-
Notifications
You must be signed in to change notification settings - Fork 0
/
AHALAB_SAS.asv
331 lines (299 loc) · 13.4 KB
/
AHALAB_SAS.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
classdef AHALAB_SAS < handle
% AHALAB_SAS is a class for running a Staochastic Approximation Staircase
% (SAS) procedure.
% SAS is a method for estimating the threshold of a stimulus based on a binary response (e.g. correct/incorrect).
% It is a sequential procedure that converges to the threshold of a stimulus by
% adjusting the stimulus intensity based on the response of the observer for the previous stimuli.
%
% Defualt equation used:
% C
% x_nplus1 = x_n - -------- (response-Phi)
% 1 + m
% where:
% x_n is the amplitude of the stimulation during the previous trial;
% Zn is set to 1 if the participant perceived an IoM (i.e. responded ‘Yes’) or 0 if he/she did not report any sensation (i.e. responded ‘No’);
% m is the number of reversals (how many times from the first trial of the staircase to the current one, the answer, Zn , switches from ‘Yes’ to ‘No’ and vice versa);
% Phi is the target threshold probability;
% c is a suitable constant (chosen through pilot experiments to be 0.4).
%
% Proporties:
% Required:
%
% x_1: initial value of x_n
% c: constant
% Phi: target probability
%
% Example : sas = AHALAB_SAS(Phi, c, x_1)
%
%
% Methods:
% reset(): reset the object to the initial state.
% update(response): update the object with the response of the observer.
% setUpdateFunction(f): set the functions used in the object to f.
%
% Example: sas.update(1); % for a postive response
% sas.update(0); % for a negative response
%
% Optional args:
%
% xMax: maximum possible stimulation value. default: inf
% xMin: minimum possible stimulation value. default: -inf
% minStepSizeDown: lower bound for step size. default: -inf
% minStepSizeUp: upper bound for step size default: inf
% stopCriterion: stop criterion default: 'trials'
% stopRule: stop rule default: 50
%
% Exmaple: sas = AHALAB_SAS(Phi, c, x_1, 'minStepSizeDown', 5, 'minStepSizeUp', 5);
%
% outputs:
%
% m: number of reversals
% xStaircase: staircase values.
% reversals: binary array indicating reversals.
% responses: binary array indicating responses.
% trialCount: if stop is false, it is the numberr of the next trial. if stop is true, it is the number of trials run.
% stop: stop flag. true if the stop criterion is met.
% updateFunction : the function used to update the x_n value.
%
% Created by: Waleed Alghilan Oct-2023 (Aritificial Hands Area in Scuola Superiore Santanna)
%
properties (SetAccess = private)
m % number of reversals
c % constant
Phi % target probability
xStaircase % staircase values
reversals % binary array indicating reversals
responses % binary array indicating responses
trialCount % the trialNumber
x_1 %initial value
xMax % maximum value
xMin % minimum value
minStepSizeDown % lower bound for step size
minStepSizeUp % upper bound for step size
stopCriterion % stop criterion
stopRule % stop rule
stop % stop flag
truncate
roundOutput % round the output (example 2.3 -> 2; 2.7 -> 3)
x
xCurrent
updateFunction % the function used to update the x_n value.
end
methods
function obj = AHALAB_SAS(varargin)
if nargin == 0
obj.m = 0;
obj.c = 0;
obj.Phi = 0.85;
obj.xStaircase = nan(51,1);
obj.reversals = zeros(50,1);
obj.responses = zeros(50,1);
obj.minStepSizeDown = 0;
obj.minStepSizeUp = 0;
obj.trialCount =1;
elseif nargin >= 3
% check that the first 3 arguments are numeric
if ~isnumeric(varargin{1}) || ~isnumeric(varargin{2}) || ~isnumeric(varargin{3})
error('AHALAB_SAS:invalidNumArgument','First three arguments must be numeric')
end
% check that Phi is between 0 and 1
if varargin{1} < 0 || varargin{1} > 1
error('AHALAB_SAS:invalidPhi','Phi must be between 0 and 1')
end
obj.Phi = varargin{1};
obj.c = varargin{2};
obj.x_1 = varargin{3};
% initialize values
obj.initializeParams();
% set the update function
obj.updateFunction = @(phi,c,m, response) c*(response-phi)/(1+m); % default
% check the added options
NumOpts = nargin-3;
for n = 3+1:2:nargin-mod(NumOpts,2)
valid = 0;
if strcmpi(varargin{n},'minStepSizeDown')
obj.minStepSizeDown = -varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n},'minStepSizeUp')
obj.minStepSizeUp = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'StopCriterion')
obj.stopCriterion = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'StopRule')
obj.stopRule = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'StartValue')
obj.x_1 = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'xMax')
obj.xMax = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'xMin')
obj.xMin = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'Truncate')
obj.truncate = varargin{n+1};
valid = 1;
end
if strcmpi(varargin{n}, 'RoundOutput')
obj.roundOutput = varargin{n+1};
valid = 1;
end
if valid == 0
warning('AHALAB_SAS:invalidOption','%s is not a valid option. Ignored.',varargin{n})
end
end
end
obj.xCurrent = obj.x_1;
obj.x(1)=obj.x_1;
obj.xStaircase(1) =obj.x_1;
xCurrentRaw = obj.x_1;
obj.x(1) = (max(min(xCurrentRaw,obj.xMax),obj.xMin));
end
function obj = update(obj, response)
% check response input is valid, if not it do nothing and quit
if ~(response == 0 || response == 1 || response == true || response == false)
message('AHALAB_SAS:invalidResponse','Response must be true, false, 0, 1')
return
end
prev_i = max(obj.trialCount-1,1);
% record response
obj.responses(obj.trialCount) = response;
% detect reversals
if (obj.responses(obj.trialCount) ~= obj.responses(prev_i))
obj.reversals(obj.trialCount) = 1;
else
obj.reversals(obj.trialCount) = 0;
end
% number of reversals
obj.m = sum(obj.reversals);
% calculate the step size
% stairCase_step = obj.c*(response-obj.Phi)/(1+obj.m) ;
stairCase_step = obj.updateFunction(obj.Phi, obj.c, obj.m, response);
% minimum step size
stairCase_step = min(max(-stairCase_step,obj.minStepSizeDown),obj.minStepSizeUp);
if(obj.roundOutput)
stairCase_step = round(stairCase_step);
end
% x_nplus1 = x_n - c*(response-Phi)/(1+m)
xCurrentRaw = obj.xStaircase(obj.trialCount) - stairCase_step;
obj.x(obj.trialCount+1) = (max(min(xCurrentRaw,obj.xMax),obj.xMin)); % this is what is sent in the next step
% When set to ‘ no /false / 0 ’:
% up/down rule will be applied to stimulus intensities [untruncated] by xMax and xMin
% (but stimulus intensities assigned to sas.xCurrent will be truncated by xMax and xMin).
