-
Notifications
You must be signed in to change notification settings - Fork 113
/
main_depth.py
executable file
·555 lines (446 loc) · 24.1 KB
/
main_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import argparse
import os
import numpy as np
import torch
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from unimatch.unimatch import UniMatch
from dataloader.depth.datasets import DemonDataset, ScannetDataset
from dataloader.depth import augmentation
from loss.depth_loss import depth_loss_func, depth_grad_loss_func
from evaluate_depth import validate_scannet, validate_demon, inference_depth
from utils.logger import Logger
from utils import misc
from utils.dist_utils import get_dist_info, init_dist, setup_for_distributed
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
def get_args_parser():
parser = argparse.ArgumentParser()
# dataset
parser.add_argument('--checkpoint_dir', default='tmp', type=str,
help='where to save the training log and models')
parser.add_argument('--dataset', default='scannet', type=str,
help='training stage on different datasets')
parser.add_argument('--val_dataset', default=['scannet'], type=str, nargs='+',
help='validation datasets')
parser.add_argument('--image_size', default=[480, 640], type=int, nargs='+',
help='image size for training')
parser.add_argument('--padding_factor', default=16, type=int,
help='the input should be divisible by padding_factor, otherwise do padding or resizing')
# evaluation
parser.add_argument('--eval', action='store_true')
parser.add_argument('--demon_split', default='rgbd', type=str)
parser.add_argument('--eval_min_depth', default=0.5, type=float)
parser.add_argument('--eval_max_depth', default=10, type=float)
parser.add_argument('--save_vis_depth', action='store_true')
parser.add_argument('--count_time', action='store_true')
# training
parser.add_argument('--lr', default=4e-4, type=float)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--workers', default=4, type=int)
parser.add_argument('--seed', default=326, type=int)
parser.add_argument('--summary_freq', default=100, type=int)
parser.add_argument('--save_ckpt_freq', default=5000, type=int)
parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int)
parser.add_argument('--val_freq', default=1000, type=int)
parser.add_argument('--num_steps', default=100000, type=int)
# resume pretrained model or resume training
parser.add_argument('--resume', default=None, type=str)
parser.add_argument('--strict_resume', action='store_true')
parser.add_argument('--no_resume_optimizer', action='store_true')
# model: learnable parameters
parser.add_argument('--task', default='depth', type=str)
parser.add_argument('--num_scales', default=1, type=int,
help='feature scales: 1/8 or 1/8 + 1/4')
parser.add_argument('--feature_channels', default=128, type=int)
parser.add_argument('--upsample_factor', default=8, type=int)
parser.add_argument('--num_head', default=1, type=int)
parser.add_argument('--ffn_dim_expansion', default=4, type=int)
parser.add_argument('--num_transformer_layers', default=6, type=int)
parser.add_argument('--reg_refine', action='store_true',
help='optional task-specific local regression refinement')
# model: parameter-free
parser.add_argument('--attn_type', default='swin', type=str,
help='attention function')
parser.add_argument('--attn_splits_list', default=[2], type=int, nargs='+',
help='number of splits in attention')
parser.add_argument('--min_depth', default=0.5, type=float,
help='min depth for plane-sweep stereo')
parser.add_argument('--max_depth', default=10, type=float,
help='max depth for plane-sweep stereo')
parser.add_argument('--num_depth_candidates', default=64, type=int)
parser.add_argument('--prop_radius_list', default=[-1], type=int, nargs='+',
help='self-attention radius for propagation, -1 indicates global attention')
parser.add_argument('--num_reg_refine', default=1, type=int,
help='number of additional local regression refinement')
# loss
parser.add_argument('--depth_loss_weight', default=20, type=float)
parser.add_argument('--depth_grad_loss_weight', default=20, type=float)
# inference
parser.add_argument('--inference_dir', default=None, type=str)
parser.add_argument('--inference_size', default=None, type=int, nargs='+')
parser.add_argument('--output_path', default='output', type=str,
help='where to save the prediction results')
parser.add_argument('--depth_from_argmax', action='store_true')
parser.add_argument('--pred_bidir_depth', action='store_true')
# distributed training
parser.add_argument('--distributed', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--launcher', default='none', type=str)
parser.add_argument('--gpu_ids', default=0, type=int, nargs='+')
parser.add_argument('--debug', action='store_true')
return parser
def main(args):
print_info = not args.eval and args.inference_dir is None
if args.local_rank == 0 and print_info:
print(args)
misc.save_args(args)
misc.check_path(args.checkpoint_dir)
misc.save_command(args.checkpoint_dir)
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = True
if args.launcher == 'none':
args.distributed = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
args.distributed = True
