forked from affeldt-aist/coq-robot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
frame.v
1066 lines (853 loc) · 34.1 KB
/
frame.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* coq-robot (c) 2017 AIST and INRIA. License: LGPL v3. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype tuple finfun bigop ssralg ssrint div.
From mathcomp Require Import ssrnum rat poly closed_field polyrcf matrix.
From mathcomp Require Import mxalgebra tuple mxpoly zmodp binomial realalg.
From mathcomp Require Import complex finset fingroup perm.
Require Import ssr_ext angle euclidean3 skew vec_angle.
(* OUTLINE:
1. Module NOFrame
Section non_oriented_frame_properties
2. Module Frame
Section oriented_frame_properties
mostly about positive frames
3. Module TFrame
positive frames with an origin
3. definition of the canonical frame <e_0, e_1, e_2>
4. Module Base1
build a positive frame out of a unit vector
5. Module Base
build a positive frame out of a non-zero vector
6. section relative_frame.
7. Module FromTo.
definition of the rotation from one frame to another
FromTo.mkT
8. section triad
(construction of a frame out of three non-colinear points)
9. section transformation_given_three_points
(construction d'une transformation (rotation + translation) etant donnes
trois points de depart et leurs positions d'arrivee)
sample lemma: the rotation obtained behaves like a change of coordinates from left to right
*)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory Num.Theory.
Reserved Notation "f '|,' i" (at level 3, i at level 2,
left associativity, format "f '|,' i").
Reserved Notation "'\o{' F '}'" (at level 3, format "'\o{' F '}'").
Reserved Notation "'\x{' F '}'" (at level 3, format "'\x{' F '}'").
Reserved Notation "'\y{' F '}'" (at level 3, format "'\y{' F '}'").
Reserved Notation "'\z{' F '}'" (at level 3, format "'\z{' F '}'").
Local Open Scope ring_scope.
Module NOFrameInterface.
Section noframe_interface.
Variable T : rcfType.
Record t : Type := mk {
i : 'rV[T]_3 ;
j : 'rV[T]_3 ;
k : 'rV[T]_3 ;
normi : norm i = 1 ;
normj : norm j = 1 ;
normk : norm k = 1 ;
idotj : i *d j = 0 ;
jdotk : j *d k = 0 ;
idotk : i *d k = 0
}.
End noframe_interface.
End NOFrameInterface.
Definition normi := NOFrameInterface.normi.
Definition normj := NOFrameInterface.normj.
Definition normk := NOFrameInterface.normk.
Definition idotj := NOFrameInterface.idotj.
Definition jdotk := NOFrameInterface.jdotk.
Definition idotk := NOFrameInterface.idotk.
Module NOFrame.
Section non_oriented_frame_def.
Variable T : ringType.
Record t := mk {
M :> 'M[T]_3 ;
MO : M \is 'O[T]_3 }.
Parameter rowframe : t -> 'I_3 -> 'rV[T]_3.
Axiom rowframeE : forall f i, rowframe f i = row i (M f).
End non_oriented_frame_def.
End NOFrame.
Notation noframe := NOFrame.t.
Coercion matrix_of_noframe (T : ringType) (f : noframe T) : 'M[T]_3 :=
NOFrame.M f.
Definition rowframeE := NOFrame.rowframeE.
Notation "f '|,' i" := (NOFrame.rowframe f i) : frame_scope.
Local Open Scope frame_scope.
Section non_oriented_frame_properties.
Variable T : rcfType.
Let vector := 'rV[T]_3.
Implicit Types p : 'rV[T]_3.
Variable f : noframe T.
Lemma noframe_norm (k : 'I_3) : norm f|,k = 1.
Proof. rewrite rowframeE; apply norm_row_of_O; by case: f. Qed.
Local Notation "'i'" := (f |, 0).
Local Notation "'j'" := (f |, 1).
Local Notation "'k'" := (f |, 2%:R).
Lemma noframe_idotj : i *d j = 0.
Proof. rewrite !rowframeE; apply/orthogonalP; by case: f. Qed.
Lemma noframe_jdotk : j *d k = 0.
Proof. rewrite !rowframeE; apply/orthogonalP; by case: f. Qed.
Lemma noframe_idotk : i *d k = 0.
Proof. rewrite !rowframeE; apply/orthogonalP; by case: f. Qed.
Canonical noframe_is_noframe :=
NOFrameInterface.mk (noframe_norm 0) (noframe_norm 1) (noframe_norm 2%:R)
noframe_idotj noframe_jdotk noframe_idotk.
Lemma noframe_is_unit : matrix_of_noframe f \is a GRing.unit.
Proof. apply/orthogonal_unit. by case: f. Qed.
Lemma noframe_inv : (matrix_of_noframe f)^-1 = f^T.
Proof. rewrite -orthogonal_inv //; by case: f. Qed.
Lemma norm_icrossj : norm (i *v j) = 1.
Proof.
by rewrite norm_crossmul_normal // ?idotj // ?normi // normj.
Qed.
Definition noframe_sgn := \det f.
Lemma noframe_sgnE : noframe_sgn = i *d (j *v k).
Proof. by rewrite crossmul_triple /noframe_sgn [in LHS](col_mx3_rowE f) !rowframeE. Qed.
Lemma abs_noframe_sgn : `| noframe_sgn | = 1.
Proof. apply orthogonal_det; by case: f. Qed.
Lemma noframek : k = i *v j \/ k = - i *v j.
Proof.
move: abs_noframe_sgn; rewrite noframe_sgnE.
case: (lerP 0 (i *d (j *v k))) => [/ger0_norm ->|/ltr0_norm -> /eqP].
- rewrite dot_crossmulC => /dotmul1_inv H.
by left; rewrite H // ?noframe_norm // norm_icrossj.
- rewrite eqr_oppLR => /eqP.
rewrite dot_crossmulC => /dotmulN1_inv H.
by right; rewrite crossmulNv H // ?opprK // ?noframe_norm // norm_icrossj.
