Skip to content

Latest commit

 

History

History
38 lines (20 loc) · 3.3 KB

References.md

File metadata and controls

38 lines (20 loc) · 3.3 KB

REFERENCES

  1. Commonly attributed to: Nye, Bill. Reddit Ask Me Anything (AMA). July 2012. Web. Accessed 15 October 2013. SSRN: http://www.reddit.com/r/IAmA/comments/x9pq0/iam_bill_nye_the_science_guy_ama

  2. Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From Data Mining to Knowledge Discovery in Databases.” AI Magazine 17.3 (1996): 37-54. Print.

  3. “Mining Data for Nuggets of Knowledge.” Knowledge@Wharton,1999. Web. Accessed 16 October 2013. SSRN: http://knowledge.wharton.upenn.edu/article/mining-data-for-nuggets-of-knowledge

  4. Cleveland, William S. “Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics.” International Statistical Review 69.1 (2001): 21-26. Print.

  5. Davenport, Thomas H., and D.J. Patil. “Data Scientist: The Sexiest Job of the 21st Century.” Harvard Business Review 90.10 (October 2012): 70–76. Print.

  6. Smith, David. “Statistics vs Data Science vs BI.” Revolutions, 15 May 2013. Web. Accessed 15 October 2013. SSRN:http://blog.revolutionanalytics.com/2013/05/statistics-vs-data-science-vs-bi.html

  7. Brynjolfsson, Erik, Lorin M. Hitt, and Heekyung H. Kim. “Strength in Numbers: How Does Data-Driven Decision Making Affect Firm Performance?” Social Science Electronic Publishing, 22 April 2011. Web. Accessed 15 October 2013. SSRN: <http://ssrn.com/abstract=1819486 or http://dx.doi.org/10.2139/ssrn.1819486>

  8. “The Stages of an Analytic Enterprise.” Nucleus Research. February 2012. Whitepaper.

  9. Barua, Anitesh, Deepa Mani, and Rajiv Mukherjee. “Measuring the Business Impacts of Effective Data.” University of Texas. Web. Accessed 15 October 2013. SSRNL: http://www.sybase.com/files/White_Papers/EffectiveDataStudyPt1-MeasuringtheBusinessImpactsofEffectiveData-WP.pdf

  10. Zikopoulos, Paul, Dirk deRoos, Kirshnan Parasuraman, Thomas Deutsch, David Corrigan and James Giles. Harness the Power of Big Data: The IBM Big Data Platform. New York: McGraw Hill, 2013. Print. 281pp.

  11. Booz Allen Hamilton. Cloud Analytics Playbook. 2013. Web. Accessed 15 October 2013. SSRN: http://www.boozallen.com/media/file/Cloud-playbook-digital.pdf

  12. Conway, Drew. “The Data Science Venn Diagram.” March 2013. Web. Accessed 15 October 2013. SSRN: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

  13. Torán, Jacobo. “On the Hardness of Graph Isomorphism.” SIAM Journal on Computing. 33.5 (2004): 1093-1108. Print.

  14. Guyon, Isabelle and Andre Elisseeff. “An Introduction to Variable and Feature Selection.” Journal of Machine Learning Research 3 (March 2003):1157-1182. Print.

  15. Golub T., D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lander. “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring.” Science. 286.5439 (1999): 531-537. Print.

  16. Haykin, Simon O. Neural Networks and Learning Machines. New Jersey: Prentice Hall, 2008. Print.

  17. De Jong, Kenneth A. Evolutionary Computation - A Unified Approach. Massachusetts: MIT Press, 2002. Print.

  18. Yacci, Paul, Anne Haake, and Roger Gaborski. “Feature Selection of Microarray Data Using Genetic Algorithms and Artificial Neural Networks.” ANNIE 2009. St Louis, MO. 2-4 November 2009. Conference Presentation.