forked from lives-group/redexPEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests-reduction-judgment.rkt
145 lines (110 loc) · 4.23 KB
/
tests-reduction-judgment.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#lang racket
(require redex)
(require "./peg.rkt")
(require "./judgments.rkt")
(require "./reduction.rkt")
(require "./pegGenerator.rkt")
(define (get-result l)
(if (eq? (list-ref (car l) 7) 'suc)
(list (list-ref (car l) 5))
(list '⊥))
)
(display "\nTerminal\n")
(test-equal
(judgment-holds (eval ∅ (1 (1 1 1)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () 1 ↓ (1 1 1) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((• 2 ε) (0)) s) s)
(get-result (apply-reduction-relation* red '((X0 (/ ε ε) (X1 X2 (X2 (! ε) ∅))) ⊢ () (• 2 ε) ↓ (0) () ⊥ (0))))
)
(test-equal
(judgment-holds (eval ∅ (1 (2 1 1)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () 1 ↓ (2 1 1) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ (1 ()) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () 1 ↓ () () ⊥ (0)))))
)
(test-results)
(display "\nChoice\n")
(test-equal
(judgment-holds (eval ∅ ((/ 1 2) (1 1 1)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (/ 1 2) ↓ (1 1 1) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((/ 1 2) (1 1 1)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (/ 1 2) ↓ (1 1 1) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((/ 1 2) (2 1 1)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (/ 1 2) ↓ (2 1 1) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((/ 1 2) ()) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (/ 1 2) ↓ () () ⊥ (0)))))
)
(test-results)
(display "\nSequence\n")
(test-equal
(judgment-holds (eval ∅ ((• 1 2) (1 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (• 1 2) ↓ (1 2 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((• 1 2) (2 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (• 1 2) ↓ (2 2 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((• 1 2) (1 1 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (• 1 2) ↓ (1 1 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((• 1 2) ()) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (• 1 2) ↓ () () ⊥ (0)))))
)
(test-results)
(display "\nNot\n")
(test-equal
(judgment-holds (eval ∅ ((! 1) (1 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (! 1) ↓ (1 2 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((! (/ 1 2)) (1 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (! (/ 1 2)) ↓ (1 2 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((• (! 0) (• 1 2)) (1 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (• (! 0) (• 1 2)) ↓ (1 2 3) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((/ (! (• 1 2)) (• 1 0)) (1 2 3)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (/ (! (• 1 2)) (• 1 0)) ↓ (1 2 3) () ⊥ (0)))))
)
(test-results)
(display "\nRepetition\n")
(test-equal
(judgment-holds (eval ∅ ((* 1) (1 1 1 1 2)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (* 1) ↓ (1 1 1 1 2) () ⊥ (0)))))
)
(test-equal
(judgment-holds (eval ∅ ((* 1) (2)) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (* 1) ↓ (2) () ⊥ (0)))))
)
(test-equal ;;lembrar desse
(judgment-holds (eval ∅ ((* 1) ()) s) s)
(get-result (apply-reduction-relation* red (term (∅ ⊢ () (* 1) ↓ () () ⊥ (0)))))
)
(test-results)
(display "\nNon-terminal\n")
(test-equal
(judgment-holds (eval (A (/ (• 0 (• A 1)) ε)
(B (/ (• 1 (• B 2)) ε)
(C (/ 0 (/ 1 2))
(S (• (! (! A)) (• (* 0) (• B (! C)))) ∅)))) (S (0 1 2)) s) s)
(get-result (apply-reduction-relation* red (term ((A (/ (• 0 (• A 1)) ε)
(B (/ (• 1 (• B 2)) ε)
(C (/ 0 (/ 1 2))
(S (• (! (! A)) (• (* 0) (• B (! C)))) ∅))))
⊢ () S ↓ (0 1 2) () ⊥ (0)))))
)
(test-results)