% check Psychophysics by FREDERICK A.A. KIGNDOM and NICOLAAS PINS for more information.
if(obj.truncate)
obj.xStaircase(obj.trialCount+1) = obj.x(obj.trialCount+1);
else
obj.xStaircase(obj.trialCount+1) = xCurrentRaw;
end
% stop criterion
if strncmpi(obj.stopCriterion,'reversals',4) && sum(obj.reversals) == obj.stopRule
obj.stop = true;
end
if strncmpi(obj.stopCriterion,'trials',4) && obj.trialCount == obj.stopRule
obj.stop = true;
end
if(~obj.stop)
obj.xCurrent = obj.x(obj.trialCount+1);
obj.trialCount = obj.trialCount+1;
else
obj.xCurrent = [];
obj.trialCount = obj.trialCount;
end
end
function obj = initializeParams(obj)
obj.xStaircase = obj.x_1;
obj.xCurrent = obj.x_1;
obj.x(1)=obj.x_1;
obj.m = 0;% number of reversals
obj.reversals = []; % binary array indicating reversals
obj.responses = [];% binary array indicating responses
obj.trialCount = 1; % the trialNumber
obj.xMax = inf; % maximum value
obj.xMin = -inf;% minimum value
obj.minStepSizeDown = -inf; % lower bound for step size
obj.minStepSizeUp = inf;% upper bound for step size
obj.stopCriterion = "trials"; % stop criterion
obj.stopRule = 50; % stop rule
obj.stop = false;% stop flag
obj.truncate = true;
obj.roundOutput = true; % round the output (example 2.3 -> 2; 2.7 -> 3)
end
function obj = reset(obj)
obj.xStaircase = obj.x_1;
obj.xCurrent = obj.x_1;
obj.x=obj.x_1;
obj.m = 0;
obj.reversals = [];
obj.responses = [];
obj.trialCount = 1;
obj.stop = false;
end
function obj = backstep(obj,varargin)
% deletes the last n trials
if (nargin == 2 && isnumeric(varargin{1}))
nDeletes = varargin{1};
end
if(nargin == 1)
nDeletes = 1;
end
if(nDeletes>=obj.trialCount)
warning('AHALAB_SAS:invalidInput'," the number of deleted trials,exceeds the number of trials. Ignored")
return;
end
if(obj.stop)
% because trialCount stops incrementing if exeperiment finished
rangeStartForX = obj.trialCount-nDeletes+2;
rangeStartForResponses = obj.trialCount-nDeletes+1;
obj.trialCount = obj.trialCount-nDeletes+1;
obj.stop = 0;
elseif(obj.trialCount>=2)
rangeStartForX = obj.trialCount-nDeletes+1;
rangeStartForResponses = obj.trialCount-nDeletes+1;
obj.trialCount = obj.trialCount-nDeletes;
end
if(obj.trialCount>=2)
obj.xStaircase(rangeStartForX:end) = [];
obj.x(rangeStartForX:end) = [];
obj.xCurrent = obj.x(end);
obj.m = obj.m - sum(obj.reversals(rangeStartForResponses:end));
obj.reversals(rangeStartForResponses:end) = [];
obj.responses(rangeStartForResponses :end) = [];
else
% special case only one is present -> reset everything
obj.xStaircase = obj.x_1;
obj.x = obj.x_1;
obj.xCurrent = obj.x_1;
obj.m = 0;
obj.reversals =[];
obj.responses = [];
end
end
function obj = setFunction(obj, func)
% Change the update function of the object.
% the function handle must have 4 inputs in this order (phi,c,m, response)
% example:
% custom_updateFunction = @(phi,c,m, response) c*(response-Phi)/(2+m);
% sas.setFunction(custom_updateFunction);
if( ~isa(func, 'function_handle'))
% check that the function has 4 inputs
warning('AHALAB_SAS:invalidFunction','The input is not a function handle. Ignored.')
return
end
if( nargin(func) ~= 4)
warning('AHALAB_SAS:invalidFunction','The update function must have 4 inputs (phi,c,m, response). Ignored.')
return;
end
obj.updateFunction = func;
end
end
end