Qed.
Lemma noframe_pos : (k == i *v j) = (noframe_sgn == 1).
Proof.
apply/idP/idP => [/eqP H|].
by rewrite noframe_sgnE H dot_crossmulC dotmulvv norm_icrossj expr1n.
case: noframek => [/eqP //|] /eqP.
rewrite crossmulNv -eqr_oppLR noframe_sgnE dot_crossmulC => /eqP <-.
by rewrite dotmulNv dotmulvv noframe_norm expr1n Neqxx oner_eq0.
Qed.
Lemma noframe_neg : (k == - i *v j) = (noframe_sgn == - 1).
Proof.
apply/idP/idP => [/eqP H|].
- rewrite noframe_sgnE H dot_crossmulC crossmulNv dotmulvN dotmulvv.
by rewrite norm_icrossj expr1n.
case: noframek => [|/eqP //] /eqP.
rewrite noframe_sgnE => /eqP ->.
rewrite double_crossmul dotmulvv normj expr1n scale1r (dotmulC j) idotj.
by rewrite scale0r subr0 dotmulvv normi expr1n -eqr_oppLR Neqxx oner_eq0.
Qed.
Lemma noframe_posP : k = i *v j -> j = k *v i /\ i = j *v k.
Proof.
move=> ->; split.
- rewrite crossmulC double_crossmul idotj scale0r add0r opprK.
by rewrite dotmulvv noframe_norm expr1n scale1r.
- rewrite double_crossmul dotmulvv noframe_norm expr1n scale1r dotmulC.
by rewrite idotj scale0r subr0.
Qed.
Lemma noframe_negP : k = - i *v j -> j = i *v k /\ i = k *v j.
Proof.
move=> ->; split.
- rewrite crossmulNv crossmulvN double_crossmul dotmulvv.
by rewrite noframe_norm expr1n scale1r idotj scale0r add0r opprK.
- rewrite crossmulNv crossmulC crossmulvN opprK double_crossmul dotmulvv.
by rewrite noframe_norm expr1n scale1r dotmulC idotj scale0r subr0.
Qed.
Lemma orthogonal_expansion_helper p :
p *d i = 0 -> p *d j = 0 -> p *d k = 0 -> p = 0.
Proof.
do 3 rewrite dotmulE sum3E.
move=> H1 H2 H3.
have /eqP : p *m (col_mx3 i j k) ^T = 0.
by rewrite mul_tr_col_mx3 dotmulE sum3E H1 dotmulE sum3E H2 dotmulE sum3E H3 row30.
rewrite mul_mx_rowfree_eq0; first by move/eqP.
apply/row_freeP; exists (col_mx3 i j k).
apply/eqP; by rewrite -orthogonalEC !rowframeE -col_mx3_rowE (NOFrame.MO _).
Qed.
Lemma orthogonal_expansion p :
p = (p *d i) *: i + (p *d j) *: j + (p *d k) *: k.
Proof.
set y : 'rV[T]_3 := (p *d i) *: i + (p *d j) *: j + (p *d k) *: k.
suff /eqP : p - y = 0; first by rewrite subr_eq0 => /eqP.
apply orthogonal_expansion_helper.
- rewrite dotmulDl dotmulNv /y 2!dotmulDl dotmulZv dotmulvv noframe_norm expr1n mulr1.
rewrite 2!opprD 2!addrA subrr add0r dotmulZv (dotmulC j) idotj mulr0 oppr0.
by rewrite dotmulZv (dotmulC k) idotk mulr0 subrr.
- rewrite dotmulDl dotmulNv /y 2!dotmulDl dotmulZv idotj mulr0 add0r.
rewrite dotmulZv dotmulvv noframe_norm expr1n mulr1 opprD addrA subrr.
by rewrite dotmulZv (dotmulC k) jdotk mulr0 subrr.
- rewrite dotmulDl dotmulNv /y 2!dotmulDl dotmulZv idotk mulr0 add0r dotmulZv.
by rewrite jdotk mulr0 add0r dotmulZv dotmulvv noframe_norm expr1n mulr1 subrr.
Qed.
(* [oneill] lemma 3.5, p.110 *)
Lemma crossmul_noframe_sgn v v1 v2 v3 w w1 w2 w3 :
v = v1 *: i + v2 *: j + v3 *: k ->
w = w1 *: i + w2 *: j + w3 *: k ->
v *v w = noframe_sgn *: ((v2 * w3 - v3 * w2) *: i -
(v1 * w3 - v3 * w1) *: j +
(v1 * w2 - v2 * w1) *: k).
Proof.
move=> -> ->.
rewrite !linearD /=.
rewrite !linearZ /=.
rewrite (crossmulC _ i).
rewrite (crossmulC _ j).
rewrite (crossmulC _ k).
rewrite ![in LHS]linearD /=.
rewrite (_ : _ *v _ = 0); last by rewrite linearZ /= crossmulvv scaler0.
rewrite oppr0 scaler0 add0r.
case: noframek => e3e1e2.
