-
Notifications
You must be signed in to change notification settings - Fork 0
/
UG 1 scale carbonate data.py
254 lines (191 loc) · 9.83 KB
/
UG 1 scale carbonate data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# The following code is used to:
# Scale the TILDAS data based on the accepted values of the in-house reference gases
# INPUT: UG all replicates.csv
# OUTPUT: UG Figure S3.png
# UG Figure S4.png
# UG Table S4.csv
# >>>>>>>>>
# Import libraries
import os
import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from functions import *
# Plot parameters
plt.rcParams["legend.loc"] = "best"
plt.rcParams.update({'font.size': 7})
plt.rcParams['scatter.edgecolors'] = "k"
plt.rcParams['scatter.marker'] = "o"
plt.rcParams["lines.linewidth"] = 0.5
plt.rcParams["patch.linewidth"] = 0.5
plt.rcParams["figure.figsize"] = (9, 4)
plt.rcParams["savefig.dpi"] = 600
plt.rcParams["savefig.bbox"] = "tight"
plt.rcParams['savefig.transparent'] = False
plt.rcParams['mathtext.default'] = 'regular'
# Define functions
# Function to print info for scaled samples
def print_info(df, d18O_col, Dp17O_col, sample_name):
gas_subset = df[df["SampleName"].str.contains(sample_name)].copy()
d18O_mean = gas_subset[d18O_col].mean()
d18O_std = gas_subset[d18O_col].std()
Dp17O_mean = gas_subset[Dp17O_col].mean()
Dp17O_std = gas_subset[Dp17O_col].std()
N_gas = len(gas_subset)
print(f"{sample_name}, N = {N_gas}, d18O = {d18O_mean:.3f}(±{d18O_std:.3f})‰, ∆'17O = {Dp17O_mean:.0f}(±{Dp17O_std:.0f}) ppm", end="")
# Function to apply the acid fractionation factor based on the mineralogy
def applyAFF(d18O_CO2, d17O_CO2, mineral):
if mineral == "calcite":
alpha = 1.01025
elif mineral == "aragonite":
alpha = 1.01063
d18O_AC = (d18O_CO2 + 1000) / alpha - 1000
d17O_AC = (d17O_CO2 + 1000) / (alpha ** 0.523) - 1000
Dp17O_AC = Dp17O(d17O_AC, d18O_AC)
return d18O_AC, d17O_AC, Dp17O_AC
# This function scales the data based on the accepted values of the light and heavy reference gases
# The scaling is done for each measurement period separately
def scaleData(df, project):
df["dateTimeMeasured"] = pd.to_datetime(df["dateTimeMeasured"])
# Perform the scaling for each meausrement period separately
df_samples = pd.DataFrame()
grouped = df.groupby("measurementPeriod")
if grouped.ngroups == 1:
SuppFig = [""]
else:
SuppFig = ["a","b","c","d"]
FigNum = 0
for period, group in grouped:
print(f"\nMeasurement period {period}:")
print_info(group, "d18O", "Dp17O", "light"); print("\t<--- unscaled")
print_info(group, "d18O", "Dp17O", "heavy"); print("\t<--- unscaled")
# Do the scaling here, based on the accepted values of the light and heavy reference gases
# Measured CO2 values
heavy_d18O_measured = group[group["SampleName"].str.contains("heavy")]["d18O"].mean()
heavy_d17O_measured = group[group["SampleName"].str.contains("heavy")]["d17O"].mean()
light_d18O_measured = group[group["SampleName"].str.contains("light")]["d18O"].mean()
light_d17O_measured = group[group["SampleName"].str.contains("light")]["d17O"].mean()
# Accepted CO2 values - see Bajnai et al. (2024, Chem Geol) for details
heavy_d18O_accepted = 76.820
heavy_Dp17O_accepted = -213
heavy_d17O_accepted = d17O(heavy_d18O_accepted, heavy_Dp17O_accepted)
light_d18O_accepted = -1.509
light_Dp17O_accepted = -141
