forked from SAI990323/TALLRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
235 lines (202 loc) · 7.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import sys
import fire
import gradio as gr
import torch
torch.set_num_threads(1)
import transformers
import json
import os
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['OMP_NUM_THREADS'] = '1'
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from sklearn.metrics import roc_auc_score
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "tloen/alpaca-lora-7b",
test_data_path: str = "data/test.json",
result_json_data: str = "temp.json",
batch_size: int = 32,
share_gradio: bool = False,
):
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
model_type = lora_weights.split('/')[-1]
model_name = '_'.join(model_type.split('_')[:2])
if model_type.find('book') > -1:
train_sce = 'book'
else:
train_sce = 'movie'
if test_data_path.find('book') > -1:
test_sce = 'book'
else:
test_sce = 'movie'
temp_list = model_type.split('_')
seed = temp_list[-2]
sample = temp_list[-1]
if os.path.exists(result_json_data):
f = open(result_json_data, 'r')
data = json.load(f)
f.close()
else:
data = dict()
if not data.__contains__(train_sce):
data[train_sce] = {}
if not data[train_sce].__contains__(test_sce):
data[train_sce][test_sce] = {}
if not data[train_sce][test_sce].__contains__(model_name):
data[train_sce][test_sce][model_name] = {}
if not data[train_sce][test_sce][model_name].__contains__(seed):
data[train_sce][test_sce][model_name][seed] = {}
if data[train_sce][test_sce][model_name][seed].__contains__(sample):
exit(0)
# data[train_sce][test_sce][model_name][seed][sample] =
tokenizer = LlamaTokenizer.from_pretrained(base_model)
print(f'device: {device}')
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
# model = PeftModel.from_pretrained(
# model,
# lora_weights,
# torch_dtype=torch.float16,
# device_map={'': 0}
# )
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
tokenizer.padding_side = "left"
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instructions,
inputs=None,
temperature=0,
top_p=1.0,
top_k=40,
num_beams=1,
max_new_tokens=2,
**kwargs,
):
prompt = [generate_prompt(instruction, input) for instruction, input in zip(instructions, inputs)]
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
**inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
# batch_size=batch_size,
)
s = generation_output.sequences
scores = generation_output.scores[0].softmax(dim=-1)
logits = torch.tensor(scores[:, [8241, 3782]], dtype=torch.float32).softmax(dim=-1)
input_ids = inputs["input_ids"].to(device)
L = input_ids.shape[1]
s = generation_output.sequences
output = tokenizer.batch_decode(s, skip_special_tokens=True)
output = [_.split('Response:\n')[-1] for _ in output]
print(output)
return output, logits.tolist()
# testing code for readme
logit_list = []
gold_list = []
outputs = []
logits = []
from tqdm import tqdm
gold = []
pred = []
with open(test_data_path, 'r') as f:
test_data = json.load(f)
instructions = [_['instruction'] for _ in test_data]
inputs = [_['input'] for _ in test_data]
gold = [int(_['output'] == 'Yes.') for _ in test_data]
def batch(list, batch_size=96):
chunk_size = (len(list) - 1) // batch_size + 1
for i in range(chunk_size):
yield list[batch_size * i: batch_size * (i + 1)]
for i, batch in tqdm(enumerate(zip(batch(instructions), batch(inputs)))):
instructions, inputs = batch
output, logit = evaluate(instructions, inputs)
outputs = outputs + output
logits = logits + logit
for i, test in tqdm(enumerate(test_data)):
test_data[i]['predict'] = outputs[i]
test_data[i]['logits'] = logits[i]
pred.append(logits[i][0])
from sklearn.metrics import roc_auc_score, classification_report
import numpy as np
def min_max_scale(arr):
return (arr - (arr.sum() / len(arr))) / (arr.max() - arr.min())
pred = min_max_scale(np.array(pred))
pred = np.where(pred >= 0.5, 1, 0)
print(classification_report(gold, pred))
data[train_sce][test_sce][model_name][seed][sample] = roc_auc_score(gold, pred)
f = open(result_json_data, 'w')
json.dump(data, f, indent=4)
f.close()
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # noqa: E501
### Instruction:
Your task is to estimate the user's preferences based on the infomation mentioned below. Yes means user will enjoy this movie, else No. Please response in format like those: \nYes, Because...\nNo, Because... \n Remember, The first word must be Yes or No. Reason should be not more than 10 words. And don't say other words not in json. Please consider the key elements of each movie and the user enjoyed movie features.
### Input:
{input}
### Response:
"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # noqa: E501
### Instruction:
{instruction}
### Response:
"""
if __name__ == "__main__":
fire.Fire(main)