-
Notifications
You must be signed in to change notification settings - Fork 4
/
mwmatching.py
945 lines (849 loc) · 40 KB
/
mwmatching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
"""Weighted maximum matching in general graphs.
The algorithm is taken from "Efficient Algorithms for Finding Maximum
Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986.
It is based on the "blossom" method for finding augmenting paths and
the "primal-dual" method for finding a matching of maximum weight, both
due to Jack Edmonds.
Some ideas came from "Implementation of algorithms for maximum matching
on non-bipartite graphs" by H.J. Gabow, Standford Ph.D. thesis, 1973.
A C program for maximum weight matching by Ed Rothberg was used extensively
to validate this new code.
"""
#
# Changes:
#
# 2013-04-07
# * Added Python 3 compatibility with contributions from Daniel Saunders.
#
# 2008-06-08
# * First release.
#
from __future__ import print_function
# If assigned, DEBUG(str) is called with lots of debug messages.
DEBUG = None
"""def DEBUG(s):
from sys import stderr
print('DEBUG:', s, file=stderr)
"""
# Check delta2/delta3 computation after every substage;
# only works on integer weights, slows down the algorithm to O(n^4).
CHECK_DELTA = False
# Check optimality of solution before returning; only works on integer weights.
CHECK_OPTIMUM = True
def maxWeightMatching(edges, maxcardinality=False):
"""Compute a maximum-weighted matching in the general undirected
weighted graph given by "edges". If "maxcardinality" is true,
only maximum-cardinality matchings are considered as solutions.
Edges is a sequence of tuples (i, j, wt) describing an undirected
edge between vertex i and vertex j with weight wt. There is at most
one edge between any two vertices; no vertex has an edge to itself.
Vertices are identified by consecutive, non-negative integers.
Return a list "mate", such that mate[i] == j if vertex i is
matched to vertex j, and mate[i] == -1 if vertex i is not matched.
This function takes time O(n ** 3)."""
#
# Vertices are numbered 0 .. (nvertex-1).
# Non-trivial blossoms are numbered nvertex .. (2*nvertex-1)
#
# Edges are numbered 0 .. (nedge-1).
# Edge endpoints are numbered 0 .. (2*nedge-1), such that endpoints
# (2*k) and (2*k+1) both belong to edge k.
#
# Many terms used in the comments (sub-blossom, T-vertex) come from
# the paper by Galil; read the paper before reading this code.
#
# Python 2/3 compatibility.
from sys import version as sys_version
if sys_version < '3':
integer_types = (int, long)
else:
integer_types = (int,)
# Deal swiftly with empty graphs.
if not edges:
return [ ]
# Count vertices.
nedge = len(edges)
nvertex = 0
for (i, j, w) in edges:
assert i >= 0 and j >= 0 and i != j
if i >= nvertex:
nvertex = i + 1
if j >= nvertex:
nvertex = j + 1
# Find the maximum edge weight.
maxweight = max(0, max([ wt for (i, j, wt) in edges ]))
# If p is an edge endpoint,
# endpoint[p] is the vertex to which endpoint p is attached.
# Not modified by the algorithm.
endpoint = [ edges[p//2][p%2] for p in range(2*nedge) ]
# If v is a vertex,
# neighbend[v] is the list of remote endpoints of the edges attached to v.
# Not modified by the algorithm.
neighbend = [ [ ] for i in range(nvertex) ]
for k in range(len(edges)):
(i, j, w) = edges[k]
neighbend[i].append(2*k+1)
neighbend[j].append(2*k)
# If v is a vertex,
# mate[v] is the remote endpoint of its matched edge, or -1 if it is single
# (i.e. endpoint[mate[v]] is v's partner vertex).
# Initially all vertices are single; updated during augmentation.
mate = nvertex * [ -1 ]
# If b is a top-level blossom,
# label[b] is 0 if b is unlabeled (free);
# 1 if b is an S-vertex/blossom;
# 2 if b is a T-vertex/blossom.
# The label of a vertex is found by looking at the label of its
# top-level containing blossom.
# If v is a vertex inside a T-blossom,
# label[v] is 2 iff v is reachable from an S-vertex outside the blossom.
# Labels are assigned during a stage and reset after each augmentation.
label = (2 * nvertex) * [ 0 ]
# If b is a labeled top-level blossom,
# labelend[b] is the remote endpoint of the edge through which b obtained
# its label, or -1 if b's base vertex is single.
# If v is a vertex inside a T-blossom and label[v] == 2,
# labelend[v] is the remote endpoint of the edge through which v is
# reachable from outside the blossom.
labelend = (2 * nvertex) * [ -1 ]
