forked from firepick1/FireSight
-
Notifications
You must be signed in to change notification settings - Fork 2
/
dft.cpp
345 lines (316 loc) · 11.1 KB
/
dft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#include <string.h>
#include <math.h>
#include "FireLog.h"
#include "FireSight.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "jansson.h"
#include "jo_util.hpp"
#include "MatUtil.hpp"
using namespace cv;
using namespace std;
using namespace firesight;
static void dftMirror(Mat &image) {
int cx = image.cols/2;
Mat imageL(image,Rect(0,0,cx,image.rows));
Mat imageR(image,Rect(cx,0,cx,image.rows));
flip(imageR, imageL, 1);
}
static void dftShift(Mat &image, const char *&errMsg) {
if ((image.cols & 1) || (image.rows&1)) {
LOGTRACE("Cropping image to even number of rows and columns");
image = image(Rect(0, 0, image.cols & -2, image.rows & -2));
}
int cx = image.cols/2;
int cy = image.rows/2;
Mat q1(image, Rect(0,0,cx,cy));
Mat q2(image, Rect(cx,0,cx,cy));
Mat q3(image, Rect(0,cy,cx,cy));
Mat q4(image, Rect(cx,cy,cx,cy));
Mat tmp;
q1.copyTo(tmp);
q4.copyTo(q1);
tmp.copyTo(q4);
q2.copyTo(tmp);
q3.copyTo(q2);
tmp.copyTo(q3);
}
static void modelMatches(Point offset, const Mat &tmplt, const Mat &result, const vector<float> &angles,
const vector<Point> &matches, json_t *pStageModel, float maxVal, bool isMin)
{
LOGTRACE1("modelMatches(%d)", (int)matches.size());
json_t *pRects = json_array();
assert(pRects);
for (size_t iMatch=0; iMatch<matches.size(); iMatch++) {
int cx = matches[iMatch].x;
int cy = matches[iMatch].y;
LOGTRACE2("modelMatches() matches(%d,%d)", cx, cy);
float val = result.at<float>(cy,cx);
json_t *pRect = json_object();
assert(pRect);
json_object_set(pRect, "x", json_real(cx+offset.x));
json_object_set(pRect, "y", json_real(cy+offset.y));
json_object_set(pRect, "width", json_real(tmplt.cols));
json_object_set(pRect, "height", json_real(tmplt.rows));
if (angles.size() == 1) {
json_object_set(pRect, "angle", json_real(-angles[0]));
} else {
LOGTRACE1("Omitting angles (size:%d)", (int) angles.size());
}
json_object_set(pRect, "corr", json_float(val/maxVal));
json_array_append(pRects, pRect);
}
json_object_set(pStageModel, "rects", pRects);
json_object_set(pStageModel, "maxVal", json_float(maxVal));
json_object_set(pStageModel, "matches", json_integer(matches.size()));
LOGTRACE("modelMatches() end");
}
bool Pipeline::apply_matchTemplate(json_t *pStage, json_t *pStageModel, Model &model) {
validateImage(model.image);
string methodStr = jo_string(pStage, "method", "CV_TM_CCOEFF_NORMED", model.argMap);
string tmpltPath = jo_string(pStage, "template", "", model.argMap);
float threshold = jo_float(pStage, "threshold", 0.7f, model.argMap);
float corr = jo_float(pStage, "corr", 0.85f, model.argMap);
string outputStr = jo_string(pStage, "output", "current", model.argMap);
string borderModeStr = jo_string(pStage, "borderMode", "BORDER_REPLICATE", model.argMap);
vector<float> angles = jo_vectorf(pStage, "angles", vector<float>(), model.argMap);
if (angles.size() == 0) {
angles = jo_vectorf(pStage, "angle", vector<float>(), model.argMap);
}
if (angles.size() == 0) {
float angle = jo_float(pStage, "angle", 0, model.argMap);
angles.push_back(angle);
}
const char *errMsg = NULL;
int flags = INTER_LINEAR;
int method;
Mat tmplt;
int borderMode;
bool isOutputCurrent = outputStr.compare("current") == 0;
bool isOutputInput = outputStr.compare("input") == 0;
