forked from DickBrus/TutorialSampling4DSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Functions4SSA.R
723 lines (603 loc) · 24.3 KB
/
Functions4SSA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
#Author: Dick Brus and Dennis Walvoort, November 29, 2017
# Function for generating a series of spatial samples
permute<-function(d, g) {
# extract coordinates of observation points 'd' and grid cells 'g'
s_d <- coordinates(d)
s_g <- coordinates(g)
# randomly select one location in 'd'
i_d <- sample(x = seq_len(nrow(s_d)), size = 1)
# compute squared Euclidean distances 'd2' between the selected location and all grid cells
d2 <- (s_g[, 1] - s_d[i_d, 1])^2 +
(s_g[, 2] - s_d[i_d, 2])^2
# randomly select a grid cell with a probability inverse to squared distance (p ~ 1/distance^2)
i_g <- sample(x = seq_len(nrow(s_g)), size = 1, prob = 1/(d2 + 1))
# replace randomly selected location in actual sample (s_d[i_d, ]) by a new location within the randomly selected grid cell (g[i_g, ])
gridTopology <- as(getGridTopology(g), "data.frame")
s_d[i_d, ] <- s_g[i_g, ] + runif(n = 2, min = -0.5, max = 0.5) * gridTopology$cellsize
# return result
SpatialPoints(coords = s_d)
}
# Annealing function for OK and KED
#d: SpatialPoints (OK) or SpatialPointsDataFrame (KED) of sampling points
#g: SpatialPixelsDataFrame (discretisation of study area)
#p: SpatialPoints (OK) or SpatialPointsDataFrame (KED) of prediction points
#legacy: SpatialPoints (OK) or SpatialPointsDataFrame (KED) of legacy sample
#model: semivariogram (gstat object)
#nmax: maxumum number of sampling points used in kriging
anneal.K<-function(d, g, p, legacy=NULL, model, nmax = 50, prob=0.50,
initialTemperature = 1, coolingRate = 0.9, maxAccepted = 10 * nrow(coordinates(d)),
maxPermuted=10*nrow(coordinates(d)), maxNoChange=nrow(coordinates(d)), verbose = getOption("verbose")) {
if(!(class(d) %in% c("SpatialPoints","SpatialPointsDataFrame")))
stop("Error: d must be SpatialPoints(DataFrame)")
if(!(class(g) %in% c("SpatialPixels","SpatialPixelsDataFrame")))
stop("Error: g must be SpatialPixels(DataFrame)")
if(!(class(p) %in% c("SpatialPoints","SpatialPointsDataFrame")))
stop("Error: p must be SpatialPoints(DataFrame)")
if(!is.null(legacy)){
stopifnot(is.na(proj4string(legacy)))}
if(prob <0 | prob > 1){
stop("Error: prob must be in open interval (0,1)")
}
# set initial temperature
T <- initialTemperature
# merge infill sample and legacy sample
dall <- d
if(!is.null(legacy)){
dall <- rbind(d,legacy)
}
# compute the criterion (mean kriging variance)
E <- getCriterion.K(dall, p, model, nmax, prob)
# store criterion
E_prv <- E
# Define structure for storing time series of criterion
Eall<-NULL
# initialize number of zero changes of objective function
nNoChange <-0
# start cooling loop
repeat{
# initialize number of accepted configurations
nAccepted <- 0
# initialize number of permuted configurations
nPermuted <- 0
# initialize number of improved configurations
nImproved <- 0
# start permutation loop
repeat {
# increase the number of permutations
nPermuted <- nPermuted + 1
# propose new sample by making use of function permute
d_p <- permute(d, g)
# for KED overlay new sample with grid
if(length(names(p))>0) {
d_p <- SpatialPointsDataFrame(
coords = d_p,
data = d_p %over% g
)}
#merge infill sample and legacy sample
dall_p <- d_p
if(!missing(legacy)){
dall_p <- rbind(d_p,legacy)
}
# compute the criterion of this new sample by using function getCriterion
E_p <- getCriterion.K(dall_p, p, model, nmax, prob)
# accept/reject proposal by means of Metropolis criterion
dE <- E_p - E
if (dE < 0) {
nImproved <- nImproved + 1
prob <- 1 # always accept improvements
} else {
prob <- exp(-dE / T) # use Boltzmann to judge if deteriorations should be accepted