# If v is a vertex,
# inblossom[v] is the top-level blossom to which v belongs.
# If v is a top-level vertex, v is itself a blossom (a trivial blossom)
# and inblossom[v] == v.
# Initially all vertices are top-level trivial blossoms.
inblossom = list(range(nvertex))
# If b is a sub-blossom,
# blossomparent[b] is its immediate parent (sub-)blossom.
# If b is a top-level blossom, blossomparent[b] is -1.
blossomparent = (2 * nvertex) * [ -1 ]
# If b is a non-trivial (sub-)blossom,
# blossomchilds[b] is an ordered list of its sub-blossoms, starting with
# the base and going round the blossom.
blossomchilds = (2 * nvertex) * [ None ]
# If b is a (sub-)blossom,
# blossombase[b] is its base VERTEX (i.e. recursive sub-blossom).
blossombase = list(range(nvertex)) + nvertex * [ -1 ]
# If b is a non-trivial (sub-)blossom,
# blossomendps[b] is a list of endpoints on its connecting edges,
# such that blossomendps[b][i] is the local endpoint of blossomchilds[b][i]
# on the edge that connects it to blossomchilds[b][wrap(i+1)].
blossomendps = (2 * nvertex) * [ None ]
# If v is a free vertex (or an unreached vertex inside a T-blossom),
# bestedge[v] is the edge to an S-vertex with least slack,
# or -1 if there is no such edge.
# If b is a (possibly trivial) top-level S-blossom,
# bestedge[b] is the least-slack edge to a different S-blossom,
# or -1 if there is no such edge.
# This is used for efficient computation of delta2 and delta3.
bestedge = (2 * nvertex) * [ -1 ]
# If b is a non-trivial top-level S-blossom,
# blossombestedges[b] is a list of least-slack edges to neighbouring
# S-blossoms, or None if no such list has been computed yet.
# This is used for efficient computation of delta3.
blossombestedges = (2 * nvertex) * [ None ]
# List of currently unused blossom numbers.
unusedblossoms = list(range(nvertex, 2*nvertex))
# If v is a vertex,
# dualvar[v] = 2 * u(v) where u(v) is the v's variable in the dual
# optimization problem (multiplication by two ensures integer values
# throughout the algorithm if all edge weights are integers).
# If b is a non-trivial blossom,
# dualvar[b] = z(b) where z(b) is b's variable in the dual optimization
# problem.
dualvar = nvertex * [ maxweight ] + nvertex * [ 0 ]
# If allowedge[k] is true, edge k has zero slack in the optimization
# problem; if allowedge[k] is false, the edge's slack may or may not
# be zero.
allowedge = nedge * [ False ]
# Queue of newly discovered S-vertices.
queue = [ ]
# Return 2 * slack of edge k (does not work inside blossoms).
def slack(k):
(i, j, wt) = edges[k]
return dualvar[i] + dualvar[j] - 2 * wt
# Generate the leaf vertices of a blossom.
def blossomLeaves(b):
if b < nvertex:
yield b
else:
for t in blossomchilds[b]:
if t < nvertex:
yield t
else:
for v in blossomLeaves(t):
yield v
# Assign label t to the top-level blossom containing vertex w
# and record the fact that w was reached through the edge with
# remote endpoint p.
def assignLabel(w, t, p):
if DEBUG: DEBUG('assignLabel(%d,%d,%d)' % (w, t, p))
b = inblossom[w]
assert label[w] == 0 and label[b] == 0
label[w] = label[b] = t
labelend[w] = labelend[b] = p
bestedge[w] = bestedge[b] = -1
if t == 1:
# b became an S-vertex/blossom; add it(s vertices) to the queue.
queue.extend(blossomLeaves(b))
if DEBUG: DEBUG('PUSH ' + str(list(blossomLeaves(b))))
elif t == 2:
# b became a T-vertex/blossom; assign label S to its mate.
# (If b is a non-trivial blossom, its base is the only vertex
# with an external mate.)
base = blossombase[b]
assert mate[base] >= 0
assignLabel(endpoint[mate[base]], 1, mate[base] ^ 1)
# Trace back from vertices v and w to discover either a new blossom
# or an augmenting path. Return the base vertex of the new blossom or -1.
def scanBlossom(v, w):
if DEBUG: DEBUG('scanBlossom(%d,%d)' % (v, w))
# Trace back from v and w, placing breadcrumbs as we go.
path = [ ]
base = -1
while v != -1 or w != -1:
# Look for a breadcrumb in v's blossom or put a new breadcrumb.
b = inblossom[v]
if label[b] & 4:
base = blossombase[b]
break
assert label[b] == 1
path.append(b)
label[b] = 5
# Trace one step back.
assert labelend[b] == mate[blossombase[b]]
if labelend[b] == -1:
# The base of blossom b is single; stop tracing this path.
v = -1
else:
v = endpoint[labelend[b]]
b = inblossom[v]