# adjust batch size for each gpu
assert args.batch_size % torch.cuda.device_count() == 0
args.batch_size = args.batch_size // torch.cuda.device_count()
dist_params = dict(backend='nccl')
init_dist(args.launcher, **dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
args.gpu_ids = range(world_size)
device = torch.device('cuda:{}'.format(args.local_rank))
setup_for_distributed(args.local_rank == 0)
# model
model = UniMatch(feature_channels=args.feature_channels,
num_scales=args.num_scales,
upsample_factor=args.upsample_factor,
num_head=args.num_head,
ffn_dim_expansion=args.ffn_dim_expansion,
num_transformer_layers=args.num_transformer_layers,
reg_refine=args.reg_refine,
task=args.task).to(device)
if print_info:
print(model)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model.to(device),
device_ids=[args.local_rank],
output_device=args.local_rank)
model_without_ddp = model.module
else:
if torch.cuda.device_count() > 1:
print('Use %d GPUs' % torch.cuda.device_count())
model = torch.nn.DataParallel(model)
model_without_ddp = model.module
else:
model_without_ddp = model
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
if print_info:
print('Number of params:', num_params)
save_name = '%d_parameters' % num_params
open(os.path.join(args.checkpoint_dir, save_name), 'a').close()
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
start_epoch = 0
start_step = 0
# resume checkpoints
if args.resume:
print("=> Load checkpoint: %s" % args.resume)
loc = 'cuda:{}'.format(args.local_rank) if torch.cuda.is_available() else 'cpu'
checkpoint = torch.load(args.resume, map_location=loc)
model_without_ddp.load_state_dict(checkpoint['model'], strict=args.strict_resume)
if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \
args.no_resume_optimizer:
print('Load optimizer')
optimizer.load_state_dict(checkpoint['optimizer'])
start_step = checkpoint['step']
start_epoch = checkpoint['epoch']
if print_info:
print('start_epoch: %d, start_step: %d' % (start_epoch, start_step))
# evaluation
if args.eval:
val_results = {}
if 'scannet' in args.val_dataset:
results_dict = validate_scannet(model_without_ddp,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_reg_refine=args.num_reg_refine,
num_depth_candidates=args.num_depth_candidates,
count_time=args.count_time,
eval_min_depth=args.eval_min_depth,
eval_max_depth=args.eval_max_depth,
min_depth=args.min_depth,
max_depth=args.max_depth,
save_vis_depth=args.save_vis_depth,
save_dir=args.output_path,
)
val_results.update(results_dict)
results_str = "\t".join("{}: {:.4f}".format(k, v) for k, v in results_dict.items())
print(results_str)
if 'demon' in args.val_dataset:
results_dict = validate_demon(model_without_ddp,
padding_factor=args.padding_factor,
inference_size=args.inference_size,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_reg_refine=args.num_reg_refine,
num_depth_candidates=args.num_depth_candidates,
count_time=args.count_time,
eval_min_depth=args.eval_min_depth,
eval_max_depth=args.eval_max_depth,
min_depth=args.min_depth,
max_depth=args.max_depth,
save_vis_depth=args.save_vis_depth,
save_dir=args.output_path,
demon_split=args.demon_split,
debug=args.debug,
)
val_results.update(results_dict)
results_str = "\t".join("{}: {:.4f}".format(k, v) for k, v in results_dict.items())
print(results_str)
return
if args.inference_dir:
inference_depth(model_without_ddp,
inference_dir=args.inference_dir,
output_path=args.output_path,
padding_factor=args.padding_factor,
inference_size=args.inference_size,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_depth_candidates=args.num_depth_candidates,
num_reg_refine=args.num_reg_refine,
min_depth=args.min_depth,
max_depth=args.max_depth,
depth_from_argmax=args.depth_from_argmax,
pred_bidir_depth=args.pred_bidir_depth,
)
return
# build dataset
train_transform = augmentation.Compose([
augmentation.RandomColor(),
augmentation.RandomResize(min_size=args.image_size),
augmentation.RandomCrop(crop_size=args.image_size),
augmentation.ToTensor(),
augmentation.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
])
if args.dataset == 'scannet':
train_set = ScannetDataset(transforms=train_transform,
mode='train',
)
elif args.dataset == 'demon':
train_set = DemonDataset(mode='train',
transforms=train_transform,
)
else:
raise NotImplementedError
# multi-processing
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_set,
num_replicas=torch.cuda.device_count(),
rank=args.local_rank
)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True,
sampler=train_sampler,
drop_last=True)
last_epoch = start_step if args.resume and not args.no_resume_optimizer else -1
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps + 10,
pct_start=0.05,
cycle_momentum=False,
anneal_strategy='cos',
last_epoch=last_epoch,
)
if args.local_rank == 0 and not args.eval:
summary_writer = SummaryWriter(args.checkpoint_dir)
logger = Logger(lr_scheduler, summary_writer, args.summary_freq,
start_step=start_step,
img_mean=IMAGENET_MEAN,
img_std=IMAGENET_STD,
)
total_steps = start_step
epoch = start_epoch
print('Start training')
while total_steps < args.num_steps:
model.train()
if args.distributed:
train_sampler.set_epoch(epoch)