}
u <- runif(n = 1) # draw uniform deviate
if (u < prob) { # accept proposal
nAccepted <- nAccepted + 1
d <- d_p
E <- E_p
}
# are conditions met to lower temperature?
lowerTemperature <- (nPermuted == maxPermuted) |
(nAccepted == maxAccepted)
if (lowerTemperature) {
if (nImproved==0)
{nNoChange<-nNoChange+1}
else
{nNoChange<-0}
Eall<-rbind(Eall,E)
break
}
}
if (verbose) {
cat(
format(Sys.time()), "|",
sprintf("T = %e E = %e permuted = %d accepted = %d improved = %d acceptance rate = %f \n",
T, E, nPermuted, nAccepted, nImproved, nAccepted / nPermuted)
)
}
# check on convergence
if (nNoChange == maxNoChange) {
break
}
E_prv <- E
# lower temperature
T <- coolingRate * T
}
# return result
list(
optSample=d,Criterion=Eall
)
}
getCriterion.K<-function(d,p,model,nmax,prob) {
# add dummy variable
if(class(d)=="SpatialPoints") {
d <- SpatialPointsDataFrame(
coords = d,
data = data.frame(dum = rep(1, times = length(d)))
)
} else {
d$dum=1
}
if(length(names(p))>0) {
formul <- as.formula(paste("dum", paste(names(p), collapse = "+"), sep = "~"))} else {
formul <- as.formula(paste("dum", paste(1, collapse = "+"), sep = "~"))
}
# compute variance of prediction error
result <- krige(
formula=formul,
locations = d,
newdata = p,
model = model,
nmax=nmax,
debug.level = 0
)
quantile(result$var1.var,probs=prob)
}
# Annealing function for estimation of variogram and kriging
anneal.EK<-function(free, disc, fixed, esample, model, thetas, perturbation=0.01, criterion,
initialTemperature = 1, coolingRate = 0.9, maxAccepted = 10 * nrow(coordinates(free)),
maxPermuted=10* nrow(coordinates(free)), maxNoChange=nrow(coordinates(free)), verbose = getOption("verbose")) {
if(!(class(free) %in% c("SpatialPoints","SpatialPointsDataFrame")))
stop("Error: free must be SpatialPoints(DataFrame)")
if(!(class(disc) %in% c("SpatialPixels","SpatialPixelsDataFrame")))
stop("Error: disc must be SpatialPixels(DataFrame)")
if(!(class(esample) %in% c("SpatialPoints","SpatialPointsDataFrame")))
stop("Error: esample must be SpatialPoints(DataFrame)")
if(!(criterion %in% c("logdet","VV","AV","EAC")))
stop("Error: criterion must be one of logdet, VV, AV or EAC")
# set initial temperature
T <- initialTemperature
# merge free and fixed sample, if present and only for criterion AV and EAC
sample <- free
if(!missing(fixed) & criterion %in% c("AV","EAC")){
sample <- rbind(free,fixed)
}
# compute the criterion (mean kriging variance)
if (criterion %in% c("logdet","VV")) {
E <- getCriterion.E(sample=sample,grid=fixed,esample=esample,model,thetas,perturbation,criterion)} else {
E <- getCriterion.EK(sample=sample,esample=esample,model,thetas,perturbation,criterion)
}
# store criterion
E_prv <- E
# Define structure for storing time series of criterion
Eall<-NULL
# initialize number of zero changes of objective function
nNoChange <-0
# start cooling loop
repeat{
# initialize number of accepted configurations
nAccepted <- 0
# initialize number of permuted configurations
nPermuted <- 0
# initialize number of improved configurations
nImproved <- 0
# start permutation loop
repeat {
# increase the number of permutations
nPermuted <- nPermuted + 1
# propose new sample by making use of function permute
free_p <- permute(free, disc)
# for KED overlay new sample with grid
if(length(names(esample))>0) {
free_p <- SpatialPointsDataFrame(
coords = free_p,
data = free_p %over% disc
)}
#merge proposed free sample and fixed sample when present
sample_p <- free_p
if(!missing(fixed) & criterion %in% c("AV","EAC")){
sample_p <- rbind(free_p,fixed)
}
# compute the criterion of this new sample by using function getCriterion
if (criterion %in% c("logdet","VV")) {
E_p <- getCriterion.E(sample=sample_p,grid=fixed,esample=esample,model,thetas,perturbation,criterion)} else {
E_p <- getCriterion.EK(sample=sample_p,esample=esample,model,thetas,perturbation,criterion)
}
# accept/reject proposal by means of Metropolis criterion
dE <- E_p - E
if (dE < 0) {
nImproved <- nImproved + 1
prob <- 1 # always accept improvements
} else {
prob <- exp(-dE / T) # use Boltzmann to judge if deteriorations should be accepted