- case: (noframe_posP e3e1e2) => Hj Hi.
rewrite (_ : _ *v _ = v2 *: k); last by rewrite linearZ /= -e3e1e2.
rewrite scalerN (_ : _ *v _ = - v3 *: j); last first.
by rewrite linearZ /= crossmulC -Hj scalerN scaleNr.
rewrite scaleNr opprK (_ : _ *v _ = - v1 *: k); last first.
by rewrite linearZ /= crossmulC e3e1e2 scalerN scaleNr.
rewrite scaleNr opprK (_ : _ *v _ = 0); last first.
by rewrite linearZ /= crossmulvv scaler0.
rewrite scalerN scaler0 subr0.
rewrite (_ : _ *v _ = v3 *: i); last by rewrite linearZ /= -Hi.
rewrite scalerN (_ : _ *v _ = v1 *: j); last by rewrite linearZ /= Hj.
rewrite scalerN (_ : _ *v _ = - v2 *: i); last first.
by rewrite linearZ /= crossmulC -Hi scaleNr scalerN.
rewrite scaleNr opprK (_ : _ *v _ = 0); last first.
by rewrite linearZ /= crossmulvv scaler0.
rewrite scalerN scaler0 subr0.
move/esym : noframe_pos; rewrite e3e1e2 eqxx => /eqP ->.
rewrite !scale1r -![in LHS]addrA addrC.
rewrite -![in LHS]addrA.
rewrite addrCA.
rewrite addrC.
rewrite ![in LHS]addrA.
rewrite -addrA; congr (_ + _); last first.
by rewrite !scalerA -scaleNr -scalerDl /= addrC mulrC (mulrC w1).
rewrite -addrA addrACA addrC; congr (_ + _).
by rewrite -scaleNr !scalerA -scalerDl addrC mulrC mulNr (mulrC w2).
by rewrite !scalerA -scalerBl scalerN -scaleNr opprB mulrC (mulrC w3).
- case: (noframe_negP e3e1e2) => Hj Hi.
rewrite (_ : _ *v _ = - v2 *: k); last first.
by rewrite linearZ /= e3e1e2 crossmulNv scalerN scaleNr opprK.
rewrite scaleNr opprK.
rewrite (_ : _ *v _ = v3 *: j); last by rewrite linearZ /= -Hj.
rewrite scalerN.
rewrite (_ : _ *v _ = v1 *: k); last first.
by rewrite linearZ /= crossmulC -crossmulNv -e3e1e2.
rewrite scalerN.
rewrite (_ : _ *v _ = 0); last by rewrite linearZ /= crossmulvv scaler0.
rewrite oppr0 scaler0 addr0.
rewrite (_ : _ *v _ = - v3 *: i); last first.
by rewrite linearZ /= crossmulC -Hi scalerN scaleNr.
rewrite scaleNr opprK.
rewrite (_ : _ *v _ = - v1 *: j); last first.
by rewrite linearZ /= crossmulC -Hj scalerN scaleNr.
rewrite scaleNr opprK.
rewrite (_ : _ *v _ = v2 *: i); last by rewrite linearZ /= -Hi.
rewrite scalerN.
rewrite (_ : _ *v _ = 0); last by rewrite linearZ /= crossmulvv scaler0.
rewrite oppr0 scaler0 addr0.
move: noframe_neg; rewrite {1}e3e1e2 eqxx => /esym/eqP ->.
rewrite -![in LHS]addrA addrC -addrA.
rewrite addrCA -addrA addrC ![in LHS]addrA -addrA; congr (_ + _); last first.
by rewrite !scalerA -scalerBl mulrN1 opprB mulrC (mulrC w2).
rewrite -addrA addrACA; congr (_ + _).
by rewrite !scalerA -scalerBl mulrN1 opprB mulrC (mulrC w3).
by rewrite !scalerA -scalerBl scalerN mulrN1 scaleNr opprK mulrC (mulrC w1).
Qed.
End non_oriented_frame_properties.
Module FrameInterface.
Section frame_interface.
Variable T : rcfType.
Record t : Type := mk {
f : NOFrameInterface.t T ;
icrossj : NOFrameInterface.i f *v NOFrameInterface.j f = NOFrameInterface.k f
}.
End frame_interface.
End FrameInterface.
Definition icrossj := FrameInterface.icrossj.
Module Frame.
Section frame.
Variable T : ringType.
Record t := mk {
noframe_of :> noframe T ;
MSO : NOFrame.M noframe_of \is 'SO[T]_3}.
End frame.
End Frame.
Notation frame := Frame.t.
Coercion noframe_of_frame (T : ringType) (f : frame T) : noframe T :=
Frame.noframe_of f.
Section oriented_frame_properties.
Variable T : rcfType.
Variable f : Frame.t T.
Local Notation "'i'" := (f |, 0).
Local Notation "'j'" := (f |, 1).
Local Notation "'k'" := (f |, 2%:R).
(* TODO: useful? *)
Lemma frame_icrossj : i *v j = k.
Proof. move: (Frame.MSO f); rewrite !rowframeE; by move/SO_icrossj. Qed.
Lemma frame_icrossk : i *v k = - j.
Proof. move: (Frame.MSO f); rewrite !rowframeE; by move/SO_icrossk. Qed.
Lemma frame_kcrossi : k *v i = j.
Proof. by rewrite crossmulC frame_icrossk opprK. Qed.
Lemma frame_jcrossk : j *v k = i.
Proof. move: (Frame.MSO f); rewrite !rowframeE; by move/SO_jcrossk. Qed.
Lemma frame_kcrossj : k *v j = -i.
Proof. by rewrite crossmulC frame_jcrossk. Qed.
Definition frame_of_SO (M : 'M[T]_3) (HM : M \is 'SO[T]_3) : frame T :=
@Frame.mk _ (NOFrame.mk (rotation_sub HM)) HM.
Lemma frame_of_SO_i (M : 'M[T]_3) (HM : M \is 'SO[T]_3) :
(frame_of_SO HM) |, 0 = row 0 M.
Proof. by rewrite /frame_of_SO /= NOFrame.rowframeE. Qed.
Lemma frame_of_SO_j (M : 'M[T]_3) (HM : M \is 'SO[T]_3) :
(frame_of_SO HM) |, 1 = row 1 M.
Proof. by rewrite /frame_of_SO /= NOFrame.rowframeE. Qed.
Lemma frame_of_SO_k (M : 'M[T]_3) (HM : M \is 'SO[T]_3) :
(frame_of_SO HM) |, 2%:R = row 2%:R M.
Proof. by rewrite /frame_of_SO /= NOFrame.rowframeE. Qed.