light_d17O_accepted = d17O(light_d18O_accepted, light_Dp17O_accepted)
# Calculate the scaling factors
slope_d18O = (light_d18O_accepted - heavy_d18O_accepted) / (light_d18O_measured - heavy_d18O_measured)
intercept_d18O = heavy_d18O_accepted - slope_d18O * heavy_d18O_measured
slope_d17O = (light_d17O_accepted - heavy_d17O_accepted) / (light_d17O_measured - heavy_d17O_measured)
intercept_d17O = heavy_d17O_accepted - slope_d17O * heavy_d17O_measured
# Scale the measured values
group["d18O_scaled"] = slope_d18O*group['d18O']+intercept_d18O
group["d17O_scaled"] = slope_d17O*group['d17O']+intercept_d17O
group["Dp17O_scaled"] = Dp17O(group["d17O_scaled"], group["d18O_scaled"])
# Print out the scaled values for the carbonate standards for each measurement period
standards = ["DH11", "NBS18", "IAEA603"]
for standard in standards:
if standard in group["SampleName"].values:
only_standard = group[group["SampleName"].str.contains(standard)].copy()
only_standard[["d18O_AC", "d17O_AC", "Dp17O_AC"]] = only_standard.apply(lambda x: applyAFF(x["d18O_scaled"], x["d17O_scaled"], "calcite"), axis=1, result_type="expand")
print_info(only_standard, "d18O_AC", "Dp17O_AC", standard); print("\t<--- scaled + AFF")
# Assign colors and markers to samples
categories = group["SampleName"].unique()
markers = dict(zip(categories, ["o", "s", "D", "v", "^",
"<", ">", "p", "P", "*",
"o", "s", "D", "v", "^",
"<", ">", "p", "P", "*"]))
colors = dict(zip(categories, plt.cm.tab20(np.linspace(0, 1, 20))))
# Figure: unscaled Dp17O vs time
_, ax = plt.subplots()
for cat in categories:
data = group[group["SampleName"] == cat]
ax.scatter(data["dateTimeMeasured"], data["Dp17O"],
marker=markers[cat], fc=colors[cat], label=cat)
if np.isnan(data["Dp17OError"]).any() == False:
ax.errorbar(group["dateTimeMeasured"], group["Dp17O"],
yerr=group["Dp17OError"],
fmt="none", color="#cacaca", zorder=0)
ax.set_title(f"Measurement period: {period}")
ax.set_ylabel("$\Delta\prime^{17}$O (ppm, unscaled CO$_2$)")
ax.set_xlabel("Measurement date")
ax.legend(loc='upper right', bbox_to_anchor=(1.18, 1))
ax.text(0.98, 0.98, SuppFig[FigNum], size=14, ha="right", va="top",
transform=ax.transAxes, fontweight="bold")
plt.savefig(os.path.join(sys.path[0], f"{project} Figure S3{SuppFig[FigNum]}.png"))
plt.close()
# Exclude the standards from the exported dataframe
group = group[~group["SampleName"].str.contains("heavy|light|NBS|DH11|IAEA")]
df_samples = pd.concat([df_samples, group])
FigNum += 1
return df_samples
# This function averages the scaled data from multiple measurement periods
def average_data(df):
# Calculate the mean values from the replicate measurements
df = df.loc[:, ["SampleName", "d18O_scaled", "d17O_scaled", "Dp17O_scaled"]]
df_mean = df.groupby('SampleName').mean().reset_index()
df_mean = df_mean.rename(columns={'d18O_scaled': 'd18O_CO2', 'd17O_scaled': 'd17O_CO2', 'Dp17O_scaled': 'Dp17O_CO2'})
# Calculate the standard deviation from the replicate measurements
df_std = df.groupby('SampleName').std().reset_index()
df_std = df_std.rename(columns={'d18O_scaled': 'd18O_error', 'd17O_scaled': 'd17O_error', 'Dp17O_scaled': 'Dp17O_error'})
dfMerged = df_mean.merge(df_std, on='SampleName')
dfMerged['Replicates'] = df.groupby('SampleName').size().reset_index(name='counts')['counts']