}
u <- runif(n = 1) # draw uniform deviate
if (u < prob) { # accept proposal
nAccepted <- nAccepted + 1
free <- free_p
E <- E_p
}
# are conditions met to lower temperature?
lowerTemperature <- (nPermuted == maxPermuted) |
(nAccepted == maxAccepted)
if (lowerTemperature) {
if (nImproved==0)
{nNoChange<-nNoChange+1}
else
{nNoChange<-0}
Eall<-rbind(Eall,E)
break
}
}
if (verbose) {
cat(
format(Sys.time()), "|",
sprintf("T = %e E = %e permuted = %d accepted = %d improved = %d acceptance rate = %f \n",
T, E, nPermuted, nAccepted, nImproved, nAccepted / nPermuted)
)
}
# check on convergence
if (nNoChange == maxNoChange) {
break
}
E_prv <- E
# lower temperature
T <- coolingRate * T
}
# return result
list(
optSample=free,Criterion=Eall
)
}
getCriterion.E<-function(sample,grid,esample,model,thetas,perturbation,criterion) {
nobs <- length(sample)
#compute distance matrix of sample for variogram estimation
D <- spDists(sample)
A <- variogramLine(vgm(model=model,psill=thetas[1],range=thetas[2],nugget=1-thetas[1]),
dist_vector=D,covariance=TRUE)
thetas.pert <- thetas
pA <- dA <- list()
for (i in 1:length(thetas)) {
thetas.pert[i] <- (1+perturbation)*thetas[i]
pA[[i]] <- variogramLine(vgm(model=model,psill=thetas.pert[1],range=thetas.pert[2],nugget=1-thetas.pert[1]),
dist_vector=D,covariance=TRUE)
dA[[i]] <- (pA[[i]]-A)/(thetas[i]*perturbation)
thetas.pert <- thetas
}
cholA <- try(chol(A),silent=TRUE)
if (is.character(cholA)){
return(1E20)} else {
# inverse of the correlation matrix
invA <- chol2inv(chol(A))
# compute Fisher information matrix, see Eq. 7 Geoderma paper Lark, 2002
I <- matrix(0,length(thetas),length(thetas))
for (i in 1:length(thetas)){
for (j in i:length(thetas)){
I[i,j]=I[j,i]=0.5*matrix.trace(invA%*%dA[[i]]%*%invA%*%dA[[j]])
}
}
cholI <- try(chol(I),silent=TRUE)
if (is.character(cholI)){
return(1E20)} else {
# inverse of the Fisher information matrix
invI <- chol2inv(chol(I))
if(criterion=="logdet"){
logdet <- determinant(invI,logarithm=TRUE)$modulus
return(logdet)} else {
#compute distance matrix and correlation matrix of grid nodes
D <- spDists(grid)
A <- variogramLine(vgm(model=model,psill=thetas[1],range=thetas[2],nugget=1-thetas[1]),
dist_vector=D,covariance=TRUE)
#extend correlation matrix A with a column and row with ones (ordinary kriging)
nobs<-length(grid)
B <- matrix(data=0,nrow=nobs+1,ncol=nobs+1)
B[1:nobs,1:nobs] <- A
B[1:nobs,nobs+1] <- 1
B[nobs+1,1:nobs] <- 1
#compute matrix with correlations between evaluation node and sampling points
D0 <- spDists(x=esample,y=grid)
A0 <- variogramLine(vgm(model=model,psill=thetas[1],range=thetas[2],nugget=1-thetas[1]),
dist_vector=D0,covariance=TRUE)
b <- cbind(A0,1)
#compute perturbed correlation matrix (pA)
thetas.pert <- thetas
pA <- pA0 <- list()
for (i in 1:length(thetas)) {
thetas.pert[i] <- (1+perturbation)*thetas[i]
pA[[i]] <- variogramLine(vgm(model=model,psill=thetas.pert[1],range=thetas.pert[2],nugget=1-thetas.pert[1]),
dist_vector=D,covariance=TRUE)