(* negative frame *)
Record nframe := mkNFrame {
noframe_of_nframe :> noframe T ;
nframeP : noframe_sgn noframe_of_nframe = -1}.
(*
TODO: restor
Lemma pframe_swap01 i j k : pframe i j k -> pframe j (- i) k.
Proof.
case => -[] i1 j1 k1 ij jk ik Hsgn.
apply: mkPFrame.
apply: mkNOFrame => //.
by rewrite normN.
by rewrite dotmulvN dotmulC ij oppr0.
by rewrite dotmulNv ik oppr0.
move=> f.
rewrite /frame_sgn dotmul_crossmulA linearN /= crossmulC -(icrossj (mkPFrame Hsgn)).
by rewrite opprK dotmulvv k1 expr1n.
Qed.
*)
End oriented_frame_properties.
Canonical frame_subtype (T : ringType) := [subType for @Frame.noframe_of T].
(* frame with an origin (tangent frame) *)
Module TFrame.
Section tframe.
Variable T : ringType.
Let point := 'rV[T]_3.
Let vector := 'rV[T]_3.
Record t := mk {
o : point ;
frame_of :> frame T }.
Definition trans (f : t) (u : vector) : t := mk (o f + u) f.
End tframe.
End TFrame.
Notation tframe := TFrame.t.
Coercion frame_of_tframe (T : ringType) (f : tframe T) : frame T :=
TFrame.frame_of f.
Notation "'\o{' F '}'" := (TFrame.o F) : frame_scope.
Definition xaxis (T : fieldType) (F : tframe T) := Line.mk \o{F} (F |, 0).
Definition yaxis (T : fieldType) (F : tframe T) := Line.mk \o{F} (F |, 1).
Definition zaxis (T : fieldType) (F : tframe T) := Line.mk \o{F} (F |, 2%:R).
Definition xvec (T : ringType) (F : tframe T) := (F |, 0).
Definition yvec (T : ringType) (F : tframe T) := (F |, 1).
Definition zvec (T : ringType) (F : tframe T) := (F |, 2%:R).
Notation "'\x{' F '}'" := (xvec F) : frame_scope.
Notation "'\y{' F '}'" := (yvec F) : frame_scope.
Notation "'\z{' F '}'" := (zvec F) : frame_scope.
Section canonical_frame.
Variable T : comUnitRingType.
Definition can_noframe := NOFrame.mk (@orthogonal1 2 T).
Lemma can_frame_is_SO : NOFrame.M can_noframe \is 'SO[T]_3.
Proof. by rewrite /= rotationE det1 orthogonal1 eqxx. Qed.
Definition can_frame := Frame.mk can_frame_is_SO.
Lemma can_frame_1 : can_frame = 1 :> 'M_3.
Proof. by apply/matrix3P/and9P; split; rewrite !mxE. Qed.
(* TODO: useful? *)
Lemma rotation_can_frame (f : frame T) i j : f i j = row j can_frame *d row i f.
Proof. by rewrite /can_frame /= /can_noframe /= row1 mxE_dotmul. Qed.
Definition can_tframe := TFrame.mk 0 can_frame.
End canonical_frame.
Lemma basis_change (T : rcfType) (M : 'M[T]_3) (F : noframe T) (A : 'M[T]_3) :
let i := F |, 0 in
let j := F |, 1 in
let k := F |, 2%:R in
i *m M = A 0 0 *: i + A 0 1 *: j + A 0 2%:R *: k ->
j *m M = A 1 0 *: i + A 1 1 *: j + A 1 2%:R *: k ->
k *m M = A 2%:R 0 *: i + A 2%:R 1 *: j + A 2%:R 2%:R *: k ->
let P := col_mx3 i j k in
M = P^-1 * A * P.
Proof.
move=> i j k H1 H2 H3 P.
have : P * M = A * P.
rewrite /P -mulmxE mulmx_col3 (col_mx3_rowE A) mulmx_col3 H1 H2 H3.
congr col_mx3; apply/rowP => a; by rewrite !mxE sum3E !mxE.
rewrite -mulrA => <-.
rewrite mulrA mulVr ?mul1r // unitmxE unitfE /P -crossmul_triple.
by rewrite -normr_gt0 -noframe_sgnE (abs_noframe_sgn F) ltr01.
Qed.
Module Base1.
Section base1.
Variable T : rcfType.
Variable i : 'rV[T]_3.
Hypothesis normi : norm i = 1.
Definition j := if colinear i 'e_0 then 'e_1 else normalize (normalcomp 'e_0 i).
Definition k := i *v j.
Lemma idotj : i *d j = 0.
Proof.
rewrite /j; case: ifPn => [|_]; last first.
by rewrite dotmulvZ -{3}(normalizeI normi) dotmul_orthogonalize mulr0.
case/colinearP => [| [_ [k ->]]].
by rewrite -norm_eq0 norm_delta_mx (negbTE (oner_neq0 _)).
by rewrite dotmulZv dote2 mulr0.
Qed.
Lemma idotk : i *d k = 0.
Proof. by rewrite /k dot_crossmulC crossmulvv dotmul0v. Qed.
Lemma jdotk : j *d k = 0.
Proof. by rewrite /k dot_crossmulCA crossmulvv dotmulv0. Qed.
Lemma normj : norm j = 1.
Proof.
rewrite /j; case: ifPn => iVi; first by rewrite norm_delta_mx.
rewrite norm_normalize //; apply: contra iVi.
by rewrite normalcomp_colinear // ?norm1_neq0 // colinear_sym.
Qed.
Lemma normk : norm k = 1.
Proof.
by rewrite /k norm_crossmul_normal // ?norm_normalize // ?normj // idotj // mulr0.
Qed.
Definition M := col_mx3 i j k.
Lemma is_O : M \is 'O[T]_3.
Proof.
apply/orthogonal3P;
by rewrite !rowK /= normi normj normk idotj idotk jdotk !eqxx.