bool isOutputCorr = outputStr.compare("corr") == 0;
if (tmpltPath.empty()) {
errMsg = "Expected template path for imread";
} else {
if (model.image.channels() == 1) {
tmplt = imread(tmpltPath.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
} else {
tmplt = imread(tmpltPath.c_str(), CV_LOAD_IMAGE_COLOR);
}
if (tmplt.data) {
LOGTRACE2("apply_matchTemplate(%s) %s", tmpltPath.c_str(), matInfo(tmplt).c_str());
if (model.image.rows<tmplt.rows || model.image.cols<tmplt.cols) {
errMsg = "Expected template smaller than image to match";
}
} else {
errMsg = "imread failed";
}
}
if (!errMsg) {
if (borderModeStr.compare("BORDER_CONSTANT") == 0) {
borderMode = BORDER_CONSTANT;
} else if (borderModeStr.compare("BORDER_REPLICATE") == 0) {
borderMode = BORDER_REPLICATE;
} else if (borderModeStr.compare("BORDER_REFLECT") == 0) {
borderMode = BORDER_REFLECT;
} else if (borderModeStr.compare("BORDER_REFLECT_101") == 0) {
borderMode = BORDER_REFLECT_101;
} else if (borderModeStr.compare("BORDER_REFLECT101") == 0) {
borderMode = BORDER_REFLECT101;
} else if (borderModeStr.compare("BORDER_WRAP") == 0) {
borderMode = BORDER_WRAP;
} else {
errMsg = "Expected borderMode: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_REFLECT_101, BORDER_WRAP";
}
}
if (!errMsg && !isOutputInput && !isOutputCorr && !isOutputCurrent) {
errMsg = "Expected \"output\" value: input, current, or corr";
}
if (!errMsg) {
if (methodStr.compare("CV_TM_SQDIFF")==0) {
method = CV_TM_SQDIFF;
} else if (methodStr.compare( "CV_TM_SQDIFF_NORMED")==0) {
method = CV_TM_SQDIFF_NORMED;
} else if (methodStr.compare( "CV_TM_CCORR")==0) {
method = CV_TM_CCORR;
} else if (methodStr.compare( "CV_TM_CCORR_NORMED")==0) {
method = CV_TM_CCORR_NORMED;
} else if (methodStr.compare( "CV_TM_CCOEFF")==0) {
method = CV_TM_CCOEFF;
} else if (methodStr.compare( "CV_TM_CCOEFF_NORMED")==0) {
method = CV_TM_CCOEFF_NORMED;
} else {
errMsg = "Expected method name";
}
}
Mat warpedTmplt;
if (!errMsg) {
if (angles.size() > 0) {
matWarpRing(tmplt, warpedTmplt, angles);
} else {
warpedTmplt = tmplt;
}
}
if (!errMsg) {
Mat result;
Mat imageSource = isOutputCurrent ? model.image.clone() : model.image;
matchTemplate(imageSource, warpedTmplt, result, method);
LOGTRACE4("apply_matchTemplate() matchTemplate(%s,%s,%s,%d)",
matInfo(imageSource).c_str(), matInfo(warpedTmplt).c_str(), matInfo(result).c_str(), method);
vector<Point> matches;
float maxVal = *max_element(result.begin<float>(),result.end<float>());
bool isMin = method == CV_TM_SQDIFF || method == CV_TM_SQDIFF_NORMED;
if (isMin) {
float rangeMin = 0;
float rangeMax = corr * maxVal;
matMinima(result, matches, rangeMin, rangeMax);
} else {
float rangeMin = max(threshold, corr * maxVal);
float rangeMax = maxVal;
matMaxima(result, matches, rangeMin, rangeMax);
}
int xOffset = isOutputCorr ? 0 : warpedTmplt.cols/2;
int yOffset = isOutputCorr ? 0 : warpedTmplt.rows/2;
modelMatches(Point(xOffset, yOffset), tmplt, result, angles, matches, pStageModel, maxVal, isMin);
if (isOutputCorr) {
LOGTRACE("apply_matchTemplate() normalize()");
normalize(result, result, 0, 255, NORM_MINMAX);
result.convertTo(model.image, CV_8U);
} else if (isOutputInput) {
LOGTRACE("apply_matchTemplate() clone input");
model.image = model.imageMap["input"].clone();
}
}
return stageOK("apply_matchTemplate(%s) %s", errMsg, pStage, pStageModel);
}
bool Pipeline::apply_dftSpectrum(json_t *pStage, json_t *pStageModel, Model &model) {
