-
Notifications
You must be signed in to change notification settings - Fork 0
/
faceDetection.py
41 lines (40 loc) · 1.67 KB
/
faceDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import os
import sqlite3 as lite
from paths import getCurrentPath, getHaarcascadePath
def faceDetection(userName, userId, callBack):
con = lite.connect('users.db')
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
face_detector = cv2.CascadeClassifier(getHaarcascadePath())
print("\n [INFO] Initializing face capture. Look the camera and wait ...")
os.mkdir(getCurrentPath()+"/dataset/"+userName+"."+str(userId))
# Initialize individual sampling face count
count = 0
while(True):
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("dataset/" + userName + "." + str(userId) + "/" + userName + "." + str(userId) + "." + str(count) + ".jpg", gray[y:y+h,x:x+w])
cv2.imshow('image', img)
k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video
if k == 32:
break
elif count >= 30: # Take 30 face sample and stop video
with con:
cur = con.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS users(id INT, name TEXT)")
cur.execute("INSERT INTO users VALUES(?, ?)", (userId, userName))
con.commit()
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleanup stuff")
cam.release()
cv2.destroyAllWindows()
callBack()
return userId+". "+userName