pA0[[i]] <- variogramLine(vgm(model=model,psill=thetas.pert[1],range=thetas.pert[2],nugget=1-thetas.pert[1]),
dist_vector=D0,covariance=TRUE)
thetas.pert <- thetas
}
#extend pA and pA0 with ones
pB <- pb <-list()
for (i in 1:length(thetas)) {
pB[[i]] <- matrix(data=0,nrow=nobs+1,ncol=nobs+1)
pB[[i]][1:nobs,1:nobs] <-pA[[i]]
pB[[i]][1:nobs,nobs+1] <- 1
pB[[i]][nobs+1,1:nobs] <- 1
pb[[i]] <- cbind(pA0[[i]],1)
}
#compute perturbed kriging variances (pvar)
var <- numeric(length=length(esample)) #kriging variance
pvar <- matrix(nrow=length(esample),ncol=length(thetas)) #matrix with perturbed kriging variances
for (i in 1:length(esample)) {
b <- c(A0[i,],1)
l <- solve(B,b)
var[i] <- 1 - l[1:nobs] %*% A0[i,] - l[nobs+1]
for (j in 1:length(thetas)){
pl <- solve(pB[[j]],pb[[j]][i,])
pvar[i,j] <- 1 - pl[1:nobs] %*% pA0[[j]][i,] - pl[nobs+1]
}
}
#approximate partial derivatives of kriging variance to correlogram parameters
dvar <- list()
for (i in 1:length(thetas)) {
dvar[[i]] <- (pvar[,i]-var)/(thetas[i]*perturbation)
}
#compute variance of kriging variance for evaluation points.
VV <- numeric(length=length(var))
for (i in 1:length(thetas)){
for (j in 1:length(thetas)){
VVij <- invI[i,j]*dvar[[i]]*dvar[[j]]
VV <- VV+VVij
}
}
MVV <- mean(VV)
return(MVV)
}
}
}
}
getCriterion.EK<-function(sample,esample,model,thetas,perturbation,criterion) {
nobs <- length(sample)
D <- spDists(sample)
A <- variogramLine(vgm(model=model,psill=thetas[1],range=thetas[2],nugget=1-thetas[1]),
dist_vector=D,covariance=TRUE)
thetas.pert <- thetas
pA <- dA <- list()
for (i in 1:length(thetas)) {
thetas.pert[i] <- (1+perturbation)*thetas[i]
pA[[i]] <- variogramLine(vgm(model=model,psill=thetas.pert[1],range=thetas.pert[2],nugget=1-thetas.pert[1]),
dist_vector=D,covariance=TRUE)
dA[[i]] <- (pA[[i]]-A)/(thetas[i]*perturbation)
thetas.pert <- thetas
}
cholA <- try(chol(A),silent=TRUE)
if (is.character(cholA)){
return(1E20)} else {
# inverse of the covariance matrix
invA <- chol2inv(chol(A))
# compute Fisher information matrix, see Eq. 7 Geoderma paper Lark, 2002
I <- matrix(0,length(thetas),length(thetas))
for (i in 1:length(thetas)){
for (j in i:length(thetas)){
I[i,j]=I[j,i]=0.5*matrix.trace(invA%*%dA[[i]]%*%invA%*%dA[[j]])
}
}
cholI <- try(chol(I),silent=TRUE)
if (is.character(cholI)){
return(1E20)} else {
# inverse of the Fisher information matrix
invI <- chol2inv(chol(I))
# add dummy variable
if(class(sample)=="SpatialPoints") {
sample <- SpatialPointsDataFrame(
coords = sample,
data = data.frame(dum = rep(1, times = length(sample)))
)
} else {
sample$dum=1
}
if(length(names(esample))>0) {
formul <- as.formula(paste("dum", paste(names(esample), collapse = "+"), sep = "~"))} else {
formul <- as.formula(paste("dum", paste(1, collapse = "+"), sep = "~"))
}
m = model.frame(terms(formul), as(sample, "data.frame"), na.action = na.fail)
term = attr(m, "terms")
X = model.matrix(term, m)
terms.f = delete.response(terms(formul))
