forked from tqb4342/Unet-liverseg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unet_v0.py
121 lines (92 loc) · 4.85 KB
/
unet_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import print_function
import os
from skimage.transform import resize
from skimage.io import imsave
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras import initializers
# define the input size
img_rows = 512
img_cols = 512
channels = 1
# parameter for loss function
smooth = 1.
# input data
train_data_path = './np_data/train.npy'
# test_data_path = './np_data/test.npy'
train_mask_data_path = './np_data/train_mask.npy'
# test_mask_data_path = './np_data/test_mask.npy'
# define u-net architecture
def UNET():
inputs = Input((img_rows, img_cols, channels))
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(512, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up6)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up7)
conv7 = Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up8)
conv8 = Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up9)
conv9 = Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=Adam(), loss=dice_coef_loss, metrics=[dice_coef])
# sgd = SGD(lr=1, momentum=0.99, decay=1, nesterov=False)
# model.compile(optimizer=sgd, loss=dice_coef_loss, metrics=[dice_coef])
return model
def preprocess(imgs):
imgs_p = np.ndarray((imgs.shape[0], img_rows, img_cols), dtype=np.uint8)
imgs_p = imgs_p[..., np.newaxis]
return imgs_p
# loss function
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
# trian u-net and validate it
def train_and_predict():
# load train data and validate data
# turn them into img matrix again
imgs_train = preprocess(np.load(train_data_path))
# imgs_test = preprocess(np.load(test_data_path))
mask_train = preprocess(np.load(train_mask_data_path))
# mask_test = preprocess(np.load(test_mask_data_path))
# preprocess
imgs_train = imgs_train.astype('float32')
# imgs_test = imgs_test.astype('float32')
mask_train = mask_train.astype('float32')
# mask_test = mask_test.astype('float32')
mask_train /= 255.
# mask_test /= 255.
# instantiate a U-net
model = UNET()
model_checkpoint = ModelCheckpoint('weights.h5', monitor='val_loss', save_best_only=True)
model.fit(imgs_train, mask_train, batch_size=16, nb_epoch=2000, verbose=1, shuffle=True,
validation_split=0.2,
callbacks=[model_checkpoint])
if __name__ == '__main__':
train_and_predict()