Skip to content
This repository has been archived by the owner on May 28, 2023. It is now read-only.

Latest commit

 

History

History
93 lines (74 loc) · 3.35 KB

README.md

File metadata and controls

93 lines (74 loc) · 3.35 KB

MLAPP-CN

MLAPP 中文笔记项目

在线阅读

https://kivy-cn.github.io/MLAPP-CN

笔记项目概述

本系列是一个新坑, 还希望大家批评指正!

书中疑似错误记录

https://github.com/Kivy-CN/MLAPP-CN/blob/master/Error.md

笔记进度追踪

  • 01 Introduction 1~26
  • 02 Probability 27~64 (练习略)
  • 03 Generative models for discrete data 65~96(练习略)
  • 04 Gaussian models 97~148(练习略)
  • 05 Bayesian statistics 149~190(练习略)
  • 06 Frequentist statistics 191~216(练习略)
  • 07 Linear regression 217~244(练习略)
  • 08 Logistic regression 245~280(练习略)
  • 09 Generalized linear models and the exponential family 281~306(练习略)
  • 10 Directed graphical models (Bayes nets) 307~336(练习略)
  • 11 Mixture models and the EM algorithm 337~380(当前进度 337)
  • 12 Latent linear models 381~420
  • 13 Sparse linear models 421~478
  • 14 Kernels 479~514
  • 15 Gaussian processes 515~542
  • 16 Adaptive basis function models 543~588
  • 17 Markov and hidden Markov models 589~630
  • 18 State space models 631~660
  • 19 Undirected graphical models (Markov random fields) 661~706
  • 20 Exact inference for graphical models 707~730
  • 21 Variational inference 731~766
  • 22 More variational inference 767~814
  • 23 Monte Carlo inference 815~836
  • 24 Markov chain Monte Carlo (MCMC) inference 837~874
  • 25 Clustering 875~906
  • 26 Graphical model structure learning 907~944
  • 27 Latent variable models for discrete data 945~994
  • 28 Deep learning 995~1009

MLAPP-CN

MLAPP Chinese Notes Project

Read Online

https://kivy-cn.github.io/MLAPP-CN

Note Project Overview

This series is a new pit, and I hope everyone will criticize me!

Suspected error record in book

https://github.com/Kivy-CN/MLAPP-CN/blob/master/Error.md

note progress tracking

  • 01 Introduction 1~26
  • 02 Probability 27~64 (Exercise slightly)
  • 03 Generative models for discrete data 65~96 (execution slightly)
  • 04 Gaussian models 97~148 (execution slightly)
  • 05 Bayesian statistics 149~190 (practice slightly)
  • 06 Frequentist statistics 191~216 (execution slightly)
  • 07 Linear regression 217~244 (practice slightly)
  • 08 Logistic regression 245~280 (practice slightly)
  • 09 Generalized linear models and the exponential family 281~306 (execution slightly)
  • 10 Directed graphical models (Bayes nets) 307~336 (practice slightly)
  • 11 Mixture models and the EM algorithm 337~380 (current progress 337)
  • 12 Latent linear models 381~420
  • 13 Sparse linear models 421~478
  • 14 Kernels 479~514
  • 15 Gaussian processes 515~542
  • 16 Adaptive basis function models 543~588
  • 17 Markov and hidden Markov models 589~630
  • 18 State space models 631~660
  • 19 Undirected graphical models (Markov random fields) 661~706
  • 20 Exact inference for graphical models 707~730
  • 21 Variational inference 731~766
  • 22 More variational inference 767~814
  • 23 Monte Carlo inference 815~836
  • 24 Markov chain Monte Carlo (MCMC) inference 837~874
  • 25 Clustering 875~906
  • 26 Graphical model structure learning 907~944
  • 27 Latent variable models for discrete data 945~994
  • 28 Deep learning 995~1009