assert label[b] == 2
# b is a T-blossom; trace one more step back.
assert labelend[b] >= 0
v = endpoint[labelend[b]]
# Swap v and w so that we alternate between both paths.
if w != -1:
v, w = w, v
# Remove breadcrumbs.
for b in path:
label[b] = 1
# Return base vertex, if we found one.
return base
# Construct a new blossom with given base, containing edge k which
# connects a pair of S vertices. Label the new blossom as S; set its dual
# variable to zero; relabel its T-vertices to S and add them to the queue.
def addBlossom(base, k):
(v, w, wt) = edges[k]
bb = inblossom[base]
bv = inblossom[v]
bw = inblossom[w]
# Create blossom.
b = unusedblossoms.pop()
if DEBUG: DEBUG('addBlossom(%d,%d) (v=%d w=%d) -> %d' % (base, k, v, w, b))
blossombase[b] = base
blossomparent[b] = -1
blossomparent[bb] = b
# Make list of sub-blossoms and their interconnecting edge endpoints.
blossomchilds[b] = path = [ ]
blossomendps[b] = endps = [ ]
# Trace back from v to base.
while bv != bb:
# Add bv to the new blossom.
blossomparent[bv] = b
path.append(bv)
endps.append(labelend[bv])
assert (label[bv] == 2 or
(label[bv] == 1 and labelend[bv] == mate[blossombase[bv]]))
# Trace one step back.
assert labelend[bv] >= 0
v = endpoint[labelend[bv]]
bv = inblossom[v]
# Reverse lists, add endpoint that connects the pair of S vertices.
path.append(bb)
path.reverse()
endps.reverse()
endps.append(2*k)
# Trace back from w to base.
while bw != bb:
# Add bw to the new blossom.
blossomparent[bw] = b
path.append(bw)
endps.append(labelend[bw] ^ 1)
assert (label[bw] == 2 or
(label[bw] == 1 and labelend[bw] == mate[blossombase[bw]]))
# Trace one step back.
assert labelend[bw] >= 0
w = endpoint[labelend[bw]]
bw = inblossom[w]
# Set label to S.
assert label[bb] == 1
label[b] = 1
labelend[b] = labelend[bb]
# Set dual variable to zero.
dualvar[b] = 0
# Relabel vertices.
for v in blossomLeaves(b):
if label[inblossom[v]] == 2:
# This T-vertex now turns into an S-vertex because it becomes
# part of an S-blossom; add it to the queue.
queue.append(v)
inblossom[v] = b
# Compute blossombestedges[b].
bestedgeto = (2 * nvertex) * [ -1 ]
for bv in path:
if blossombestedges[bv] is None:
# This subblossom does not have a list of least-slack edges;
# get the information from the vertices.
nblists = [ [ p // 2 for p in neighbend[v] ]
for v in blossomLeaves(bv) ]
else:
# Walk this subblossom's least-slack edges.
nblists = [ blossombestedges[bv] ]
for nblist in nblists:
for k in nblist:
(i, j, wt) = edges[k]
if inblossom[j] == b:
i, j = j, i
bj = inblossom[j]
if (bj != b and label[bj] == 1 and
(bestedgeto[bj] == -1 or
slack(k) < slack(bestedgeto[bj]))):
bestedgeto[bj] = k
# Forget about least-slack edges of the subblossom.
blossombestedges[bv] = None
bestedge[bv] = -1
blossombestedges[b] = [ k for k in bestedgeto if k != -1 ]
# Select bestedge[b].
bestedge[b] = -1
for k in blossombestedges[b]:
if bestedge[b] == -1 or slack(k) < slack(bestedge[b]):
bestedge[b] = k
if DEBUG: DEBUG('blossomchilds[%d]=' % b + repr(blossomchilds[b]))
# Expand the given top-level blossom.
def expandBlossom(b, endstage):
if DEBUG: DEBUG('expandBlossom(%d,%d) %s' % (b, endstage, repr(blossomchilds[b])))
# Convert sub-blossoms into top-level blossoms.
for s in blossomchilds[b]:
blossomparent[s] = -1
if s < nvertex:
inblossom[s] = s
elif endstage and dualvar[s] == 0:
# Recursively expand this sub-blossom.
expandBlossom(s, endstage)
else:
for v in blossomLeaves(s):
inblossom[v] = s
# If we expand a T-blossom during a stage, its sub-blossoms must be
# relabeled.
if (not endstage) and label[b] == 2:
# Start at the sub-blossom through which the expanding
# blossom obtained its label, and relabel sub-blossoms untili
# we reach the base.
# Figure out through which sub-blossom the expanding blossom
# obtained its label initially.
assert labelend[b] >= 0
entrychild = inblossom[endpoint[labelend[b] ^ 1]]
# Decide in which direction we will go round the blossom.
j = blossomchilds[b].index(entrychild)
if j & 1:
# Start index is odd; go forward and wrap.
j -= len(blossomchilds[b])
jstep = 1
endptrick = 0
else:
# Start index is even; go backward.
jstep = -1
endptrick = 1
# Move along the blossom until we get to the base.
p = labelend[b]
while j != 0:
# Relabel the T-sub-blossom.
label[endpoint[p ^ 1]] = 0
label[endpoint[blossomendps[b][j-endptrick]^endptrick^1]] = 0
assignLabel(endpoint[p ^ 1], 2, p)
# Step to the next S-sub-blossom and note its forward endpoint.
allowedge[blossomendps[b][j-endptrick]//2] = True
j += jstep
p = blossomendps[b][j-endptrick] ^ endptrick
# Step to the next T-sub-blossom.
allowedge[p//2] = True
j += jstep
# Relabel the base T-sub-blossom WITHOUT stepping through to
# its mate (so don't call assignLabel).
bv = blossomchilds[b][j]
label[endpoint[p ^ 1]] = label[bv] = 2
labelend[endpoint[p ^ 1]] = labelend[bv] = p
bestedge[bv] = -1
# Continue along the blossom until we get back to entrychild.
j += jstep
while blossomchilds[b][j] != entrychild:
# Examine the vertices of the sub-blossom to see whether
# it is reachable from a neighbouring S-vertex outside the
# expanding blossom.
bv = blossomchilds[b][j]
if label[bv] == 1:
# This sub-blossom just got label S through one of its
# neighbours; leave it.
j += jstep
continue
for v in blossomLeaves(bv):
if label[v] != 0:
break
# If the sub-blossom contains a reachable vertex, assign
# label T to the sub-blossom.
if label[v] != 0:
assert label[v] == 2
assert inblossom[v] == bv
label[v] = 0
label[endpoint[mate[blossombase[bv]]]] = 0
assignLabel(v, 2, labelend[v])
j += jstep
# Recycle the blossom number.
label[b] = labelend[b] = -1
blossomchilds[b] = blossomendps[b] = None
blossombase[b] = -1
blossombestedges[b] = None
bestedge[b] = -1
unusedblossoms.append(b)
# Swap matched/unmatched edges over an alternating path through blossom b
# between vertex v and the base vertex. Keep blossom bookkeeping consistent.
def augmentBlossom(b, v):
if DEBUG: DEBUG('augmentBlossom(%d,%d)' % (b, v))
# Bubble up through the blossom tree from vertex v to an immediate
# sub-blossom of b.
t = v
while blossomparent[t] != b:
t = blossomparent[t]
# Recursively deal with the first sub-blossom.
if t >= nvertex:
augmentBlossom(t, v)
# Decide in which direction we will go round the blossom.
i = j = blossomchilds[b].index(t)
if i & 1:
# Start index is odd; go forward and wrap.
j -= len(blossomchilds[b])
jstep = 1
endptrick = 0
else:
# Start index is even; go backward.
jstep = -1
endptrick = 1
# Move along the blossom until we get to the base.
while j != 0:
# Step to the next sub-blossom and augment it recursively.
j += jstep
t = blossomchilds[b][j]
p = blossomendps[b][j-endptrick] ^ endptrick
if t >= nvertex:
augmentBlossom(t, endpoint[p])
# Step to the next sub-blossom and augment it recursively.
j += jstep
t = blossomchilds[b][j]
if t >= nvertex:
augmentBlossom(t, endpoint[p ^ 1])
# Match the edge connecting those sub-blossoms.
mate[endpoint[p]] = p ^ 1
mate[endpoint[p ^ 1]] = p
if DEBUG: DEBUG('PAIR %d %d (k=%d)' % (endpoint[p], endpoint[p^1], p//2))
# Rotate the list of sub-blossoms to put the new base at the front.
blossomchilds[b] = blossomchilds[b][i:] + blossomchilds[b][:i]
blossomendps[b] = blossomendps[b][i:] + blossomendps[b][:i]
blossombase[b] = blossombase[blossomchilds[b][0]]
assert blossombase[b] == v
# Swap matched/unmatched edges over an alternating path between two
# single vertices. The augmenting path runs through edge k, which
# connects a pair of S vertices.
def augmentMatching(k):
(v, w, wt) = edges[k]
if DEBUG: DEBUG('augmentMatching(%d) (v=%d w=%d)' % (k, v, w))
if DEBUG: DEBUG('PAIR %d %d (k=%d)' % (v, w, k))
for (s, p) in ((v, 2*k+1), (w, 2*k)):