Qed.
Definition noframe := NOFrame.mk is_O.
Lemma is_SO : NOFrame.M noframe \is 'SO[T]_3.
Proof. apply/rotation3P; by rewrite !rowK /= normi normj idotj !eqxx. Qed.
Definition frame := Frame.mk is_SO.
End base1.
Section base1_lemmas.
Variable T : rcfType.
(* NB: for information *)
Lemma je0 : j 'e_0 = 'e_1 :> 'rV[T]_3.
Proof. by rewrite /j colinear_refl. Qed.
Lemma ke0 : k 'e_0 = 'e_2%:R :> 'rV[T]_3.
Proof.
by rewrite /k /j colinear_refl vece2 odd_perm301 -exprnP expr0 scale1r.
Qed.
Variable u : 'rV[T]_3.
Lemma jN : j (- u) = j u.
Proof. by rewrite /j colinearNv normalcompvN. Qed.
Lemma kN : k (- u) = - k u.
Proof.
rewrite /k (_ : j (- u) = j u); by [rewrite crossmulNv | rewrite -jN].
Qed.
End base1_lemmas.
End Base1.
Canonical base1_is_noframe (T : rcfType) (u : 'rV[T]_3) (u1 : norm u = 1) :=
NOFrameInterface.mk u1 (Base1.normj u1) (Base1.normk u1)
(Base1.idotj u1) (Base1.jdotk u) (Base1.idotk u).
Canonical noframe_subtype (T : rcfType) := [subType for @NOFrame.M T].
Module Base.
Section build_base.
Variables (T : rcfType) (u : 'rV[T]_3).
Definition i := if u == 0 then 'e_0 else normalize u.
Definition j := if u == 0 then 'e_1 else Base1.j i.
Definition k := if u == 0 then 'e_2%:R else Base1.k i.
Lemma normi : norm i = 1.
Proof.
rewrite /i; case: ifP => [_|/eqP/eqP ?]; by rewrite ?normeE // norm_normalize.
Qed.
Parameter frame : 'rV[T]_3 -> frame T.
Axiom frameE : frame u = Base1.frame normi.
Lemma iE : i = (frame u) |, 0.
Proof. by rewrite !rowframeE frameE rowK. Qed.
Lemma jE : j = (frame u) |, 1.
Proof.
rewrite !rowframeE frameE /= !rowK /= /j; case: ifP => // u0.
by rewrite /Base1.j /i u0 colinear_refl.
Qed.
Lemma kE : k = (frame u) |, 2%:R.
Proof.
rewrite !rowframeE frameE /= !rowK /= /k; case: ifP => // u0.
by rewrite /Base1.k /Base1.j /i u0 colinear_refl vecij.
Qed.
Lemma frame0E (u0 : u != 0) : (frame u)|,0 = normalize u.
Proof. by rewrite -iE /i (negbTE u0). Qed.
Lemma normj : norm j = 1.
Proof. by rewrite jE rowframeE norm_row_of_O // NOFrame.MO. Qed.
Lemma normk : norm k = 1.
Proof. by rewrite kE rowframeE norm_row_of_O // NOFrame.MO. Qed.
Lemma idotj : i *d j = 0.
Proof. by rewrite iE jE !rowframeE dot_row_of_O // NOFrame.MO. Qed.
Lemma idotk : i *d k = 0.
Proof. by rewrite iE kE !rowframeE dot_row_of_O // NOFrame.MO. Qed.
Lemma jdotk : j *d k = 0.
Proof. by rewrite jE kE !rowframeE dot_row_of_O // NOFrame.MO. Qed.
Lemma icrossj : i *v j = k.
Proof. by rewrite iE jE !rowframeE SO_icrossj ?Frame.MSO // -rowframeE -kE. Qed.
Lemma icrossk : i *v k = - j.
Proof. by rewrite iE kE !rowframeE SO_icrossk ?Frame.MSO // -rowframeE -jE. Qed.
Lemma jcrossk : j *v k = i.
Proof. by rewrite jE kE !rowframeE SO_jcrossk ?Frame.MSO // -rowframeE -iE. Qed.
Lemma is_SO : col_mx3 (frame u)|,0 (frame u)|,1 (frame u)|,2%:R \is 'SO[T]_3.
Proof. by rewrite !rowframeE -col_mx3_rowE Frame.MSO. Qed.
End build_base.
Section build_base_lemmas.
Variables (T : rcfType) (u : 'rV[T]_3).
Lemma frame0 : frame 0 = can_frame T.
Proof.
do 2 apply val_inj => /=.
apply/row_matrixP => i; rewrite row1.
case/boolP : (i == 0) => [|/ifnot0P/orP[]]/eqP->;
rewrite frameE /= rowK /= /Base.i eqxx //.
- by rewrite /Base1.j colinear_refl.
- by rewrite /Base1.k /Base1.j colinear_refl vecij.
Qed.
Section scalar.
Variable (p : T).
Section scalar_pos.
Hypothesis p0 : 0 < p.
Lemma iZ : (frame (p *: u))|,0 = (frame u)|,0.
Proof.
rewrite -!iE /i scaler_eq0 (gtr_eqF p0) /=; case: ifP => // /eqP/eqP ?.
by rewrite normalizeZ.
Qed.
Lemma jZ_helper : j (p *: u) = j u.
Proof. by rewrite /j scaler_eq0 (gtr_eqF p0) /= iE iZ -iE. Qed.
Lemma jZ : (frame (p *: u))|,1 = (frame u)|,1.
Proof. by rewrite -2!jE jZ_helper. Qed.
Lemma kZ_helper : k (p *: u) = k u.
Proof. by rewrite /k scaler_eq0 (gtr_eqF p0) /= /Base1.k iE iZ -iE. Qed.
Lemma kZ : (frame (p *: u))|,2%:R = (frame u)|,2%:R.
