-
Notifications
You must be signed in to change notification settings - Fork 47
/
detect.py
257 lines (209 loc) · 8.85 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch, h5py, imageio, os, argparse
import numpy as np
import torch.nn.functional as F
from functools import partial
from torch.utils.data import DataLoader
from tqdm import tqdm
from torch_dimcheck import dimchecked
from disk import DISK, Features
class Image:
def __init__(self, bitmap: ['C', 'H', 'W'], fname: str, orig_shape=None):
self.bitmap = bitmap
self.fname = fname
if orig_shape is None:
self.orig_shape = self.bitmap.shape[1:]
else:
self.orig_shape = orig_shape
def resize_to(self, shape):
return Image(
self._pad(self._interpolate(self.bitmap, shape), shape),
self.fname,
orig_shape=self.bitmap.shape[1:],
)
@dimchecked
def to_image_coord(self, xys: [2, 'N']) -> ([2, 'N'], ['N']):
f, _size = self._compute_interpolation_size(self.bitmap.shape[1:])
scaled = xys / f
h, w = self.orig_shape
x, y = scaled
mask = (0 <= x) & (x < w) & (0 <= y) & (y < h)
return scaled, mask
def _compute_interpolation_size(self, shape):
x_factor = self.orig_shape[0] / shape[0]
y_factor = self.orig_shape[1] / shape[1]
f = 1 / max(x_factor, y_factor)
if x_factor > y_factor:
new_size = (shape[0], int(f * self.orig_shape[1]))
else:
new_size = (int(f * self.orig_shape[0]), shape[1])
return f, new_size
@dimchecked
def _interpolate(self, image: ['C', 'H', 'W'], shape) -> ['C', 'h', 'w']:
_f, size = self._compute_interpolation_size(shape)
return F.interpolate(
image.unsqueeze(0),
size=size,
mode='bilinear',
align_corners=False,
).squeeze(0)
@dimchecked
def _pad(self, image: ['C', 'H', 'W'], shape) -> ['C', 'h', 'w']:
x_pad = shape[0] - image.shape[1]
y_pad = shape[1] - image.shape[2]
if x_pad < 0 or y_pad < 0:
raise ValueError("Attempting to pad by negative value")
return F.pad(image, (0, y_pad, 0, x_pad))
class SceneDataset:
def __init__(self, image_path, crop_size=(None, None)):
self.image_path = image_path
self.crop_size = crop_size
self.names = [p for p in os.listdir(image_path) \
if p.endswith(args.image_extension)]
def __len__(self):
return len(self.names)
def __getitem__(self, ix):
name = self.names[ix]
path = os.path.join(self.image_path, name)
img = np.ascontiguousarray(imageio.imread(path))
tensor = torch.from_numpy(img).to(torch.float32)
if len(tensor.shape) == 2: # some images may be grayscale
tensor = tensor.unsqueeze(-1).expand(-1, -1, 3)
bitmap = tensor.permute(2, 0, 1) / 255.
extensionless_fname = os.path.splitext(name)[0]
image = Image(bitmap, extensionless_fname)
if self.crop_size != (None, None):
image = image.resize_to(self.crop_size)
return image
@staticmethod
def collate_fn(images):
bitmaps = torch.stack([im.bitmap for im in images], dim=0)
return bitmaps, images
def extract(dataset, save_path):
dataloader = DataLoader(
dataset,
batch_size=1,
pin_memory=True,
collate_fn=dataset.collate_fn,
num_workers=4,
)
if args.mode == 'nms':
extract = partial(
model.features,
kind='nms',
window_size=args.window,
cutoff=0.,
n=args.n
)
else:
extract = partial(model.features, kind='rng')
os.makedirs(os.path.join(save_path), exist_ok=True)
keypoint_h5 = h5py.File(os.path.join(save_path, 'keypoints.h5'), 'w')
descriptor_h5 = h5py.File(os.path.join(save_path, 'descriptors.h5'), 'w')
if args.detection_scores:
score_h5 = h5py.File(os.path.join(save_path, 'scores.h5'), 'w')
pbar = tqdm(dataloader)
for bitmaps, images in pbar:
bitmaps = bitmaps.to(DEV, non_blocking=True)
with torch.no_grad():
try:
batched_features = extract(bitmaps)
except RuntimeError as e:
if 'U-Net failed' in str(e):
msg = ('Please use input size which is multiple of 16 (or '
'adjust the --height and --width flags to let this '
'script rescale it automatically). This is because '
'we internally use a U-Net with 4 downsampling '
'steps, each by a factor of 2, therefore 2^4=16.')
