-
Notifications
You must be signed in to change notification settings - Fork 5
/
utils.py
289 lines (230 loc) · 10.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import numpy as np
import torch
from torch.optim.optimizer import Optimizer
from torchvision import transforms
from torch.utils.data import dataset, Subset
from torchvision import datasets
def get_scheduler(optimizer, config):
"""
Creates the scheduler from the config
"""
if config["name"] == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config["T_max"])
return scheduler
else:
raise NotImplementedError
def get_optimizer(params, config):
"""
Creates an optimizer from the given config
"""
if config["name"] == "SGD":
optimizer = torch.optim.SGD(params, lr=config["lr"], momentum=config["momentum"],
weight_decay=config["weight_decay"], nesterov=config["nesterov"])
return optimizer
if config["name"] == "TFRMSprop":
optimizer = TFRMSprop(params, lr=config["lr"], momentum=config["momentum"],
eps=config["eps"], weight_decay=config["weight_decay"])
return optimizer
else:
raise NotImplementedError
def get_criterion(config):
"""
Creates the torch criterion for optimization
"""
if config["name"] == "cross_entropy":
return torch.nn.CrossEntropyLoss()
else:
raise NotImplementedError
def get_data_iters(config):
"""
Creates the train and validation data iterators on the given dataset
:param config:
:return:
"""
if config["name"] == "cifar10":
# Loading Data
train_transform, valid_transform = data_transforms_cifar10(cutout=False, cutout_length=16)
data_train = datasets.CIFAR10("./datasets/cifar10", train=True, download=True, transform=train_transform)
data_valid = datasets.CIFAR10("./datasets/cifar10", train=False, download=True, transform=valid_transform)
# building cyclic iterators over the training and validation sets
loader_train = torch.utils.data.DataLoader(data_train, batch_size=int(config["batch_size"]), shuffle=True)
loader_valid = torch.utils.data.DataLoader(data_valid, batch_size=int(config["batch_size"]), shuffle=True)
print("Length of datasets: Train: {}, Valid: {}".format(len(data_train), len(data_valid)))
print("Length of loaders: Train: {}, Valid: {}".format(len(loader_train), len(loader_valid)))
return loader_train, loader_valid
elif config["name"] == "cifar10-valid":
ratio = config["ratio"]
# Loading Data
train_transform, valid_transform = data_transforms_cifar10(cutout=False, cutout_length=16)
dataset_train = datasets.CIFAR10("./datasets/cifar10", train=True, download=True, transform=train_transform)
dataset_valid = datasets.CIFAR10("./datasets/cifar10", train=True, download=True, transform=valid_transform)
# training set contains 40,000 images, validation and test set contain 10,000 images
dataset_valid = Subset(dataset_valid, range(int(ratio * len(dataset_train)), len(dataset_train)))
dataset_train = Subset(dataset_train, range(int(ratio * len(dataset_train))))
# building cyclic iterators over the training and validation sets
loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=config["batch_size"], shuffle=True)
loader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=config["batch_size"], shuffle=True)
print("Length of datasets: Train: {}, Valid: {}".format(len(dataset_train), len(dataset_valid)))
print("Length of loaders: Train: {}, Valid: {}".format(len(loader_train), len(loader_valid)))
return loader_train, loader_valid
else:
raise NotImplementedError
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def set_seed(seed):
if seed is None:
seed = np.random.randint(1e6)
np.random.seed(seed)
torch.manual_seed(seed)
return seed
def data_transforms_cifar10(cutout=False, cutout_length=None):
cifar_mean = [0.49139968, 0.48215827, 0.44653124]
cifar_std = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cifar_mean, cifar_std),
])
if cutout and cutout_length is not None:
train_transform.transforms.append(Cutout(cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(cifar_mean, cifar_std),
])
return train_transform, valid_transform
def get_output_folder(parent_dir, run_name):
"""
Return save folder.
Assumes folders in the parent_dir have suffix -run{run
number}. Finds the highest run number and sets the output folder
to that number + 1. This is just convenient so that if you run the
same script multiple times tensorboard can plot all of the results
on the same plots with different names.
Parameters
----------
parent_dir: str
Path of the directory containing all experiment runs.
run_name: str
Name of the run
Returns
-------
parent_dir/run_dir
Path to this run's save directory.
"""
os.makedirs(parent_dir, exist_ok=True)
experiment_id = 0
for folder_name in os.listdir(parent_dir):
if not os.path.isdir(os.path.join(parent_dir, folder_name)):
continue
try:
folder_name = int(folder_name.split('-run')[-1])
if folder_name > experiment_id:
experiment_id = folder_name
except:
pass
experiment_id += 1
parent_dir = os.path.join(parent_dir, run_name)
parent_dir = parent_dir + '-run{}'.format(experiment_id)
os.makedirs(parent_dir, exist_ok=True)
return parent_dir
class TFRMSprop(Optimizer):
"""
Implements RMSprop algorithm.
Proposed by G. Hinton in his
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.
The centered version first appears in `Generating Sequences
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
The implementation here takes the square root of the gradient average AFTER
adding epsilon (note that PyTorch interchanges these two operations).
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-2)
momentum (float, optional): momentum factor (default: 0)
alpha (float, optional): smoothing constant (default: 0.99)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
centered (bool, optional) : if ``True``, compute the centered RMSProp,
the gradient is normalized by an estimation of its variance
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= momentum:
raise ValueError("Invalid momentum value: {}".format(momentum))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= alpha:
raise ValueError("Invalid alpha value: {}".format(alpha))
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay)
super(TFRMSprop, self).__init__(params, defaults)
def __setstate__(self, state):
super(TFRMSprop, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('momentum', 0)
group.setdefault('centered', False)
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('RMSprop does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['square_avg'] = torch.zeros_like(p.data)
if group['momentum'] > 0:
state['momentum_buffer'] = torch.zeros_like(p.data)
if group['centered']:
state['grad_avg'] = torch.zeros_like(p.data)
square_avg = state['square_avg']
alpha = group['alpha']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad)
if group['centered']:
grad_avg = state['grad_avg']
grad_avg.mul_(alpha).add_(1 - alpha, grad)
avg = square_avg.addcmul(-1, grad_avg, grad_avg).add_(group['eps']).sqrt_()
else:
avg = square_avg.add_(group['eps']).sqrt()
if group['momentum'] > 0:
buf = state['momentum_buffer']
buf.mul_(group['momentum']).addcdiv_(grad, avg)
p.data.add_(-group['lr'], buf)
else:
p.data.addcdiv_(-group['lr'], grad, avg)
return loss