mf.f = model.frame(terms.f, as(esample,"data.frame"))
x0 = model.matrix(terms.f, mf.f)
nrowB <- nobs + ncol(X)
B <- matrix(data=0,nrow=nrowB,ncol=nrowB)
B[1:nobs,1:nobs] <- A
B[1:nobs,(nobs+1):nrowB] <- X
B[(nobs+1):nrowB,1:nobs] <- t(X)
#compute matrix with covariances between prediction nodes and sampling points
D0 <- spDists(x=esample,y=sample)
A0 <- variogramLine(vgm(model=model,psill=thetas[1],range=thetas[2],nugget=1-thetas[1]),
dist_vector=D0,covariance=TRUE)
#compute pB and pb by extending pA and pA0 with X
thetas.pert <- thetas
pB <- pA0 <- pb <-list()
for (i in 1:length(thetas)) {
pB[[i]] <- B
pB[[i]][1:nobs,1:nobs] <- pA[[i]]
thetas.pert[i] <- (1+perturbation)*thetas[i]
pA0[[i]] <- variogramLine(vgm(model=model,psill=thetas.pert[1],range=thetas.pert[2],nugget=1-thetas.pert[1]),
dist_vector=D0,covariance=TRUE)
pb[[i]] <- cbind(pA0[[i]],x0)
thetas.pert <- thetas
}
L <- matrix(nrow=length(esample),ncol=nobs) #matrix with kriging weights
pL <- array(dim=c(length(esample),length(sample),length(thetas))) #array with perturbed kriging weights
var <- numeric(length=length(esample)) #kriging variance
pvar <- matrix(nrow=length(esample),ncol=length(thetas)) #matrix with perturbed kriging variances
for (i in 1:length(esample)) {
b <- c(A0[i,],x0[i,])
l <- solve(B,b)
L[i,] <- l[1:nobs]
var[i] <- 1 - l[1:nobs] %*% A0[i,] - x0[i,] %*% l[-(1:nobs)]
for (j in 1:length(thetas)){
l <- solve(pB[[j]],pb[[j]][i,])
pL[i,,j] <- l[1:nobs]
pvar[i,j] <- 1 - l[1:nobs] %*% pA0[[j]][i,] - x0[i,] %*% l[-(1:nobs)]
}
}
dvar <- dL <- list()
for (i in 1:length(thetas)) {
dvar[[i]] <- (pvar[,i]-var)/(thetas[i]*perturbation)
dL[[i]] <- (pL[,,i] - L)/(thetas[i]*perturbation)
}
#tausq: expectation of additional variance due to uncertainty in ML estimates of variogram parameters, see Eq. 5 Lark and Marchant 2018
tausq <- numeric(length=length(esample))
tausqk <- 0
for (k in 1:length(esample)) {
for (i in 1:length(dL)){
for (j in 1:length(dL)){
tausqijk <- invI[i,j]*t(dL[[i]][k,])%*%A%*%dL[[j]][k,]
tausqk <- tausqk+tausqijk
}
}
tausq[k] <- tausqk
tausqk<-0
}
augmentedvar <- var+tausq
MVar <- mean(augmentedvar)
if (criterion=="AV"){
return(MVar)
} else {
#VV: variance of kriging variance, see Eq. 9 Lark (2002) Geoderma. This variance is computed per evaluation point
VV <- numeric(length=length(var))
for (i in 1:length(dvar)){
for (j in 1:length(dvar)){
VVij <- invI[i,j]*dvar[[i]]*dvar[[j]]
VV <- VV+VVij
}
}
EAC <- mean(augmentedvar+VV/(2*var)) #Estimation Adjusted Criterion of Zhu and Stein (2006), see Eq. 2.16
return(EAC)
}
}
}
}
# Annealing function for cLHS
anneal.cLHS<-function(d, g, legacy, lb, wO1, R,
initialTemperature = 1, coolingRate = 0.9, maxAccepted = 10 * nrow(coordinates(d)),
maxPermuted=10* nrow(coordinates(d)),maxNoChange=nrow(coordinates(d)),verbose = getOption("verbose")) {
# set initial temperature
T <- initialTemperature
# merge infill sample and legacy sample
dall <- d
if(!missing(legacy)) {