# Match vertex s to remote endpoint p. Then trace back from s
# until we find a single vertex, swapping matched and unmatched
# edges as we go.
while 1:
bs = inblossom[s]
assert label[bs] == 1
assert labelend[bs] == mate[blossombase[bs]]
# Augment through the S-blossom from s to base.
if bs >= nvertex:
augmentBlossom(bs, s)
# Update mate[s]
mate[s] = p
# Trace one step back.
if labelend[bs] == -1:
# Reached single vertex; stop.
break
t = endpoint[labelend[bs]]
bt = inblossom[t]
assert label[bt] == 2
# Trace one step back.
assert labelend[bt] >= 0
s = endpoint[labelend[bt]]
j = endpoint[labelend[bt] ^ 1]
# Augment through the T-blossom from j to base.
assert blossombase[bt] == t
if bt >= nvertex:
augmentBlossom(bt, j)
# Update mate[j]
mate[j] = labelend[bt]
# Keep the opposite endpoint;
# it will be assigned to mate[s] in the next step.
p = labelend[bt] ^ 1
if DEBUG: DEBUG('PAIR %d %d (k=%d)' % (s, t, p//2))
# Verify that the optimum solution has been reached.
def verifyOptimum():
if maxcardinality:
# Vertices may have negative dual;
# find a constant non-negative number to add to all vertex duals.
vdualoffset = max(0, -min(dualvar[:nvertex]))
else:
vdualoffset = 0
# 0. all dual variables are non-negative
assert min(dualvar[:nvertex]) + vdualoffset >= 0
assert min(dualvar[nvertex:]) >= 0
# 0. all edges have non-negative slack and
# 1. all matched edges have zero slack;
for k in range(nedge):
(i, j, wt) = edges[k]
s = dualvar[i] + dualvar[j] - 2 * wt
iblossoms = [ i ]
jblossoms = [ j ]
while blossomparent[iblossoms[-1]] != -1:
iblossoms.append(blossomparent[iblossoms[-1]])
while blossomparent[jblossoms[-1]] != -1:
jblossoms.append(blossomparent[jblossoms[-1]])
iblossoms.reverse()
jblossoms.reverse()
for (bi, bj) in zip(iblossoms, jblossoms):
if bi != bj:
break
s += 2 * dualvar[bi]
assert s >= 0
if mate[i] // 2 == k or mate[j] // 2 == k:
assert mate[i] // 2 == k and mate[j] // 2 == k
assert s == 0
# 2. all single vertices have zero dual value;
for v in range(nvertex):
assert mate[v] >= 0 or dualvar[v] + vdualoffset == 0
# 3. all blossoms with positive dual value are full.
for b in range(nvertex, 2*nvertex):
if blossombase[b] >= 0 and dualvar[b] > 0:
assert len(blossomendps[b]) % 2 == 1
for p in blossomendps[b][1::2]:
assert mate[endpoint[p]] == p ^ 1
assert mate[endpoint[p ^ 1]] == p
# Ok.
# Check optimized delta2 against a trivial computation.
def checkDelta2():
for v in range(nvertex):
if label[inblossom[v]] == 0:
bd = None
bk = -1
for p in neighbend[v]:
k = p // 2
w = endpoint[p]
if label[inblossom[w]] == 1:
d = slack(k)
if bk == -1 or d < bd:
bk = k
bd = d
if DEBUG and (bestedge[v] != -1 or bk != -1) and (bestedge[v] == -1 or bd != slack(bestedge[v])):
DEBUG('v=' + str(v) + ' bk=' + str(bk) + ' bd=' + str(bd) + ' bestedge=' + str(bestedge[v]) + ' slack=' + str(slack(bestedge[v])))
assert (bk == -1 and bestedge[v] == -1) or (bestedge[v] != -1 and bd == slack(bestedge[v]))
# Check optimized delta3 against a trivial computation.
def checkDelta3():
bk = -1
bd = None
tbk = -1
tbd = None
for b in range(2 * nvertex):
if blossomparent[b] == -1 and label[b] == 1:
for v in blossomLeaves(b):
for p in neighbend[v]:
k = p // 2
w = endpoint[p]
if inblossom[w] != b and label[inblossom[w]] == 1:
d = slack(k)
if bk == -1 or d < bd:
bk = k
bd = d
if bestedge[b] != -1:
(i, j, wt) = edges[bestedge[b]]
assert inblossom[i] == b or inblossom[j] == b
assert inblossom[i] != b or inblossom[j] != b
assert label[inblossom[i]] == 1 and label[inblossom[j]] == 1
if tbk == -1 or slack(bestedge[b]) < tbd:
tbk = bestedge[b]
tbd = slack(bestedge[b])
if DEBUG and bd != tbd:
DEBUG('bk=%d tbk=%d bd=%s tbd=%s' % (bk, tbk, repr(bd), repr(tbd)))
assert bd == tbd
# Main loop: continue until no further improvement is possible.
for t in range(nvertex):
