-
Notifications
You must be signed in to change notification settings - Fork 0
/
calculate_fid.py
executable file
·384 lines (312 loc) · 14.1 KB
/
calculate_fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#!/usr/bin/env python3
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectively.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import pathlib
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import numpy as np
import torch
from scipy import linalg
from PIL import Image
from torch.nn.functional import adaptive_avg_pool2d
try:
from tqdm import tqdm
except ImportError:
# If not tqdm is not available, provide a mock version of it
def tqdm(x): return x
#from models import lenet
from eval.inception import InceptionV3
from eval.lenet import LeNet5
# prevents some machines from freezing when calculating FID
# due to scipy.linalg.sqrtm calculation
# see https://github.com/scipy/scipy/issues/14594
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
def get_activations(files, model, batch_size=50, dims=2048,
device='cpu', verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to use
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
is_numpy = True if type(files[0]) == np.ndarray else False
if len(files) % batch_size != 0:
print(('Warning: number of images is not a multiple of the '
'batch size. Some samples are going to be ignored.'))
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
n_batches = len(files) // batch_size
n_used_imgs = n_batches * batch_size
pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches)):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True)
start = i * batch_size
end = start + batch_size
if is_numpy:
images = np.copy(files[start:end])
if images.min() < -0.001:
images = (images + 1.) / 2.
else:
images = [np.array(Image.open(str(f))) for f in files[start:end]]
images = np.stack(images).astype(np.float32) / 255.
# Reshape to (n_images, 3, height, width)
images = images.transpose((0, 3, 1, 2))
batch = torch.from_numpy(images).type(torch.FloatTensor)
batch = batch.to(device)
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)
if verbose:
print('done', np.min(images))
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(act):
"""Calculation of the statistics used by the FID.
Params:
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def extract_lenet_features(imgs, net, device='cpu'):
net.eval()
feats = []
imgs = imgs.reshape([-1, 100] + list(imgs.shape[1:]))
if imgs[0].min() < -0.001:
imgs = (imgs + 1)/2.0
print(imgs.shape, imgs.min(), imgs.max())
imgs = torch.from_numpy(imgs).to(device)
for i, images in enumerate(imgs):
feats.append(net.extract_features(images).detach().cpu().numpy())
feats = np.vstack(feats)
return feats
def _compute_activations(path, model, batch_size, dims, device, model_type):
if not type(path) == np.ndarray:
import glob
jpg = os.path.join(path, '*.jpg')
png = os.path.join(path, '*.png')
path = glob.glob(jpg) + glob.glob(png)
if len(path) > 25000:
import random
random.shuffle(path)
path = path[:25000]
if model_type == 'inception':
act = get_activations(path, model, batch_size, dims, device)
elif model_type == 'lenet':
act = extract_lenet_features(path, model, device)
return act
def calculate_fid_given_paths(paths, batch_size, device, dims, bootstrap=True, n_bootstraps=10, model_type='inception'):
"""Calculates the FID of two paths"""
pths = []
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
if os.path.isdir(p):
pths.append(p)
elif p.endswith('.npy'):
np_imgs = np.load(p)
if np_imgs.shape[0] > 25000:
np_imgs = np_imgs[:50000]
pths.append(np_imgs)
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
if model_type == 'inception':
model = InceptionV3([block_idx])
elif model_type == 'lenet':
model = LeNet5()
model.load_state_dict(torch.load('./models/lenet.pth'))
model = model.to(device)
act_true = _compute_activations(pths[0], model, batch_size, dims, device, model_type)
n_bootstraps = n_bootstraps if bootstrap else 1
pths = pths[1:]
results = []
for j, pth in enumerate(pths):
print(paths[j+1])
actj = _compute_activations(pth, model, batch_size, dims, device, model_type)
fid_values = np.zeros((n_bootstraps))
with tqdm(range(n_bootstraps), desc='FID') as bar:
for i in bar:
act1_bs = act_true[np.random.choice(act_true.shape[0], act_true.shape[0], replace=True)]
act2_bs = actj[np.random.choice(actj.shape[0], actj.shape[0], replace=True)]
m1, s1 = calculate_activation_statistics(act1_bs)
m2, s2 = calculate_activation_statistics(act2_bs)
fid_values[i] = calculate_frechet_distance(m1, s1, m2, s2)
bar.set_postfix({'mean': fid_values[:i+1].mean()})
results.append((paths[j+1], fid_values.mean(), fid_values.std()))
return results
def calculate_fid_given_arr_and_stats(np_arr, true_m, true_s, batch_size=50, device='cpu', dims=2048, model_type='inception'):
"""
Calculate FID given a numpy array of samples
and the dataset's mean and covariance statistics.
"""
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
if model_type == 'inception':
model = InceptionV3([block_idx])
elif model_type == 'lenet':
model = LeNet5()
model.load_state_dict(torch.load('./models/lenet.pth'))
model = model.to(device)
act = _compute_activations(np_arr, model, batch_size, dims, device, model_type)
m, s = calculate_activation_statistics(act)
fid = calculate_frechet_distance(m, s, true_m, true_s)
return fid
def calculate_mean_std(path, batch_size, device, dims, model_type='inception'):
"""
Calculate the mean and covariance of the inceptionv3 activations
given a batch of samples.
"""
if isinstance(path, str) and path[-4:] == '.npy':
np_imgs = np.load(path)
elif isinstance(path, np.ndarray):
np_imgs = path
else:
print("invalid data type")
exit()
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
if model_type == 'inception':
model = InceptionV3([block_idx])
elif model_type == 'lenet':
model = LeNet5()
model.load_state_dict(torch.load('./models/lenet.pth'))
model = model.to(device)
act = _compute_activations(np_imgs, model, batch_size, dims, device, model_type)
m, s = calculate_activation_statistics(act)
return m, s
def calculate_activations(path, batch_size, device, dims, model_type='inception'):
"""
Helper function that returns the activations of the inceptionv3 network (rather than returning mean/cov)
Used for finding closest image in dataset based on inceptionv3 activation values.
"""
if isinstance(path, str) and path[-4:] == '.npy':
np_imgs = np.load(path)
elif isinstance(path, np.ndarray):
np_imgs = path
else:
print("invalid data type")
exit()
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
if model_type == 'inception':
model = InceptionV3([block_idx])
elif model_type == 'lenet':
model = LeNet5()
model.load_state_dict(torch.load('./models/lenet.pth'))
model = model.to(device)
act = _compute_activations(np_imgs, model, batch_size, dims, device, model_type)
return act
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--true', type=str, required=True,
help=('Path to the true images/stats'))
parser.add_argument('--fake', type=str, required=True,
help=('Path to the generated images'))
parser.add_argument('--batch-size', type=int, default=100,
help='Batch size to use')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('--device', default='', type=str,
help='GPU to use (cuda:0, cuda:1, etc)')
parser.add_argument('--model', default='inception', type=str,
help='inception or lenet')
args = parser.parse_args()
print(args)
if args.true.endswith('npy'):
paths = [args.true] + [args.fake]
results = calculate_fid_given_paths(paths, args.batch_size, args.device, args.dims, model_type=args.model)
for p, m, s in results:
print('FID (%s): %.2f (%.3f)' % (p, m, s))
elif args.true.endswith('npz'):
with np.load(args.true) as f:
true_m, true_s = f['mu'][:], f['sigma'][:]
samples = np.load(args.fake)
results = calculate_fid_given_arr_and_stats(samples, true_m, true_s, batch_size=args.batch_size, device=args.device)
print(f'FID: {results}')