validateImage(model.image);
int delta = jo_int(pStage, "delta", 1, model.argMap);
bool isShift = jo_bool(pStage, "shift", true);
bool isLog = jo_bool(pStage, "log", true);
bool isMagnitude = false;
bool isPhase = false;
bool isReal = false;
bool isImaginary = false;
bool isMirror = jo_bool(pStage, "mirror", true);
string showStr = jo_string(pStage, "show", "magnitude", model.argMap);
const char *errMsg = NULL;
if (!errMsg) {
if (showStr.compare("magnitude") == 0) {
isMagnitude = true;
} else if (showStr.compare("phase") == 0) {
isPhase = true;
} else if (showStr.compare("real") == 0) {
isReal = true;
} else if (showStr.compare("imaginary") == 0) {
isImaginary = true;
} else {
errMsg = "Expected 'magnitude' or 'phase' for show";
}
}
if (!errMsg) {
if (isReal) {
if (model.image.channels() != 1) {
errMsg = "Expected real (1-channel) Mat";
}
} else {
if (model.image.channels() != 2) {
errMsg = "Expected complex (2-channel) Mat";
}
}
}
if (!errMsg) {
if (model.image.channels() > 1) {
Mat planes[] = {
Mat::zeros(model.image.size(), CV_32F),
Mat::zeros(model.image.size(), CV_32F)
};
split(model.image, planes);
if (isMagnitude) {
magnitude(planes[0], planes[1], model.image);
} else if (isPhase) {
phase(planes[0], planes[1], model.image);
} else if (isReal) {
model.image = planes[0];
} else if (isImaginary) {
model.image = planes[1];
}
}
if (delta) {
model.image += Scalar::all(delta);
}
if (isLog) {
log(model.image, model.image);
}
if (isShift) {
dftShift(model.image, errMsg);
}
if (isMirror) {
dftMirror(model.image);
}
}
return stageOK("apply_dftSpectrum(%s) %s", errMsg, pStage, pStageModel);
}
bool Pipeline::apply_dft(json_t *pStage, json_t *pStageModel, Model &model) {
validateImage(model.image);
const char *errMsg = NULL;
string depthStr = jo_string(pStage, "depth", "CV_8U", model.argMap);
char errBuf[200];
json_t *pFlags = jo_object(pStage, "flags", model.argMap);
int flags = 0;
if (json_is_array(pFlags)) {
size_t index;
json_t *pStr;
json_array_foreach(pFlags, index, pStr) {
const char *flag = json_string_value(pStr);
if (!flag) {
errMsg = "Expected array of flag name strings";
break;
}
if (strcmp(flag, "DFT_COMPLEX_OUTPUT") == 0) {
flags |= DFT_COMPLEX_OUTPUT;
} else if (strcmp(flag, "DFT_REAL_OUTPUT") == 0) {
flags |= DFT_REAL_OUTPUT;
} else if (strcmp(flag, "DFT_SCALE") == 0) {
flags |= DFT_SCALE;
} else if (strcmp(flag, "DFT_INVERSE") == 0) {
flags |= DFT_INVERSE;
} else if (strcmp(flag, "DFT_ROWS") == 0) {
flags |= DFT_ROWS;
} else {
snprintf(errBuf, sizeof(errBuf), "Unknown flag %s", flag);
errMsg = errBuf;
}
}
}
if (!errMsg) {
switch (model.image.channels()) {
case 4:
LOGTRACE("apply_dft(): converting 4 channel image assuming CV_BGRA2GRAY");
cvtColor(model.image, model.image, CV_BGRA2GRAY, 1);
break;
case 3:
LOGTRACE("apply_dft(): converting 3 channel image assuming CV_BGR2GRAY");
cvtColor(model.image, model.image, CV_BGR2GRAY, 1);
break;
}
if (model.image.type() != CV_32F) {
Mat fImage;
LOGTRACE("apply_dft(): Convert image to CV_32F");
model.image.convertTo(fImage, CV_32F);
model.image = fImage;
}
Mat dftImage;
LOGTRACE1("apply_dft() flags:%d", flags);
dft(model.image, dftImage, flags);
model.image = dftImage;
if (flags & DFT_INVERSE && depthStr.compare("CV_8U")==0) {
Mat invImage;
LOGTRACE("apply_dft(): Convert image to CV_8U");
model.image.convertTo(invImage, CV_8U);
model.image = invImage;
}
}
return stageOK("apply_dft(%s) %s", errMsg, pStage, pStageModel);
}