# Each iteration of this loop is a "stage".
# A stage finds an augmenting path and uses that to improve
# the matching.
if DEBUG: DEBUG('STAGE %d' % t)
# Remove labels from top-level blossoms/vertices.
label[:] = (2 * nvertex) * [ 0 ]
# Forget all about least-slack edges.
bestedge[:] = (2 * nvertex) * [ -1 ]
blossombestedges[nvertex:] = nvertex * [ None ]
# Loss of labeling means that we can not be sure that currently
# allowable edges remain allowable througout this stage.
allowedge[:] = nedge * [ False ]
# Make queue empty.
queue[:] = [ ]
# Label single blossoms/vertices with S and put them in the queue.
for v in range(nvertex):
if mate[v] == -1 and label[inblossom[v]] == 0:
assignLabel(v, 1, -1)
# Loop until we succeed in augmenting the matching.
augmented = 0
while 1:
# Each iteration of this loop is a "substage".
# A substage tries to find an augmenting path;
# if found, the path is used to improve the matching and
# the stage ends. If there is no augmenting path, the
# primal-dual method is used to pump some slack out of
# the dual variables.
if DEBUG: DEBUG('SUBSTAGE')
# Continue labeling until all vertices which are reachable
# through an alternating path have got a label.
while queue and not augmented:
# Take an S vertex from the queue.
v = queue.pop()
if DEBUG: DEBUG('POP v=%d' % v)
assert label[inblossom[v]] == 1
# Scan its neighbours:
for p in neighbend[v]:
k = p // 2
w = endpoint[p]
# w is a neighbour to v
if inblossom[v] == inblossom[w]:
# this edge is internal to a blossom; ignore it
continue
if not allowedge[k]:
kslack = slack(k)
if kslack <= 0:
# edge k has zero slack => it is allowable
allowedge[k] = True
if allowedge[k]:
if label[inblossom[w]] == 0:
# (C1) w is a free vertex;
# label w with T and label its mate with S (R12).
assignLabel(w, 2, p ^ 1)
elif label[inblossom[w]] == 1:
# (C2) w is an S-vertex (not in the same blossom);
# follow back-links to discover either an
# augmenting path or a new blossom.
base = scanBlossom(v, w)
if base >= 0:
# Found a new blossom; add it to the blossom
# bookkeeping and turn it into an S-blossom.
addBlossom(base, k)
else:
# Found an augmenting path; augment the
# matching and end this stage.
augmentMatching(k)
augmented = 1
break
elif label[w] == 0:
# w is inside a T-blossom, but w itself has not
# yet been reached from outside the blossom;
# mark it as reached (we need this to relabel
# during T-blossom expansion).
assert label[inblossom[w]] == 2
label[w] = 2
labelend[w] = p ^ 1
elif label[inblossom[w]] == 1:
# keep track of the least-slack non-allowable edge to
# a different S-blossom.
b = inblossom[v]
if bestedge[b] == -1 or kslack < slack(bestedge[b]):
bestedge[b] = k
elif label[w] == 0:
# w is a free vertex (or an unreached vertex inside
# a T-blossom) but we can not reach it yet;
# keep track of the least-slack edge that reaches w.
if bestedge[w] == -1 or kslack < slack(bestedge[w]):
bestedge[w] = k
if augmented:
break
# There is no augmenting path under these constraints;
# compute delta and reduce slack in the optimization problem.
# (Note that our vertex dual variables, edge slacks and delta's
# are pre-multiplied by two.)
deltatype = -1
delta = deltaedge = deltablossom = None
# Verify data structures for delta2/delta3 computation.
if CHECK_DELTA:
checkDelta2()
checkDelta3()
# Compute delta1: the minumum value of any vertex dual.
if not maxcardinality:
deltatype = 1
delta = min(dualvar[:nvertex])
# Compute delta2: the minimum slack on any edge between
# an S-vertex and a free vertex.
for v in range(nvertex):
if label[inblossom[v]] == 0 and bestedge[v] != -1:
d = slack(bestedge[v])
if deltatype == -1 or d < delta:
delta = d
deltatype = 2
deltaedge = bestedge[v]
# Compute delta3: half the minimum slack on any edge between
# a pair of S-blossoms.
for b in range(2 * nvertex):
if ( blossomparent[b] == -1 and label[b] == 1 and
bestedge[b] != -1 ):
kslack = slack(bestedge[b])
if isinstance(kslack, integer_types):
assert (kslack % 2) == 0
d = kslack // 2
else:
d = kslack / 2
if deltatype == -1 or d < delta:
delta = d
deltatype = 3
deltaedge = bestedge[b]