df = dfMerged
return df
# Here we go!
# Scale the data
df = scaleData(pd.read_csv(os.path.join(sys.path[0], "UG all carbonate replicates.csv")), "UG")
# Average the data
df_avg = average_data(df)
# Apply acid fractionation factor
df_avg[["d18O_AC", "d17O_AC", "Dp17O_AC"]] = df_avg.apply(lambda x: applyAFF(x["d18O_CO2"], x["d17O_CO2"], "calcite"), axis=1, result_type="expand")
# Export CSV
# Assign sample info and export CSV
dfInfo = pd.read_csv(os.path.join(sys.path[0], "UG sample info.csv"))
dfMerged = pd.merge(df_avg, dfInfo, on="SampleName")
dfMerged.to_csv(os.path.join(sys.path[0], "UG Table S4.csv"), index=False)
print("\nAll sample replicates averaged:")
print(df_avg.round({"Dp17O_CO2": 0, "Dp17O_error": 0, "Dp17O_AC": 0}).round(3))
# Create Figure S2
fig, (ax1, ax2) = plt.subplots(1, 2)
# Assign colors and markers to samples
df.sort_values(by="SampleName", inplace=True)
categories = df["SampleName"].unique()
markers = dict(zip(categories,
["o", "s", "D", "^", "v", "X", "P", "*"]*4))
colors = dict(zip(categories,
plt.cm.tab20(np.linspace(0, 1, len(categories)))))
# Subplot A
for cat in categories:
data = df[df["SampleName"] == cat]
ax1.scatter(prime(data["d18O_scaled"]), data["Dp17O_scaled"],
marker=markers[cat], fc=colors[cat], label=cat)
ax1.errorbar(prime(df["d18O_scaled"]), df["Dp17O_scaled"],
yerr=df["Dp17OError"], xerr=df["d18OError"],
fmt="none", color="#cacaca", zorder=0)
ax1.text(0.98, 0.98, "a", size=14, ha="right", va="top",
transform=ax1.transAxes, fontweight="bold")
ax1.set_ylabel("$\Delta\prime^{17}$O (ppm, CO$_2$)")
ax1.set_xlabel("$\delta\prime^{18}$O (‰, VSMOW, CO$_2$)")
ylim = ax1.get_ylim()
xlim = ax1.get_xlim()
# Subplot B
for cat in categories:
data = df_avg[df_avg["SampleName"] == cat]
ax2.scatter(prime(data["d18O_CO2"]), data["Dp17O_CO2"],
marker=markers[cat], fc=colors[cat], label=cat)
ax2.errorbar(prime(df_avg["d18O_CO2"]), df_avg["Dp17O_CO2"],
yerr=df_avg["Dp17O_error"], xerr=df_avg["d18O_error"],
fmt="none", color="#cacaca", zorder=0)
ax2.text(0.98, 0.98, "b", size=14, ha="right", va="top",
transform=ax2.transAxes, fontweight="bold")
ax2.set_ylabel("$\Delta\prime^{17}$O (ppm, CO$_2$)")
ax2.set_xlabel("$\delta\prime^{18}$O (‰, VSMOW, CO$_2$)")
ax2.set_ylim(ylim)
ax2.set_xlim(xlim)
ax2.legend(loc='upper right', bbox_to_anchor=(1.35, 1))
plt.savefig(os.path.join(sys.path[0], "UG Figure S4.png"))
plt.close("all")
# Print some values for the manuscript
print(f"\nAverage error for Dp17O: {df_avg['Dp17O_error'].mean():.0f} ppm")
print(f"Average error for d18O: {df_avg['d18O_error'].mean():.1f} ppm")