-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradient_descent.py
172 lines (122 loc) · 4.95 KB
/
gradient_descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import random
import matplotlib.pyplot as plt
from functools import partial
from linear_algebra import distance
from linear_algebra import vector_subtract, scalar_multiply
def sum_of_squares(v):
"""computes teh sum of squared elements in v"""
return sum(v_i ** 2 for v_i in v)
def difference_quotient(f, x, h):
return (f(x + h) - f(x)) / h
def square(x):
return x * x
def derivative(x):
return 2 * x
def partial_difference_quotient(f, v, i, h):
"""Compute the ith partial difference quotient of f at v"""
w = [v_j + (h if j == i else 0) for j, v_j in enumerate(v)] # add h to just the ith element of v
return (f(w) - f(v)) / h
def estimate_gradient(f, v, h=0.00001):
return [partial_difference_quotient(f, v, i, h) for i, _ in enumerate(v)]
def step(v, direction, step_size):
"""move step_size in the direction from v"""
# print(v)
return [v_i + step_size * direction_i for v_i, direction_i in zip(v, direction)]
def sum_of_squares_gradient(v):
return [2 * v_i for v_i in v]
def run_experiment():
v = [random.randint(-10, 10) for i in range(3)]
tolerance = 0.0000001
while True:
gradient = sum_of_squares_gradient(v)
next_v = step(v, gradient, -0.01)
if distance(next_v, v) < tolerance:
break
v = next_v
print(v)
def safe(f):
"""return a new function that's the same as f,
except that it outputs infinity whenever f produces an error"""
def safe_f(*args, **kwargs):
try:
return f(*args, **kwargs)
except:
return float('inf')
return safe_f
def minimize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001):
"""use gradient descent to find theta that minimizes target function"""
step_sizes = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001]
theta = theta_0
target_fn = safe(target_fn)
value = target_fn(theta)
print(target_fn)
print(value)
while True:
gradient = gradient_fn(theta)
next_thetas = [step(theta, gradient, -step_size) for step_size in step_sizes]
# choose the one that minimizes the error function
next_theta = min(next_thetas, key=target_fn)
next_value = target_fn(next_theta)
# stop if we're converging
if abs(value - next_value) < tolerance:
break
else:
theta, value = next_theta, next_value
return theta
def negate(f):
"""return a function that for any input x returns -f(x)"""
return lambda *args, **kwargs: -f(*args, **kwargs)
def negate_all(f):
"""the same when f return a list of numbers"""
return lambda *args, **kwargs: [-y for y in f(*args, **kwargs)]
def maximize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001):
return minimize_batch(negate(target_fn),
negate_all(gradient_fn),
theta_0,
tolerance)
def in_random_order(data):
"""generator that returns the elements of data in random object"""
indexes = [i for i, _ in enumerate(data)] # Creates a list of indexes
random.shuffle(indexes)
for i in indexes:
yield data[i]
def minimize_stochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01):
data = list(zip(x, y))
theta = theta_0
alpha = alpha_0
min_theta, min_value = None, float("inf") # the minimum so far
iterations_with_no_improvement = 0
# if we ever go 100 iterations with no improvement, stop
while iterations_with_no_improvement < 100:
value = sum(target_fn(x_i, y_i, theta) for x_i, y_i in data)
if value < min_value:
# if we've found a new minimum, remember it
# and go back to the original step size
min_theta, min_value = theta, value
iterations_with_no_improvement = 0
alpha = alpha_0
else:
# otherwise we're not improving, so try shrinking the step size
iterations_with_no_improvement += 1
alpha *= 0.9
# and take a gradient step for each of the data points
for x_i, y_i in in_random_order(data):
gradient_i = gradient_fn(x_i, y_i, theta)
theta = vector_subtract(theta, scalar_multiply(alpha, gradient_i))
return min_theta
def maximize_shochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01):
return minimize_stochastic(negate(target_fn),
negate_all(gradient_fn),
x, y, theta_0, alpha_0)
def main():
"""
derivative_estimate = partial(difference_quotient, square, h = 0.00001)
x = range(-10, 10)
plt.title("Actual Derivatives vs. Estimates")
plt.plot(x, list(map(derivative, x)), 'rx', label='Actual') # red x = rx
plt.plot(x, list(map(derivative_estimate, x)), 'b+', label='Estimate')
plt.legend(loc=9)
plt.show()"""
# run_experiment()
minimize_batch(sum_of_squares, sum_of_squares_gradient, [1, 3, 4])
if __name__ == "__main__": main()