Proof. by rewrite -2!kE kZ_helper. Qed.
Lemma Z : frame (p *: u) = frame u.
Proof.
do 2 apply val_inj => /=.
apply/row_matrixP => i; rewrite -!rowframeE.
case/boolP : (i == 0) => [|/ifnot0P/orP[]]/eqP->; by
[rewrite iZ| rewrite jZ|rewrite kZ].
Qed.
End scalar_pos.
Lemma iN_helper (u0 : u != 0) : i (- u) = - i u.
Proof. by rewrite /i eqr_oppLR oppr0 (negbTE u0) normalizeN. Qed.
Lemma iN (u0 : u != 0) : (frame (- u))|,0 = - (frame u)|,0.
Proof. by rewrite -2!iE iN_helper. Qed.
Lemma jN_helper : j (- u) = j u.
Proof.
rewrite /j eqr_oppLR oppr0; case/boolP : (u == 0) => u0; first reflexivity.
by rewrite (iN_helper u0) Base1.jN.
Qed.
Lemma jN : (frame (- u))|,1 = (frame u)|,1.
Proof. by rewrite -2!jE jN_helper. Qed.
Lemma kN_helper (u0 : u != 0) : k (- u) = - k u.
Proof.
by rewrite /k eqr_oppLR oppr0 (negbTE u0) iN_helper // Base1.kN.
Qed.
Lemma kN (u0 : u != 0) : (frame (- u))|,2%:R = - (frame u)|,2%:R.
Proof. by rewrite -2!kE kN_helper. Qed.
Section scalar_neg.
Hypothesis p0 : p < 0.
Lemma jZN_helper : j (p *: u) = j u.
Proof.
rewrite /j /i !scaler_eq0 (ltr_eqF p0); case/boolP : (u == 0) => u0 /=.
reflexivity.
by rewrite -(opprK p) scaleNr normalizeN Base1.jN normalizeZ // -oppr_lt0 opprK.
Qed.
Lemma jZN : (frame (p *: u))|,1 = (frame u)|,1.
Proof. by rewrite -2!jE jZN_helper. Qed.
Lemma kZN_helper (u0 : u != 0) : k (p *: u) = - k u.
Proof.
rewrite /k /i scaler_eq0 (ltr_eqF p0) /= (negbTE u0).
by rewrite -(opprK p) scaleNr normalizeN Base1.kN normalizeZ // oppr_gt0.
Qed.
Lemma kZN (u0 : u != 0) : (frame (p *: u))|,2%:R = - ((frame u)|,2%:R).
Proof. by rewrite -2!kE kZN_helper // (negbTE u0). Qed.
Lemma ZN : frame (p *: u) = frame (- u).
Proof.
case/boolP : (u == 0) => [/eqP ->|u0]; first by rewrite scaler0 oppr0.
do 2 apply val_inj => /=.
apply/row_matrixP => i; rewrite -rowframeE.
case/boolP : (i == 0) => [|/ifnot0P/orP[]]/eqP->.
- rewrite frame0E ?scaler_eq0 ?negb_or ?u0 ?ltr_eqF // -rowframeE iN //.
by rewrite frame0E // -(opprK p) scaleNr normalizeN normalizeZ // oppr_gt0.
- by rewrite -rowframeE jZN // jN.
- by rewrite -rowframeE kZN // kN.
Qed.
End scalar_neg.
End scalar.
Lemma j_tr_mul (v : 'rV[T]_3) (v1 : norm v = 1) : j v *m v^T = 0.
Proof.
rewrite /j (negbTE (norm1_neq0 v1)) /Base1.j.
case: ifPn => [|_].
case/colinearP => [|[_[k Hk]]].
move/eqP/rowP/(_ ord0).
rewrite !mxE !eqxx /= => /eqP; by rewrite oner_eq0.
rewrite /i (negbTE (norm1_neq0 v1)) normalizeI // in Hk.
by rewrite dotmulP Hk dotmulvZ dote2 oner_eq0 mulr0 (mx11_scalar 0) mxE.
apply/eqP.
rewrite -scalemxAl scaler_eq0 {2}/i (negbTE (norm1_neq0 v1)) normalizeI //.
by rewrite normalcomp_mul_tr // orbT.
Qed.
Lemma k_tr_mul (v : 'rV[T]_3) (v1 : norm v = 1) : k v *m v^T *m v = 0.
Proof.
rewrite /k (negbTE (norm1_neq0 v1)) /Base1.k /Base1.j.
case: ifPn => [|_].
case/colinearP => [|[_[k Hk]]].
move/eqP/rowP/(_ ord0).
rewrite !mxE !eqxx /= => /eqP; by rewrite oner_eq0.
rewrite /i (negbTE (norm1_neq0 v1)) normalizeI // in Hk.
rewrite /i (negbTE (norm1_neq0 v1)) normalizeI //.
rewrite {1}Hk crossmulZv vecij -2!scalemxAl {1}Hk linearZ /= -scalemxAr.
by rewrite dotmulP dote2 scale_scalar_mx mulr0 mul_scalar_mx scale0r scaler0.
apply/eqP.
rewrite /normalize crossmulvZ -!scalemxAl scaler_eq0; apply/orP; right.
rewrite /normalcomp linearD /= crossmulvN 2!crossmulvZ crossmulvv 2!scaler0 subr0.
move: (axialcompE (v *v 'e_0) v).
rewrite v1 expr1n invr1 scale1r /i (negbTE (norm1_neq0 v1)) normalizeI // => <-.
by rewrite axialcomp_crossmul.
Qed.
End build_base_lemmas.
End Base.
Lemma colinear_frame0a (T : rcfType) (u : 'rV[T]_3) : colinear (Base.frame u)|,0 u.
Proof.
case/boolP : (u == 0) => [/eqP ->|u0]; first by rewrite colinear0.
by rewrite -Base.iE /Base.i (negbTE u0) scale_colinear.