# Compute delta4: minimum z variable of any T-blossom.
for b in range(nvertex, 2*nvertex):
if ( blossombase[b] >= 0 and blossomparent[b] == -1 and
label[b] == 2 and
(deltatype == -1 or dualvar[b] < delta) ):
delta = dualvar[b]
deltatype = 4
deltablossom = b
if deltatype == -1:
# No further improvement possible; max-cardinality optimum
# reached. Do a final delta update to make the optimum
# verifyable.
assert maxcardinality
deltatype = 1
delta = max(0, min(dualvar[:nvertex]))
# Update dual variables according to delta.
for v in range(nvertex):
if label[inblossom[v]] == 1:
# S-vertex: 2*u = 2*u - 2*delta
dualvar[v] -= delta
elif label[inblossom[v]] == 2:
# T-vertex: 2*u = 2*u + 2*delta
dualvar[v] += delta
for b in range(nvertex, 2*nvertex):
if blossombase[b] >= 0 and blossomparent[b] == -1:
if label[b] == 1:
# top-level S-blossom: z = z + 2*delta
dualvar[b] += delta
elif label[b] == 2:
# top-level T-blossom: z = z - 2*delta
dualvar[b] -= delta
# Take action at the point where minimum delta occurred.
if DEBUG: DEBUG('delta%d=%f' % (deltatype, delta))
if deltatype == 1:
# No further improvement possible; optimum reached.
break
elif deltatype == 2:
# Use the least-slack edge to continue the search.
allowedge[deltaedge] = True
(i, j, wt) = edges[deltaedge]
if label[inblossom[i]] == 0:
i, j = j, i
assert label[inblossom[i]] == 1
queue.append(i)
elif deltatype == 3:
# Use the least-slack edge to continue the search.
allowedge[deltaedge] = True
(i, j, wt) = edges[deltaedge]
assert label[inblossom[i]] == 1
queue.append(i)
elif deltatype == 4:
# Expand the least-z blossom.
expandBlossom(deltablossom, False)
# End of a this substage.
# Stop when no more augmenting path can be found.
if not augmented:
break
# End of a stage; expand all S-blossoms which have dualvar = 0.
for b in range(nvertex, 2*nvertex):
if ( blossomparent[b] == -1 and blossombase[b] >= 0 and
label[b] == 1 and dualvar[b] == 0 ):
expandBlossom(b, True)
# Verify that we reached the optimum solution.
if CHECK_OPTIMUM:
verifyOptimum()
# Transform mate[] such that mate[v] is the vertex to which v is paired.
for v in range(nvertex):
if mate[v] >= 0:
mate[v] = endpoint[mate[v]]
for v in range(nvertex):
assert mate[v] == -1 or mate[mate[v]] == v
return mate
# Unit tests
if __name__ == '__main__':
import unittest, math
class MaxWeightMatchingTests(unittest.TestCase):
def test10_empty(self):
# empty input graph
self.assertEqual(maxWeightMatching([]), [])
def test11_singleedge(self):
# single edge
self.assertEqual(maxWeightMatching([ (0,1,1) ]), [1, 0])
def test12(self):
self.assertEqual(maxWeightMatching([ (1,2,10), (2,3,11) ]), [ -1, -1, 3, 2 ])
def test13(self):
self.assertEqual(maxWeightMatching([ (1,2,5), (2,3,11), (3,4,5) ]), [ -1, -1, 3, 2, -1 ])
def test14_maxcard(self):
# maximum cardinality
self.assertEqual(maxWeightMatching([ (1,2,5), (2,3,11), (3,4,5) ], True), [ -1, 2, 1, 4, 3 ])
def test15_float(self):
# floating point weigths
self.assertEqual(maxWeightMatching([ (1,2,math.pi), (2,3,math.exp(1)), (1,3,3.0), (1,4,math.sqrt(2.0)) ]), [ -1, 4, 3, 2, 1 ])
def test16_negative(self):
# negative weights
self.assertEqual(maxWeightMatching([ (1,2,2), (1,3,-2), (2,3,1), (2,4,-1), (3,4,-6) ], False), [ -1, 2, 1, -1, -1 ])
self.assertEqual(maxWeightMatching([ (1,2,2), (1,3,-2), (2,3,1), (2,4,-1), (3,4,-6) ], True), [ -1, 3, 4, 1, 2 ])
def test20_sblossom(self):