raise RuntimeError(msg) from e
else:
raise
for features, image in zip(batched_features.flat, images):
features = features.to(CPU)
kps_crop_space = features.kp.T
kps_img_space, mask = image.to_image_coord(kps_crop_space)
keypoints = kps_img_space.numpy().T[mask]
descriptors = features.desc.numpy()[mask]
scores = features.kp_logp.numpy()[mask]
order = np.argsort(scores)[::-1]
keypoints = keypoints[order]
descriptors = descriptors[order]
scores = scores[order]
assert descriptors.shape[1] == args.desc_dim
assert keypoints.shape[1] == 2
if args.f16:
descriptors = descriptors.astype(np.float16)
keypoint_h5.create_dataset(image.fname, data=keypoints)
descriptor_h5.create_dataset(image.fname, data=descriptors)
if args.detection_scores:
score_h5.create_dataset(image.fname, data=scores)
pbar.set_postfix(n=keypoints.shape[0])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=(
"Script for detection and description (but not matching) of keypoints. "
"It processes all images with extension given by `--image-extension` found "
"in `image-path` directory. Images are resized to `--height` x `--width` "
"for internal processing (padding them if necessary) and the output "
"coordinates are then transformed back to original image size."),
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
'--height', default=None, type=int,
help='rescaled height (px). If unspecified, image is not resized in height dimension'
)
parser.add_argument(
'--width', default=None, type=int,
help='rescaled width (px). If unspecified, image is not resized in width dimension'
)
parser.add_argument(
'--image-extension', default='jpg', type=str,
help='This script ill process all files which match `image-path/*.{--image-extension}`'
)
parser.add_argument(
'--f16', action='store_true',
help='Store descriptors in fp16 (half precision) format'
)
parser.add_argument('--window', type=int, default=5, help='NMS window size')
parser.add_argument(
'--n', type=int, default=None,
help='Maximum number of features to extract. If unspecified, the number is not limited'
)
parser.add_argument(
'--desc-dim', type=int, default=128,
help='descriptor dimension. Needs to match the checkpoint value.'
)
parser.add_argument(
'--mode', choices=['nms', 'rng'], default='nms',
help=('Whether to extract features using the non-maxima suppresion mode or '
'through training-time grid sampling technique')
)
default_model_path = os.path.split(os.path.abspath(__file__))[0] + '/depth-save.pth'
parser.add_argument(
'--model_path', type=str, default=default_model_path,
help="Path to the model's .pth save file"
)
parser.add_argument('--detection-scores', action='store_true')
parser.add_argument(
'h5_path',
help=("Directory where keypoints.h5 and descriptors.h5 will be stored. This"
" will be created if it doesn't already exist.")
)
parser.add_argument(
'image_path',
help="Directory with images to be processed."
)
args = parser.parse_args()
DEV = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
CPU = torch.device('cpu')
dataset = SceneDataset(args.image_path, crop_size=(args.height, args.width))
state_dict = torch.load(args.model_path, map_location='cpu')
# compatibility with older model saves which used the 'extractor' name
if 'extractor' in state_dict:
weights = state_dict['extractor']
elif 'disk' in state_dict:
weights = state_dict['disk']
else:
raise KeyError('Incompatible weight file!')
model = DISK(window=8, desc_dim=args.desc_dim)
model.load_state_dict(weights)
model = model.to(DEV)
described_samples = extract(dataset, args.h5_path)