for i, sample in enumerate(train_loader):
img_ref = sample['img_ref'].to(device)
img_tgt = sample['img_tgt'].to(device)
intrinsics = sample['intrinsics'].to(device)
pose = sample['pose'].to(device) # relative pose, [B, 4, 4]
gt_depth = sample['depth'].to(device)
valid_mask = (gt_depth >= args.min_depth) & (gt_depth <= args.max_depth) & \
(gt_depth == gt_depth)
if 'valid' in sample:
valid_mask = valid_mask * sample['valid'].to(device) # [B, H, W]
results_dict = model(img_ref,
img_tgt,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_reg_refine=args.num_reg_refine,
intrinsics=intrinsics,
pose=pose,
min_depth=1. / args.max_depth,
max_depth=1. / args.min_depth,
num_depth_candidates=args.num_depth_candidates,
task='depth',
)
depth_preds = results_dict['flow_preds']
loss = 0
metrics = {}
if args.depth_loss_weight > 0:
depth_loss = depth_loss_func(depth_preds, gt_depth, valid_mask,
gamma=0.9,
)
loss = loss + args.depth_loss_weight * depth_loss
# no valid pixel
if not isinstance(depth_loss, float):
metrics.update({'depth_loss': depth_loss.item()})
if args.depth_grad_loss_weight > 0:
depth_grad_loss = depth_grad_loss_func(depth_preds, gt_depth,
valid_mask,
gamma=0.9)
loss = loss + args.depth_grad_loss_weight * depth_grad_loss
# no valid pixel
if not isinstance(depth_grad_loss, float):
metrics.update({'depth_grad_loss': depth_grad_loss.item()})
if isinstance(loss, float):
continue
if torch.isnan(loss):
continue
metrics.update({'total_loss': loss.item()})
# more efficient zero_grad
for param in model_without_ddp.parameters():
param.grad = None
loss.backward()
# gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
if args.local_rank == 0:
logger.push(metrics, is_depth=True)
if args.local_rank == 0:
logger.add_image_summary(img_ref[0], img_tgt[0],
is_depth=True)
# visualize inverse depth
if args.depth_loss_weight > 0:
# fill invalid values in gt depth
gt_depth_vis = gt_depth[0]
if 'valid' in sample: # sparse gt
# inverse is very small
gt_depth_vis[valid_mask[0] < 0.5] = 9999999
depth_vis = 1. / depth_preds[-1][0]
logger.add_depth_summary(depth_vis, 1. / gt_depth_vis)
total_steps += 1
if args.local_rank == 0:
if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps:
print('Save checkpoint at step: %d' % total_steps)
checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps)
save_dict = {
'model': model_without_ddp.state_dict()
}
torch.save(save_dict, checkpoint_path)
if total_steps % args.save_latest_ckpt_freq == 0:
# save lastest checkpoint
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth')
print('Save latest checkpoint')
save_dict = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'step': total_steps,
'epoch': epoch,
}
torch.save(save_dict, checkpoint_path)
if total_steps % args.val_freq == 0:
print('Start validation')
val_results = {}
if 'scannet' in args.val_dataset:
results_dict = validate_scannet(model_without_ddp,
padding_factor=args.padding_factor,
inference_size=args.inference_size,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_reg_refine=args.num_reg_refine,
num_depth_candidates=args.num_depth_candidates,
count_time=args.count_time,
eval_min_depth=args.eval_min_depth,
eval_max_depth=args.eval_max_depth,
min_depth=args.min_depth,
max_depth=args.max_depth,
save_vis_depth=args.save_vis_depth,
save_dir=args.output_path,
)
print('evaluation results on scannet:')
results_str = "\t".join("{}: {:.4f}".format(k, v) for k, v in results_dict.items())
print(results_str)
if args.local_rank == 0:
val_results.update(results_dict)
if 'demon' in args.val_dataset:
results_dict = validate_demon(model_without_ddp,
padding_factor=args.padding_factor,
inference_size=args.inference_size,
attn_type=args.attn_type,
attn_splits_list=args.attn_splits_list,
prop_radius_list=args.prop_radius_list,
num_reg_refine=args.num_reg_refine,
num_depth_candidates=args.num_depth_candidates,
count_time=args.count_time,
eval_min_depth=args.eval_min_depth,
eval_max_depth=args.eval_max_depth,
min_depth=args.min_depth,
max_depth=args.max_depth,
save_vis_depth=args.save_vis_depth,
save_dir=args.output_path,
demon_split=args.demon_split,
)
print('evaluation results on demon %s:' % args.demon_split)
results_str = "\t".join("{}: {:.4f}".format(k, v) for k, v in results_dict.items())
print(results_str)
if args.local_rank == 0:
val_results.update(results_dict)
# save to tensorboard
for key in val_results:
summary_writer.add_scalar(key, val_results[key], total_steps)
# save validation results to file
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt')
with open(val_file, 'a') as f:
f.write('step: %06d\n' % total_steps)
# order of metrics
metrics = ['abs_rel', 'sq_rel', 'rmse', 'rmse_log', 'a1', 'a2', 'a3',
]
eval_metrics = [metric for metric in metrics if metric in val_results.keys()]
metrics_values = [val_results[metric] for metric in eval_metrics]
num_metrics = len(eval_metrics)
# save as markdown format
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics))
f.write(("| {:20.4f} " * num_metrics).format(*metrics_values))
f.write('\n\n')
model.train()
if total_steps >= args.num_steps:
print('Training done')
return
epoch += 1
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
main(args)