalanceFactor := + | --- Left child is higher. + LeanLeft + | --- Equal heights of children. + LeanNone + | --- Right child is higher. + LeanRight; + + diffFactor {A} (tree : AVLTree A) : Int := + case tree of + | empty := 0 + | node@{left; right} := intSubNat (height right) (height left); + + {-# inline: true #-} + balanceFactor' {A} (left right : AVLTree A) : BalanceFactor := + let + h1 := height left; + h2 := height right; + in if + | h1 < h2 := LeanRight + | h2 < h1 := LeanLeft + | else := LeanNone; + + --- 𝒪(1). Computes the balance factor, i.e., the height of the right subtree + --- minus the height of the left subtree. + balanceFactor {A} (tree : AVLTree A) : BalanceFactor := + -- We avoid `diffFactor` here for efficiency. + case tree of + | empty := LeanNone + | node@{left; right} := balanceFactor' left right; + + --- 𝒪(1). Helper function for creating a node. + mkNode {A} (value : A) (left : AVLTree A) (right : AVLTree A) : AVLTree A := + node value (1 + max (height left) (height right)) left right; + + --- 𝒪(1). Left rotation. + rotateLeft {A} (tree : AVLTree A) : AVLTree A := + case tree of + | node x _ a (node z _ b c) := mkNode z (mkNode x a b) c + | n := n; + + --- 𝒪(1). Right rotation. + rotateRight {A} (tree : AVLTree A) : AVLTree A := + case tree of + | node z _ (node y _ x t3) t4 := mkNode y x (mkNode z t3 t4) + | n := n; + + --- 𝒪(1). Applies local rotations if needed. + balance {A} (tree : AVLTree A) : AVLTree A := + case tree of + | empty := empty + | node@{element; height; left; right} := + case balanceFactor' left right of + | LeanRight := + case balanceFactor right of { + | LeanLeft := rotateLeft (mkNode element left (rotateRight right)) + | _ := rotateLeft tree + } + | LeanLeft := + case balanceFactor left of { + | LeanRight := rotateRight (mkNode element (rotateLeft left) right) + | _ := rotateRight tree + } + | LeanNone := tree; +end; + +open Internal; --- 𝒪(log 𝓃). Lookup a member from the ;AVLTree; using a projection function. --- Ord A, Ord K and fun must be compatible. i.e cmp_k (fun a1) (fun a2) == cmp_a a1 a2 @@ -123,6 +143,7 @@ lookupWith {A K} {{order : Ord K}} (fun : A -> K) (elem : K) (tree : AVLTree A) lookup {A} {{Ord A}} (elem : A) (tree : AVLTree A) : Maybe A := lookupWith id elem tree; --- 𝒪(log 𝓃). Queries whether an element is in an ;AVLTree;. +{-# specialize: [1] #-} isMember {A} {{Ord A}} (elem : A) (tree : AVLTree A) : Bool := isJust (lookupWith id elem tree); --- 𝒪(log 𝓃). Inserts an element elem into and ;AVLTree; using a function to @@ -143,7 +164,8 @@ insertWith {A} {{order : Ord A}} (fun : A -> A -> A) (elem : A) (tree : AVLTree | Equal := node (fun element elem) height left right; in go tree; ---- 𝒪(log 𝓃). Inserts an element into and ;AVLTree;. +--- 𝒪(log 𝓃). Inserts an element into an ;AVLTree;. +{-# specialize: [1] #-} insert {A} {{Ord A}} (elem : A) (tree : AVLTree A) : AVLTree A := insertWith (flip const) elem tree; --- 𝒪(log 𝓃). Removes the minimum element from an ;AVLTree;. @@ -186,7 +208,7 @@ deleteWith --- 𝒪(log 𝓃). Removes an element from an ;AVLTree;. {-# specialize: [1] #-} -delete {A} {{o : Ord A}} : A -> AVLTree A -> AVLTree A := deleteWith id; +delete {A} {{Ord