# create S-blossom and use it for augmentation
self.assertEqual(maxWeightMatching([ (1,2,8), (1,3,9), (2,3,10), (3,4,7) ]), [ -1, 2, 1, 4, 3 ])
self.assertEqual(maxWeightMatching([ (1,2,8), (1,3,9), (2,3,10), (3,4,7), (1,6,5), (4,5,6) ]), [ -1, 6, 3, 2, 5, 4, 1 ])
def test21_tblossom(self):
# create S-blossom, relabel as T-blossom, use for augmentation
self.assertEqual(maxWeightMatching([ (1,2,9), (1,3,8), (2,3,10), (1,4,5), (4,5,4), (1,6,3) ]), [ -1, 6, 3, 2, 5, 4, 1 ])
self.assertEqual(maxWeightMatching([ (1,2,9), (1,3,8), (2,3,10), (1,4,5), (4,5,3), (1,6,4) ]), [ -1, 6, 3, 2, 5, 4, 1 ])
self.assertEqual(maxWeightMatching([ (1,2,9), (1,3,8), (2,3,10), (1,4,5), (4,5,3), (3,6,4) ]), [ -1, 2, 1, 6, 5, 4, 3 ])
def test22_s_nest(self):
# create nested S-blossom, use for augmentation
self.assertEqual(maxWeightMatching([ (1,2,9), (1,3,9), (2,3,10), (2,4,8), (3,5,8), (4,5,10), (5,6,6) ]), [ -1, 3, 4, 1, 2, 6, 5 ])
def test23_s_relabel_nest(self):
# create S-blossom, relabel as S, include in nested S-blossom
self.assertEqual(maxWeightMatching([ (1,2,10), (1,7,10), (2,3,12), (3,4,20), (3,5,20), (4,5,25), (5,6,10), (6,7,10), (7,8,8) ]), [ -1, 2, 1, 4, 3, 6, 5, 8, 7 ])
def test24_s_nest_expand(self):
# create nested S-blossom, augment, expand recursively
self.assertEqual(maxWeightMatching([ (1,2,8), (1,3,8), (2,3,10), (2,4,12), (3,5,12), (4,5,14), (4,6,12), (5,7,12), (6,7,14), (7,8,12) ]), [ -1, 2, 1, 5, 6, 3, 4, 8, 7 ])
def test25_s_t_expand(self):
# create S-blossom, relabel as T, expand
self.assertEqual(maxWeightMatching([ (1,2,23), (1,5,22), (1,6,15), (2,3,25), (3,4,22), (4,5,25), (4,8,14), (5,7,13) ]), [ -1, 6, 3, 2, 8, 7, 1, 5, 4 ])
def test26_s_nest_t_expand(self):
# create nested S-blossom, relabel as T, expand
self.assertEqual(maxWeightMatching([ (1,2,19), (1,3,20), (1,8,8), (2,3,25), (2,4,18), (3,5,18), (4,5,13), (4,7,7), (5,6,7) ]), [ -1, 8, 3, 2, 7, 6, 5, 4, 1 ])
def test30_tnasty_expand(self):
# create blossom, relabel as T in more than one way, expand, augment
self.assertEqual(maxWeightMatching([ (1,2,45), (1,5,45), (2,3,50), (3,4,45), (4,5,50), (1,6,30), (3,9,35), (4,8,35), (5,7,26), (9,10,5) ]), [ -1, 6, 3, 2, 8, 7, 1, 5, 4, 10, 9 ])
def test31_tnasty2_expand(self):
# again but slightly different
self.assertEqual(maxWeightMatching([ (1,2,45), (1,5,45), (2,3,50), (3,4,45), (4,5,50), (1,6,30), (3,9,35), (4,8,26), (5,7,40), (9,10,5) ]), [ -1, 6, 3, 2, 8, 7, 1, 5, 4, 10, 9 ])
def test32_t_expand_leastslack(self):
# create blossom, relabel as T, expand such that a new least-slack S-to-free edge is produced, augment
self.assertEqual(maxWeightMatching([ (1,2,45), (1,5,45), (2,3,50), (3,4,45), (4,5,50), (1,6,30), (3,9,35), (4,8,28), (5,7,26), (9,10,5) ]), [ -1, 6, 3, 2, 8, 7, 1, 5, 4, 10, 9 ])
def test33_nest_tnasty_expand(self):
# create nested blossom, relabel as T in more than one way, expand outer blossom such that inner blossom ends up on an augmenting path
self.assertEqual(maxWeightMatching([ (1,2,45), (1,7,45), (2,3,50), (3,4,45), (4,5,95), (4,6,94), (5,6,94), (6,7,50), (1,8,30), (3,11,35), (5,9,36), (7,10,26), (11,12,5) ]), [ -1, 8, 3, 2, 6, 9, 4, 10, 1, 5, 7, 12, 11 ])
def test34_nest_relabel_expand(self):
# create nested S-blossom, relabel as S, expand recursively
self.assertEqual(maxWeightMatching([ (1,2,40), (1,3,40), (2,3,60), (2,4,55), (3,5,55), (4,5,50), (1,8,15), (5,7,30), (7,6,10), (8,10,10), (4,9,30) ]), [ -1, 2, 1, 5, 9, 3, 7, 6, 10, 4, 8 ])
CHECK_DELTA = True
unittest.main()
# end