-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_setup.py
79 lines (68 loc) · 3.33 KB
/
dataset_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torchvision
from tqdm import tqdm
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, CenterCrop
import numpy as np
import argparse
from calculate_fid import calculate_mean_std
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True,
help='Path containing either \'cifar-10-batches-py\' and \'celeba\'.')
parser.add_argument('--dataset', type=str, required=True, choices=['cifar10', 'celeba', 'lsun_church'],
help='Dataset to process statistics, \'cifar10\' or \'celeba\'. ')
parser.add_argument('--batch_size', type=int, default=200,
help='Batch size for FID statistics calculation')
parser.add_argument('--device', type=str, default='cpu',
help='Device for FID statistics calculation, e.g., \'cuda:0\', \'cuda:1\'.')
args = parser.parse_args()
if args.dataset == 'cifar10':
transforms = Compose([
Resize((32, 32)),
ToTensor(),
Normalize((.5, .5, .5), (.5, .5, .5))
])
dataset = torchvision.datasets.CIFAR10(args.data_dir, download=True, transform=transforms)
elif args.dataset == 'celeba':
transforms = Compose([
CenterCrop(140),
Resize((64, 64)),
ToTensor(),
Normalize((.5, .5, .5), (.5, .5, .5))
])
dataset = torchvision.datasets.CelebA(args.data_dir, download=True, transform=transforms)
elif args.dataset == 'lsun_church':
transforms = Compose([
Resize((128,128)),
CenterCrop(128),
ToTensor(),
Normalize((.5, .5, .5), (.5, .5, .5))
])
dataset = torchvision.datasets.LSUN(args.data_dir, transform=transforms, classes=['church_outdoor_train'])
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1000, shuffle=False, drop_last=False, num_workers=4)
# calculate mean and covariance of dataset for FID calculations
full_data = []
print("Iterating through full dataset...")
for data in tqdm(dataloader):
data = data[0]
full_data.append(data)
full_data = np.concatenate(full_data, axis=0)
if args.dataset == 'cifar10' or args.dataset == 'celeba':
print("Calculating FID statistics of dataset...")
m, s = calculate_mean_std(full_data, batch_size=args.batch_size, device=args.device, dims=2048, model_type='inception')
save_file_fid_stats = "eval/" + args.dataset + "_stats.npz"
print(f"Saving statistics to {save_file_fid_stats}")
np.savez(save_file_fid_stats, mu=m, sigma=s)
# generate unconditional prior dist
print("Calculating learned prior ")
full_data = torch.tensor(full_data)
full_data_flat = full_data.view(len(full_data), -1)
mean = full_data_flat.mean(dim=0)
full_data_flat = full_data_flat - mean.unsqueeze(dim=0)
cov = full_data_flat.t() @ full_data_flat / len(full_data_flat) # equivalent to torch.cov(full_data_flat.t())
dist = torch.distributions.MultivariateNormal(mean, covariance_matrix=cov+1e-4*torch.eye(len(mean)))
save_file_prior = args.dataset + "_ddp.pt"
print(f"Saving learned prior distribution to {save_file_prior}")
torch.save(dist, save_file_prior)
if __name__ == "__main__":
main()