A}} : A -> AVLTree A -> AVLTree A := deleteWith id; --- 𝒪(log 𝓃). Returns the minimum element of the ;AVLTree;. lookupMin {A} : AVLTree A -> Maybe A @@ -224,30 +246,111 @@ isBalanced {A} : (tree : AVLTree A) -> Bool {-# specialize: [1] #-} fromList {A} {{Ord A}} (list : List A) : AVLTree A := for (acc := empty) (x in list) {insert x acc}; +--- 𝒪(1). Checks if an ;AVLTree; is empty. +{-# inline: true #-} +isEmpty {A} (tree : AVLTree A) : Bool := + case tree of + | empty := true + | node@{} := false; + --- 𝒪(𝓃). Returns the number of elements of an ;AVLTree;. size {A} : AVLTree A -> Nat | empty := 0 | node@{left; right} := 1 + size left + size right; --- TODO: Implement this tail-recursively with an accumulator. Then it will be O(n). ---- 𝒪(n log n). Returns the elements of an ;AVLTree; in ascending order. -toList {A} : AVLTree A -> List A - | empty := nil - | node@{element; left; right} := toList left ++ (element :: nil) ++ toList right; +{-# specialize: [1] #-} +foldr {A B} (fun : A -> B -> B) (acc : B) : AVLTree A -> B + | empty := acc + | node@{element; left; right} := foldr fun (fun element (foldr fun acc right)) left; + +{-# specialize: [1] #-} +foldl {A B} (fun : B -> A -> B) (acc : B) : AVLTree A -> B + | empty := acc + | node@{element; left; right} := foldl fun (fun (foldl fun acc left) element) right; + +{-# specialize: true, inline: case #-} +instance +polymorphicFoldableAVLTreeI : Polymorphic.Foldable AVLTree := + Polymorphic.mkFoldable@{ + {-# inline: true #-} + for {A B} (f : B -> A -> B) (acc : B) (tree : AVLTree A) : B := foldl f acc tree; + {-# inline: true #-} + rfor {A B} (f : B -> A -> B) (acc : B) (tree : AVLTree A) : B := foldr (flip f) acc tree + }; + +{-# specialize: true, inline: true #-} +instance +foldableAVLTreeI {A} : Foldable (AVLTree A) A := fromPolymorphicFoldable; + +--- 𝒪(n). Returns the elements of an ;AVLTree; in ascending order. +toList {A} (tree : AVLTree A) : List A := rfor (acc := nil) (x in tree) {x :: acc}; --- TODO: avoid conversion to list. --- 𝒪(n log n). Returns an ;AVLTree; containing elements that are members of both ;AVLTree;s. -intersection {A} {{Ord A}} (s1 s2 : AVLTree A) : AVLTree A := - toList s1 |> filter \ {x := isMember x s2} |> fromList; +{-# specialize: [1] #-} +intersection {A} {{Ord A}} (tree1 tree2 : AVLTree A) : AVLTree A := + for (acc := empty) (x in tree1) + {if + | isMember x tree2 := insert x acc + | else := acc}; --- TODO: avoid conversion to list. --- 𝒪(n log n). Returns an ;AVLTree; containing elements that are members of the first but not the second ;AVLTree;. -difference {A} {{Ord A}} (s1 s2 : AVLTree A) : AVLTree A := - toList s1 |> filter \ {x := not (isMember x s2)} |> fromList; +{-# specialize: [1] #-} +difference {A} {{Ord A}} (tree1 tree2 : AVLTree A) : AVLTree A := + for (acc := empty) (x in tree1) + {if + | isMember x tree2 := acc + | else := insert x acc}; --- TODO: avoid conversion to list. --- 𝒪(n log n). Returns an ;AVLTree; containing elements that are members of either the first or second ;AVLTree;. -union {A} {{Ord A}} (s1 s2 : AVLTree A) : AVLTree A := fromList (toList s1 ++ toList s2); +{-# specialize: [1] #-} +union {A} {{Ord A}} (tree1 tree2 : AVLTree A) : AVLTree A := + for (acc := tree1) (x in tree2) {insert x acc}; + +syntax iterator all {init := 0; range := 1}; +--- 𝒪(𝓃). Returns ;true; if all elements of the ;AVLTree; satisfy the predicate. +{-# specialize: [1] #-} +all {A} (predicate : A -> Bool) (tree : AVLTree A) : Bool := + let + go : AVLTree A -> Bool + | empty := true + | node@{element; left; right} := predicate element && go left && go right; + in go tree; + +syntax iterator any {init := 0; range := 1}; +--- 𝒪(𝓃). Returns ;true; if some elements of the ;AVLTree; satisfies the predicate. +{-# specialize: [1] #-} +any {A} (predicate : A -> Bool) (tree : AVLTree A) : Bool := + let + go : AVLTree A -> Bool + | empty := true + | node@{element; left; right} := predicate element || go left || go right; + in go tree; + +syntax iterator filter {init := 0; range := 1}; +--- 𝒪(n log n). Returns an ;AVLTree; containing all elements of the tree that satisfy the predicate. +{-# specialize: [1] #-} +filter {A} {{Ord A}} (predicate : A -> Bool) (tree : AVLTree A) : AVLTree A := + for (acc := empty) (x in tree) + {if + | predicate x := insert x acc + | else := acc}; + +syntax iterator partition {init := 0; range := 1}; +partition {A} {{Ord A}} (predicate : A -> Bool) (tree : AVLTree A) : Pair (AVLTree A) (AVLTree A) := + for (trueSet, falseSet := empty, empty) (x in tree) + {if + | predicate x := insert x trueSet, falseSet + | else := trueSet, insert x falseSet}; + +--- 𝒪(1). Creates an ;AVLTree; with a single element. +singleton {A} (element : A) : AVLTree A := mkNode element empty empty; + +--- 𝒪(n log n). Checks if all elements of tree1 are in tree2. +isSubset {A} {{Ord A}} (tree1 tree2 : AVLTree A) : Bool := all (x in tree1) {isMember x tree2}; + +syntax iterator map {init := 0; range := 1}; +map {A B} {{Ord B}} (f : A -> B) (tree : AVLTree A) : AVLTree B := + for (acc := empty) (x in tree) {insert (f x) acc}; --- Formats the tree in a debug friendly format. prettyDebug {A} {{Show A}} (tree : AVLTree A) : String := @@ -275,25 +378,8 @@ toTree {A} : (tree : AVLTree A) -> Maybe (Tree A) --- Returns the textual representation of an ;AVLTree;. pretty {A} {{Show A}} (tree : AVLTree A) : String := maybe "empty" Tree.treeToString (toTree tree); --- TODO: remove toList instance -eqAVLTreeI {A} {{Eq A}} : Eq (AVLTree A) := mkEq ((==) on toList); +eqAVLTreeI {A} {{Eq A}} : Eq (AVLTree A) := mkEq (Eq.eq on toList); --- TODO: remove toList instance ordAVLTreeI {A} {{Ord A}} : Ord (AVLTree A) := mkOrd (Ord.cmp on toList); - --- TODO: remove toList -{-# specialize: true, inline: case #-} -instance -polymorphicFoldableAVLTreeI : Polymorphic.Foldable AVLTree := - Polymorphic.mkFoldable@{ - for {A B} (f : B -> A -> B) (acc : B) (tree : AVLTree A) : B := - Polymorphic.Foldable.for f acc (toList tree); - rfor {A B} (f : B → A → B) (acc : B) (tree : AVLTree A) : B := - Polymorphic.Foldable.rfor f acc (toList tree) - }; - -{-# specialize: true, inline: true #-} -instance -foldableAVLTreeI {A} : Foldable (AVLTree A) A := fromPolymorphicFoldable; diff --git a/test/Test.juvix b/test/Test.juvix index f52e4311..1409f631 100644 --- a/test/Test.juvix +++ b/test/Test.juvix @@ -22,7 +22,7 @@ propReverseDoesNotChangeLength (xs : List Int) : Bool := length (reverse xs) == propReverseReverseIsIdentity (xs : List Int) : Bool := eqListInt xs (reverse (reverse xs)); propTailLengthOneLess (xs : List Int) : Bool := - null xs || ofNat (length (tail xs)) == intSubNat (length xs) 1; + isEmpty xs || ofNat (length (tail xs)) == intSubNat (length xs) 1; propSplitAtRecombine (n : Nat) (xs : List Int) : Bool := case splitAt n xs of lhs, rhs := eqListInt xs (lhs ++ rhs); @@ -95,11 +95,11 @@ propTransposeMatrixDimensions (xs : List (List Int)) : Bool := checkTxsRowXsCol : Bool := case xs of | x :: _ := length txs == length x - | _ := null txs; + | _ := isEmpty txs; checkXsRowTxsCol : Bool := case txs of | tx :: _ := length xs == length tx - | _ := null xs; + | _ := isEmpty xs; in checkTxsRowXsCol && checkXsRowTxsCol; propFoundElementSatisfiesPredicate (p : Int -> Bool) (xs : List Int) : Bool := @@ -129,7 +129,7 @@ propFindWithEmptyList (p : Int -> Bool) : Bool := find p [] == nothing; propFindWithAlwaysTrueIsJust (xs : List Int) : Bool := if - | null xs := true + | isEmpty xs := true | else := case find (const true) xs of | just _ := true diff --git a/test/Test/AVL.juvix b/test/Test/AVL.juvix index ba9845c7..33670451 100644 --- a/test/Test/AVL.juvix +++ b/test/Test/AVL.juvix @@ -2,6 +2,7 @@ module Test.AVL; import Test.JuvixUnit open; import Stdlib.Prelude open; +import Stdlib.Debug as Debug; import Stdlib.Data.Set.AVL as AVL open; @@ -49,7 +50,7 @@ s2DeleteWith : TestDescr Box := mkTestDescr@{ testTitle := TestDescr.testTitle s2 ++str "-delete-with"; testLen := sub (TestDescr.testLen s2) 2; - testSet := deleteManyWith Box.b [1; 8] (TestDescr.testSet s2 |> toList |> map mkBox |> fromList) + testSet := deleteManyWith Box.b [1; 8] (TestDescr.testSet s2 |> AVL.map mkBox) }; s3 : TestDescr Nat := @@ -67,7 +68,7 @@ s4 : TestDescr Nat := }; tests : List Test := - [ testCase "s1-member" (assertTrue "member? 3 s1" (AVL.isMember 3 s1Tree)) + [ testCase "s1-member" (assertTrue "isMember 3 s1" (AVL.isMember 3 s1Tree)) ; testCase "s1-s2-intersection" (assertEqual "intersection s1Tree s2Tree" (intersection s1Tree s2Tree) (fromList [1; 2; 3; 8])) @@ -77,6 +78,30 @@ tests : List Test := ; testCase "s1-s2-union" (assertEqual "union s1Tree s2Tree" (union s1Tree s2Tree) (fromList [0; 1; 2; 3; 4; 8; 9])) + ; testCase + "s2-filter" + (assertEqual "filter (> 3) s2" [0; 1; 2] (AVL.filter ((>) 3) s2Tree |> AVL.toList)) + ; testCase "s2-all" (assertTrue "all (> 9) s2" (AVL.all ((>) 9) s2Tree)) + ; testCase "s2-any" (assertTrue "any (< 3) s2" (AVL.any ((<) 3) s2Tree)) + ; testCase + "s2-partition" + (assertEqual + "partition (< 3) s2" + ([0; 1; 2], [3; 4; 8]) + (AVL.partition ((>) 3) s2Tree |> both AVL.toList)) + ; testCase "s2-lookup" (assertJust "lookup 4 s2" (lookup 4 s2Tree)) + ; testCase "s2-lookup" (assertNothing (const "lookup 5 s2") (lookup 5 s2Tree)) + ; testCase "s2-lookup" (assertNothing (const "lookup 6 s2") (lookup 6 s2Tree)) + ; testCase "s1-s2-not-isSubset" (assertFalse "isSubset s1 s2" (isSubset s1Tree s2Tree)) + ; testCase "s2-s1-not-isSubset" (assertFalse "isSubset s2 s1" (isSubset s2Tree s1Tree)) + ; testCase + "singleton-s2-isSubset" + (assertTrue "isSubset (singleton 1) s2" (isSubset (singleton 1) s2Tree)) + ; testCase "s2-foldr" (assertEqual "foldr (+) 0 s2" 18 (AVL.foldr (+) 0 s2Tree)) + ; testCase "s2-foldl" (assertEqual "foldl (+) 0 s2" 18 (AVL.foldl (+) 0 s2Tree)) + ; testCase + "s2-map" + (assertEqual "map (+ 1) s2" [1; 2; 3; 4; 5; 9] (AVL.map ((+) 1) s2Tree |> AVL.toList)) ; testCase "for ascending iteration" <| assertEqual "for iterates in ascending order" [1; 2; 3; 4] <| for (acc := []) (k in fromList [3; 2; 4; 1]) {snoc acc k} diff --git a/test/Test/Map.juvix b/test/Test/Map.juvix index 1cf9c622..7865afdc 100644 --- a/test/Test/Map.juvix +++ b/test/Test/Map.juvix @@ -1,14 +1,10 @@ module Test.Map; -import Juvix.Builtin.V1 open; -import Stdlib.System.IO open; -import Stdlib.Data.Pair open; -import Stdlib.Data.List open; -import Stdlib.Function open; +import Stdlib.Prelude open; import Test.JuvixUnit open; -import Stdlib.Data.Map as Map; -open Map using {Map}; +import Stdlib.Data.Map as Map open using {Map}; +import Stdlib.Data.Set as Set open using {Set}; tests : List Test := let @@ -49,6 +45,46 @@ tests : List Test := ; testCase "Map.fromList distinct keys" (assertEqListPair (Map.toList (Map.fromList [1, 1; 2, 2])) [1, 1; 2, 2]) + ; testCase + "Map.fromSet" + (assertEqListPair (Map.toList (Map.fromSet id (Set.fromList [1; 2; 3]))) [1, 1; 2, 2; 3, 3]) + ; testCase "Map.keys" (assertEqual "expected keys" (Map.keys m) [1; 2]) + ; testCase "Map.values" (assertEqual "expected values" (Map.values m) ["one"; "two"]) + ; testCase "Map.keySet" (assertEqual "expected key set" (Map.keySet m) (Set.fromList [1; 2])) + ; testCase + "Map.valueSet" + (assertEqual "expected value set" (Map.valueSet m2) (Set.fromList [2; 4])) + ; testCase + "Map.isEmpty" + (assertEqual "expected empty map" (Map.isEmpty (Map.empty {Nat} {Nat})) true) + ; testCase "Map.isEmpty" (assertEqual "expected non-empty map" (Map.isEmpty m) false) + ; testCase "Map.isMember" (assertEqual "expected member" (Map.isMember 1 m) true) + ; testCase "Map.isMember" (assertEqual "expected non-member" (Map.isMember 3 m) false) + ; testCase + "Map.filter" + (assertEqListPair (Map.toList (Map.filter \ {k v := k + v > 3} m2)) [3, 4]) + ; testCase + "Map.partition" + (assertEqual + "expected partition" + ([1, 2], [3, 4]) + (Map.partition \ {k v := k < 3} m2 |> both Map.toList)) + ; testCase + "Map.mapValuesWithKey" + (assertEqListPair (Map.toList (Map.mapValuesWithKey \ {k v := k + v} m2)) [1, 3; 3, 7]) + ; testCase + "Map.mapValues" + (assertEqListPair (Map.toList (Map.mapValues ((+) 1) m2)) [1, 3; 3, 5]) + ; testCase "Map.map" (assertEqListPair (Map.toList (map ((+) 1) m2)) [1, 3; 3, 5]) + ; testCase "Map.all" (assertTrue "expected all to be true" (Map.all \ {_ v := v > 0} m2)) + ; testCase "Map.any" (assertTrue "expected any to be true" (Map.any \ {_ v := v > 3} m2)) + ; testCase + "Map.foldl" + (assertEqual "expected foldl" (Map.foldl \ {acc k v := acc + k + v} 0 m2) 10) + ; testCase + "Map.foldr" + (assertEqual "expected foldr" (Map.foldr \ {acc k v := acc + k + v} 0 m2) 10) + ; testCase "Map.singleton" (assertEqListPair (Map.toList (Map.singleton 1 2)) [1, 2]) ]; suite : TestSuite := testSuite "Map" tests;