Qed.
Lemma colinear_frame0b (T : rcfType) (u : 'rV[T]_3) : colinear u (Base.frame u)|,0.
Proof. by rewrite colinear_sym colinear_frame0a. Qed.
Definition colinear_frame0 := (colinear_frame0a, colinear_frame0b).
Canonical base_is_noframe (T : rcfType) (u : 'rV[T]_3) :=
NOFrameInterface.mk (Base.normi u) (Base.normj u) (Base.normk u)
(Base.idotj u) (Base.jdotk u) (Base.idotk u).
Canonical frame_is_frame (T : rcfType) (u : 'rV[T]_3) :=
@FrameInterface.mk _ (base_is_noframe u) (Base.icrossj u).
(*Module Frame.
Section frame_section.
Variable R : rcfType.
Local Notation coordinate := 'rV[R]_3.
Local Notation basisType := 'M[R]_3.
Definition x_ax : basisType -> 'rV[R]_3 := row 0.
Definition y_ax : basisType -> 'rV[R]_3 := row 1%R.
Definition z_ax : basisType -> 'rV[R]_3 := row 2%:R.
Record t := mkT {
origin : coordinate ;
basis :> basisType ;
_ : unitmx basis }.
Lemma unit (f : t) : basis f \in GRing.unit. Proof. by case: f. Qed.
End frame_section.
End Frame.
Coercion Framebasis R (f : Frame.t R) : 'M[R]_3 := Frame.basis f.
*)
(*Hint Immediate Frame.unit.*)
(* base vectors of A in terms of the basis vectors of B: *)
Definition FromTo (T : comRingType) (A B : frame T) :=
\matrix_(i, j) (row i A *d row j B).
(* = the rotation matrix that transforms a vector expressed in coordinate frame A
to a vector expressed in coordinate frame B *)
(* = orientation of frame A relative to B *)
Notation "A _R^ B" := (@FromTo _ A B) (at level 5).
Section FromTo_properties.
Variable T : rcfType.
Implicit Types A B C : frame T.
Lemma FromToE A B : (A _R^ B) = A *m (matrix_of_noframe B)^-1 :> 'M[T]_3.
Proof.
apply/matrixP => i j.
rewrite mxE dotmulE /= mxE; apply eq_bigr => /= k _.
rewrite mxE; congr (_ * _).
by rewrite mxE noframe_inv [in RHS]mxE.
Qed.
Lemma FromTo_to_can A : A _R^ (can_frame T) = A.
Proof. by rewrite FromToE can_frame_1 invr1 mulmx1. Qed.
Lemma FromTo_from_can A : (can_frame T) _R^ A = A^T.
Proof. by rewrite FromToE can_frame_1 mul1mx noframe_inv. Qed.
Lemma FromToI A : A _R^ A = 1.
Proof. by rewrite FromToE mulmxE mulrV // noframe_is_unit. Qed.
Lemma trmx_FromTo A B : (A _R^ B)^T = B _R^ A.
Proof. apply/matrix3P/and9P; split; rewrite !mxE /=; by rewrite dotmulC. Qed.
Lemma FromTo_is_O A B : A _R^ B \is 'O[T]_3.
Proof.
rewrite orthogonalE FromToE trmx_mul.
rewrite {2}(noframe_inv B) trmxK -mulmxE mulmxA -(mulmxA _ (matrix_of_noframe B)^-1).
by rewrite mulVmx ?noframe_is_unit // mulmx1 -noframe_inv mulmxV // noframe_is_unit.
Qed.
Lemma FromTo_unit A B : A _R^ B \is a GRing.unit.
Proof. exact/orthogonal_unit/FromTo_is_O. Qed.
Lemma FromTo_is_SO A B : A _R^ B \is 'SO[T]_3.
Proof.
by rewrite FromToE rpredM // ?Frame.MSO // noframe_inv rotationV Frame.MSO.
Qed.
Lemma FromTo_comp A B C : (C _R^ B) *m (B _R^ A) = C _R^ A.
Proof.
rewrite 2!FromToE -mulmxA (mulmxA _ B) mulVmx; last first.
by rewrite unitmxE (rotation_det (Frame.MSO B)) unitr1.
rewrite mul1mx; apply/matrixP => i j.
rewrite !mxE dotmulE; apply/eq_bigr => k _.
rewrite 2![row _ _ _ _]mxE; congr (_ * _).
by rewrite noframe_inv mxE.
Qed.
End FromTo_properties.
(* TODO: move? *)
Lemma sqr_norm_frame (T : rcfType) (a : frame T) (v : 'rV[T]_3) :
norm v ^+ 2 = \sum_(i < 3) (v *d a|,i%:R)^+2.
Proof.
have H : norm v = norm (v *m (can_frame T) _R^ a).
by rewrite orth_preserves_norm // FromTo_is_O.
rewrite H sqr_norm [in LHS]sum3E [in RHS]sum3E; congr (_ ^+ 2 + _ ^+ 2 + _ ^+ 2);
by rewrite FromTo_from_can mxE_dotmul_row_col -tr_row trmxK row_id NOFrame.rowframeE.
Qed.
Definition noframe_of_FromTo (T : rcfType) (A B : frame T) : noframe T :=
NOFrame.mk (FromTo_is_O A B).
Definition frame_of_FromTo (T : rcfType) (B A : frame T) : frame T :=
@Frame.mk _ (noframe_of_FromTo B A) (FromTo_is_SO B A).
Module FramedVect.
Section framed_vector.
Variable T : ringType.
Record t (F : frame T) := mk { v : 'rV[T]_3 }.
End framed_vector.
End FramedVect.
Notation fvec := FramedVect.t.
Notation "`[ v $ F ]" := (FramedVect.mk F v)
(at level 5, v, F at next level, format "`[ v $ F ]").
Definition FramedVect_add (T : ringType) (F : tframe T) (a b : fvec F) : fvec F :=
`[ FramedVect.v a + FramedVect.v b $ F ].