# if(class(legacy) != "SpatialPointsDataFrame") {
# stop("legacy should be SpatialPointsDataFrame")
# }
# if(proj4string(d) != proj4string(legacy)) {
# stop("projections don't match")
# }
dall <- rbind(d,legacy)
}
# compute the criterion
criterion <- getCriterion.cLHS(dall, g, lb, wO1,R)
# store criterion
criterion_prv <- criterion
# Define structure for storing time series of criterion
Eall<-NULL
# initialize number of zero changes of objective function
nNoChange <-0
# start cooling loop
repeat{
# initialize number of accepted configurations
nAccepted <- 0
# initialize number of permuted configurations
nPermuted <- 0
# initialize number of improved configurations
nImproved <- 0
# start permutation loop
repeat {
# increase the number of permutations
nPermuted <- nPermuted + 1
# propose new sample by making use of function permute
d_p <- permute(d, g)
#merge infill sample and legacy sample
dall_p <- d_p
if(!missing(legacy)){
dall_p <- rbind(d_p,legacy)
}
# compute the criterion of this new sample by using function getCriterion
criterion_p <- getCriterion.cLHS(dall_p, g, lb, wO1, R)
# accept/reject proposal by means of Metropolis criterion
dE <- criterion_p["E"] - criterion["E"]
if (dE < 0) {
nImproved <- nImproved + 1
p <- 1 # always accept improvements
} else {
p <- exp(-dE / T) # use Boltzmann to judge if deteriorations should be accepted
}
u <- runif(n = 1) # draw uniform deviate
if (u < p) { # accept proposal
nAccepted <- nAccepted + 1
d <- d_p
criterion <- criterion_p
}
# are conditions met to lower temperature?
lowerTemperature <- (nPermuted == maxPermuted) |
(nAccepted == maxAccepted)
if (lowerTemperature) {
if (nImproved==0)
{nNoChange<-nNoChange+1}
else
{nNoChange<-0}
Eall<-rbind(Eall,criterion)
break
}
}
if (verbose) {
cat(
format(Sys.time()), "|",
sprintf("T = %e E = %e permuted = %d accepted = %d improved = %d acceptance rate = %f \n",
T, criterion["E"], nPermuted, nAccepted, nImproved, nAccepted / nPermuted)
)
}
# check on convergence
if (nNoChange == maxNoChange) {
break
}
criterion_prv <- criterion
# lower temperature
T <- coolingRate * T
}
# return result
list(
optSample=d,Criterion=Eall
)
}
# Function for computing minimization criterion of cLHS
getCriterion.cLHS<-function(d,g,lb,wO1,R) {
#determine values of covariates at locations in d
d <- SpatialPointsDataFrame(
coords = d,
data = over(d,g)
)
#Determine in which stratum the sampling locations are
stratum<-matrix(nrow=length(d),ncol=ncol(d))
for ( i in 1:ncol(d) ) {
stratum[,i]<-findInterval(as.data.frame(d[,i])[,1],lb[,i])
}
#count number of points in marginal strata
counts<-matrix(nrow=nrow(lb),ncol=ncol(d))
for (i in 1:nrow(lb)) {
counts[i,]<-apply(stratum, MARGIN=2, function(x,i) sum(x==i), i=i)
}
O1<-mean(abs(counts-1))
#compute sum of absolute differences of correlations
r<-cor(as.data.frame(d)[1:ncol(d)])
dr <- abs(R-r)
offdiagonal <- (!row(dr)==col(dr))
O3<-mean(dr[offdiagonal])
#compute LHS criterion
E<-wO1*O1+(1-wO1)*O3
# return result
c(E = E, O1 = O1, O3=O3)
}