forked from Albert-Z-Guo/Deep-Reinforcement-Stock-Trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
147 lines (121 loc) · 6.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import importlib
import logging
import sys
import time
from utils import *
parser = argparse.ArgumentParser(description='command line options')
parser.add_argument('--model_name', action="store", dest="model_name", default='DQN', help="model name")
parser.add_argument('--stock_name', action="store", dest="stock_name", default='^GSPC_2010-2015', help="stock name")
parser.add_argument('--window_size', action="store", dest="window_size", default=10, type=int, help="span (days) of observation")
parser.add_argument('--num_episode', action="store", dest="num_episode", default=10, type=int, help='episode number')
parser.add_argument('--initial_balance', action="store", dest="initial_balance", default=50000, type=int, help='initial balance')
inputs = parser.parse_args()
model_name = inputs.model_name
stock_name = inputs.stock_name
window_size = inputs.window_size
num_episode = inputs.num_episode
initial_balance = inputs.initial_balance
stock_prices = stock_close_prices(stock_name)
trading_period = len(stock_prices) - 1
returns_across_episodes = []
num_experience_replay = 0
action_dict = {0: 'Hold', 1: 'Buy', 2: 'Sell'}
# select learning model
model = importlib.import_module(f'agents.{model_name}')
agent = model.Agent(state_dim=window_size + 3, balance=initial_balance)
def hold(actions):
# encourage selling for profit and liquidity
next_probable_action = np.argsort(actions)[1]
if next_probable_action == 2 and len(agent.inventory) > 0:
max_profit = stock_prices[t] - min(agent.inventory)
if max_profit > 0:
sell(t)
actions[next_probable_action] = 1 # reset this action's value to the highest
return 'Hold', actions
def buy(t):
if agent.balance > stock_prices[t]:
agent.balance -= stock_prices[t]
agent.inventory.append(stock_prices[t])
return 'Buy: ${:.2f}'.format(stock_prices[t])
def sell(t):
if len(agent.inventory) > 0:
agent.balance += stock_prices[t]
bought_price = agent.inventory.pop(0)
profit = stock_prices[t] - bought_price
global reward
reward = profit
return 'Sell: ${:.2f} | Profit: ${:.2f}'.format(stock_prices[t], profit)
# configure logging
logging.basicConfig(filename=f'logs/{model_name}_training_{stock_name}.log', filemode='w',
format='[%(asctime)s.%(msecs)03d %(filename)s:%(lineno)3s] %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logging.info(f'Trading Object: {stock_name}')
logging.info(f'Trading Period: {trading_period} days')
logging.info(f'Window Size: {window_size} days')
logging.info(f'Training Episode: {num_episode}')
logging.info(f'Model Name: {model_name}')
logging.info('Initial Portfolio Value: ${:,}'.format(initial_balance))
start_time = time.time()
for e in range(1, num_episode + 1):
logging.info(f'\nEpisode: {e}/{num_episode}')
agent.reset() # reset to initial balance and hyperparameters
state = generate_combined_state(0, window_size, stock_prices, agent.balance, len(agent.inventory))
for t in range(1, trading_period + 1):
if t % 100 == 0:
logging.info(f'\n-------------------Period: {t}/{trading_period}-------------------')
reward = 0
next_state = generate_combined_state(t, window_size, stock_prices, agent.balance, len(agent.inventory))
previous_portfolio_value = len(agent.inventory) * stock_prices[t] + agent.balance
if model_name == 'DDPG':
actions = agent.act(state, t)
action = np.argmax(actions)
else:
actions = agent.model.predict(state)[0]
action = agent.act(state)
# execute position
logging.info('Step: {}\tHold signal: {:.4} \tBuy signal: {:.4} \tSell signal: {:.4}'.format(t, actions[0], actions[1], actions[2]))
if action != np.argmax(actions): logging.info(f"\t\t'{action_dict[action]}' is an exploration.")
if action == 0: # hold
execution_result = hold(actions)
if action == 1: # buy
execution_result = buy(t)
if action == 2: # sell
execution_result = sell(t)
# check execution result
if execution_result is None:
reward -= treasury_bond_daily_return_rate() * agent.balance # missing opportunity
else:
if isinstance(execution_result, tuple): # if execution_result is 'Hold'
actions = execution_result[1]
execution_result = execution_result[0]
logging.info(execution_result)
# calculate reward
current_portfolio_value = len(agent.inventory) * stock_prices[t] + agent.balance
unrealized_profit = current_portfolio_value - agent.initial_portfolio_value
reward += unrealized_profit
agent.portfolio_values.append(current_portfolio_value)
agent.return_rates.append((current_portfolio_value - previous_portfolio_value) / previous_portfolio_value)
done = True if t == trading_period else False
agent.remember(state, actions, reward, next_state, done)
# update state
state = next_state
# experience replay
if len(agent.memory) > agent.buffer_size:
num_experience_replay += 1
loss = agent.experience_replay()
logging.info('Episode: {}\tLoss: {:.2f}\tAction: {}\tReward: {:.2f}\tBalance: {:.2f}\tNumber of Stocks: {}'.format(e, loss, action_dict[action], reward, agent.balance, len(agent.inventory)))
agent.tensorboard.on_batch_end(num_experience_replay, {'loss': loss, 'portfolio value': current_portfolio_value})
if done:
portfolio_return = evaluate_portfolio_performance(agent, logging)
returns_across_episodes.append(portfolio_return)
# save models periodically
if e % 5 == 0:
if model_name == 'DQN':
agent.model.save('saved_models/DQN_ep' + str(e) + '.h5')
elif model_name == 'DDPG':
agent.actor.model.save_weights('saved_models/DDPG_ep{}_actor.h5'.format(str(e)))
agent.critic.model.save_weights('saved_models/DDPG_ep{}_critic.h5'.format(str(e)))
logging.info('model saved')
logging.info('total training time: {0:.2f} min'.format((time.time() - start_time)/60))
plot_portfolio_returns_across_episodes(model_name, returns_across_episodes)