Notation "a \+f b" := (FramedVect_add a b) (at level 39).
Lemma fv_eq (T : ringType) a b : a = b -> forall F : frame T, `[ a $ F ] = `[ b $ F ].
Proof. by move=> ->. Qed.
Section change_of_coordinate_by_rotation.
Variable T : rcfType.
Implicit Types A B : frame T.
Lemma FramedVectvK A (x : fvec A) : `[FramedVect.v x $ A] = x.
Proof. by case: x. Qed.
(* change of coordinates: "rotation mapping" from frame A to frame B *)
Definition rmap A B (x : fvec A) : fvec B := `[FramedVect.v x *m (A _R^ B) $ B].
Lemma rmapK A B (x : fvec A) : rmap A (rmap B x) = x.
Proof.
rewrite /rmap /= 2!FromToE -2!mulmxA (mulmxA (matrix_of_noframe B)^-1).
rewrite mulmxE mulVr ?noframe_is_unit // mulmxA mul1r -mulmxA mulmxE.
by rewrite divrr ?noframe_is_unit // mulmx1 /= FramedVectvK.
Qed.
Lemma rmapE A B (x : 'rV[T]_3) :
rmap B `[x $ A] = `[x *m A (*A->can*) *m B^T(*can->B*) $ B].
Proof. by rewrite /rmap FromToE noframe_inv mulmxA. Qed.
Lemma rmapE_from_can A (x : 'rV[T]_3) :
rmap A `[x $ can_tframe T] = `[x *m A^T $ A].
Proof. by rewrite rmapE can_frame_1 mulmx1. Qed.
Lemma rmapE_to_can A (x : 'rV[T]_3) :
rmap (can_tframe T) `[x $ A] = `[x *m A $ can_tframe T].
Proof. by rewrite rmapE can_frame_1 trmx1 mulmx1. Qed.
End change_of_coordinate_by_rotation.
(*Section about_frame.
Variable R : rcfType.
Let coordinate := 'rV[R]_3.
Let vector := 'rV[R]_3.
Let frame := Frame.t R.
(* coordinate in frame f *)
Inductive coor (f : frame) : Type := Coor of 'rV[R]_3.
Definition absolute_coor (f : frame) (x : coor f) : 'rV[R]_3 :=
match x with Coor v => Frame.origin f + v *m Frame.basis f end.
Definition relative_coor f (x : coordinate) : coor f :=
Coor _ ((x - Frame.origin f) *m (Frame.basis f)^-1).
Lemma absolute_coorK f (x : coor f) : relative_coor f (absolute_coor x) = x.
Proof.
case: x => /= v.
by rewrite /relative_coor addrC addKr -mulmxA mulmxV // ?mulmx1 // Frame.unit.
Qed.
Lemma relative_coorK f (x : coordinate) : absolute_coor (relative_coor f x) = x.
Proof. by rewrite /= -mulmxA mulVmx // ?Frame.unit // mulmx1 addrC addrNK. Qed.
(* vector in frame f *)
Inductive vec (f : frame) : Type := Vec of 'rV[R]_3.
Definition absolute_vec f (x : vec f) : 'rV[R]_3 :=
match x with Vec v => v *m Frame.basis f end.
Definition relative_vec f (x : vector) : vec f :=
Vec _ (x *m (Frame.basis f)^-1).
Lemma absolute_vecK f (x : vec f) : relative_vec f (absolute_vec x) = x.
Proof. case: x => /= v. by rewrite /relative_vec -mulmxA mulmxV // ?Frame.unit // mulmx1. Qed.
Lemma relative_vecK f (x : vector) : absolute_vec (relative_vec f x) = x.
Proof. by rewrite /= -mulmxA mulVmx // ?Frame.unit // mulmx1. Qed.
End about_frame.*)
Module triad.
Section triad.
Variable T : rcfType.
Let point := 'rV[T]_3.
Variables a b c : point.
Hypothesis ab : a != b.
Hypothesis abc : ~~ colinear (b - a) (c - a).
Definition i := normalize (b - a).
Definition j := normalize (normalcomp (c - a) i).
Definition k := i *v j.
Definition t := (i, j, k).
Let ac : a != c.
Proof. by apply: contra abc => /eqP ->; rewrite subrr /colinear crossmulv0. Qed.
Lemma normi : norm i = 1.
Proof. by rewrite /i norm_normalize // subr_eq0 eq_sym. Qed.
Lemma i_neq0 : i != 0.
Proof. by rewrite -norm_eq0 normi oner_neq0. Qed.
Lemma normj : norm j = 1.
Proof.
rewrite /j norm_normalize // normalcomp_colinear; last first.
by rewrite -norm_eq0 normi oner_neq0.
apply: contra (abc); rewrite colinearvZ invr_eq0 norm_eq0 subr_eq0.
by rewrite eq_sym (negPf ab) /= colinear_sym.
Qed.
Lemma j_neq0 : j != 0.
Proof. by rewrite -norm_eq0 normj oner_neq0. Qed.
Lemma idotj : i *d j = 0.
Proof. by rewrite /= /i /j dotmulZv dotmulvZ dotmul_orthogonalize 2!mulr0. Qed.
Lemma jdotk : j *d k = 0.
Proof. by rewrite /k dot_crossmulCA crossmulvv dotmulv0. Qed.
Lemma idotk : i *d k = 0.
Proof. by rewrite /k dot_crossmulC crossmulvv dotmul0v. Qed.
Lemma normk : norm k = 1.
Proof. by rewrite norm_crossmul_normal // ?normi // ?normj // idotj. Qed.
Lemma k_neq0 : k != 0.
Proof. by rewrite -norm_eq0 normk oner_neq0. Qed.
Lemma is_O : col_mx3 i j k \is 'O[T]_3.
Proof.
apply/orthogonal3P;