From a5eca9ae169706be6b8fc148a4ee3443480ac20a Mon Sep 17 00:00:00 2001 From: Lyuboslav Karev Date: Wed, 18 Jan 2023 01:25:44 +0200 Subject: [PATCH 1/2] Added numpy part of lecture 18 --- .../18 - numpy, pandas, matplotlib.ipynb | 668 ++++++++++++++++++ 1 file changed, 668 insertions(+) create mode 100644 18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb diff --git a/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb b/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb new file mode 100644 index 0000000..60145d6 --- /dev/null +++ b/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb @@ -0,0 +1,668 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 18 - Numpy, Pandas, Matplotlib" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- [ ] Numpy\n", + "- [ ] Pandas\n", + "- [ ] Matplotlib\n", + "- [ ] Seaborn " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Numpy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Numpy е библиотека създадена за работа с масиви. Масивите са едномерни, двумерни и т.н. Масивите са еднотипни, т.е. всички елементи в масива трябва да са от един и същи тип. Масивите са с фиксиран размер, т.е. не може да се добавят или премахват елементи от масива. Масивите са с фиксиран тип, т.е. всички елементи в масива трябва да са от един и същи тип. Масивите са с фиксиран размер, т.е. не може да се добавят или премахват елементи от масива." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: numpy in /home/lyubolp/.local/lib/python3.8/site-packages (1.24.1)\n" + ] + } + ], + "source": [ + "!pip install numpy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Едни от важните характеристики на масивите са:\n", + "- shape - размер на масива\n", + "- dtype - тип на елементите в масива\n", + "- ndim - брой измерения на масива\n", + "- size - общ брой елементи в масива" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "def display_numpy_array_info(arr): \n", + " print(f'{arr=}')\n", + " print(f'{arr.shape=}')\n", + " print(f'{arr.dtype=}')\n", + " print(f'{arr.ndim=}')\n", + " print(f'{arr.size=}')\n", + " print('')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Можем да създадем масив от списък, с помощта на функцията `array`." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([[ 1, 2, 3, 4, 5],\n", + " [ 6, 7, 8, 9, 10]])\n", + "arr.shape=(2, 5)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=2\n", + "arr.size=10\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])\n", + "\n", + "display_numpy_array_info(arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Можем да зададем типа на елементите в масива с помощта на параметъра `dtype`." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=float32)\n", + "arr.shape=(5,)\n", + "arr.dtype=dtype('float32')\n", + "arr.ndim=1\n", + "arr.size=5\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "arr = np.array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=np.float32)\n", + "\n", + "display_numpy_array_info(arr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "С помощта на функцията `arange` можем да създадем масив с равномерни елементи от start до end със стъпка step." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([1, 3, 5, 7, 9])\n", + "arr.shape=(5,)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=1\n", + "arr.size=5\n", + "\n", + "arr=array([2, 3, 4, 5, 6, 7, 8, 9])\n", + "arr.shape=(8,)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=1\n", + "arr.size=8\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "arr1 = np.arange(1, 10, 2)\n", + "arr2 = np.arange(2, 10, 1)\n", + "\n", + "display_numpy_array_info(arr1)\n", + "display_numpy_array_info(arr2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Можем да създадем масив от нули или единици, с помощта на функциите `zeros` и `ones`." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])\n", + "arr.shape=(3, 4)\n", + "arr.dtype=dtype('float64')\n", + "arr.ndim=2\n", + "arr.size=12\n", + "\n", + "arr=array([[[1, 1, 1, 1],\n", + " [1, 1, 1, 1],\n", + " [1, 1, 1, 1]],\n", + "\n", + " [[1, 1, 1, 1],\n", + " [1, 1, 1, 1],\n", + " [1, 1, 1, 1]]], dtype=int16)\n", + "arr.shape=(2, 3, 4)\n", + "arr.dtype=dtype('int16')\n", + "arr.ndim=3\n", + "arr.size=24\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "zeros = np.zeros((3, 4))\n", + "ones = np.ones((2, 3, 4), dtype=np.int16)\n", + "\n", + "display_numpy_array_info(zeros)\n", + "display_numpy_array_info(ones)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "С метода `random` можем да създадем масив със случайни числа в интервала от 0 до 1 с размери rows и cols." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([[0.85258647, 0.87437575, 0.04258029],\n", + " [0.06627148, 0.24665089, 0.52177255]])\n", + "arr.shape=(2, 3)\n", + "arr.dtype=dtype('float64')\n", + "arr.ndim=2\n", + "arr.size=6\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "random = np.random.random((2, 3))\n", + "\n", + "display_numpy_array_info(random)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "С метода `reshape` можем да преоразмерим масива." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "arr=array([[1, 2, 3],\n", + " [4, 5, 6]])\n", + "arr.shape=(2, 3)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=2\n", + "arr.size=6\n", + "\n", + "arr=array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])\n", + "arr.shape=(3, 2)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=2\n", + "arr.size=6\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "arr = np.array([[1, 2, 3], [4, 5, 6]])\n", + "display_numpy_array_info(arr)\n", + "\n", + "arr1 = arr.reshape(3, 2)\n", + "display_numpy_array_info(arr1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Numpy поддържа и някои математически операции между масиви." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[15 27 38]\n", + "[ 5 13 22]\n", + "[ 50 140 240]\n", + "[2. 2.85714286 3.75 ]\n", + "[100 400 900]\n", + "[1. 2. 3.]\n", + "[False True True]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "a = np.array([10, 20, 30])\n", + "b = np.array([5, 7, 8])\n", + "\n", + "print(a + b)\n", + "print(a - b)\n", + "print(a * b)\n", + "print(a / b)\n", + "print(a ** 2)\n", + "print(a / 10)\n", + "print(a > 15)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[71.34135627 0.25907481 89.56057185]\n", + " [94.61009345 24.91787537 77.29307812]]\n", + "357.98204987140775\n", + "0.2590748147073829\n", + "94.61009345054515\n", + "34.87696903183212\n" + ] + } + ], + "source": [ + "import numpy as np \n", + "\n", + "a = np.random.random((2, 3)) * 100\n", + "\n", + "print(a)\n", + "print(a.sum())\n", + "print(a.min())\n", + "print(a.max())\n", + "print(a.std())" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7 8 9]\n", + "[2.71828183e+00 7.38905610e+00 2.00855369e+01 5.45981500e+01\n", + " 1.48413159e+02 4.03428793e+02 1.09663316e+03 2.98095799e+03\n", + " 8.10308393e+03]\n", + "[1. 1.41421356 1.73205081 2. 2.23606798 2.44948974\n", + " 2.64575131 2.82842712 3. ]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "b = np.arange(1, 10)\n", + "print(b)\n", + "print(np.exp(b))\n", + "print(np.sqrt(b))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Numpy поддържа и сумиране на масиви, по даден ред или колона." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2 3]\n", + " [4 5 6]]\n", + "[5 7 9]\n", + "[ 6 15]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "c = np.array([[1, 2, 3], [4, 5, 6]])\n", + "print(c)\n", + "print(c.sum(axis=0))\n", + "print(c.sum(axis=1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Една особеност на Numpy е индексацията. Ако имаме двумерен масив, и искаме да достъпим елемента на 0-лев ред и 1-ви колона, то индексацията е следната `arr[0, 1]`. Ако използваме само един индекс, то той се отнася за редовете. Т.е. `arr[0]` ще ни върне първия ред от масива. Ако искаме да изберем цял ред, колона или която и да е друга размерност, можем да използваме `:`. Т.е. `arr[:, 1]` ще ни върне всички редове от втората колона." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "a[0, 1]=2\n", + "a[1, :]=array([5, 6, 7, 8])\n", + "a[:, 2]=array([ 3, 7, 11])\n", + "[[ 1 1 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "a = np.arange(1, 13).reshape(3, 4)\n", + "\n", + "print(a)\n", + "\n", + "print(f'{a[0, 1]=}')\n", + "print(f'{a[1, :]=}')\n", + "print(f'{a[:, 2]=}')\n", + "\n", + "a[0, 1] = 1\n", + "print(a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Освен с числа, можем да индексираме и с булеви масиви. Можем да подадем масив от булеви стойности - ако стойността на даден елемент е `True`, то той ще бъде включен в резултата, а ако е `False`, то няма да бъде включен." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7 8 9]\n", + "[2 4 6 8]\n", + "[2 4 6 8]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "a = np.arange(1, 10)\n", + "print(a)\n", + "\n", + "even_mask = a % 2 == 0\n", + "print(a[even_mask])\n", + "print(a[a % 2 == 0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Numpy поддържа три вида копиране - никакво, плитко и дълбоко. \n", + "\n", + "Когато извикаме `arr2 = arr1`, то това е никакво копиране. Т.е. `arr2` е просто друго име на `arr1`. Ако променим елемента на `arr2`, то той ще се промени и в `arr1`.\n", + "\n", + "Когато извикаме `arr3 = arr.view()`, ще се създаде нов обект, но данните няма да се копират.\n", + "\n", + "Когато извикаме `arr4 = arr.copy()`, ще се създаде нов обект, с копие на данните." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[[100 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[[100 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "[[ 1 2 3 4]\n", + " [ 5 6 7 8]\n", + " [ 9 10 11 12]]\n", + "True\n", + "False\n", + "False\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "a = np.arange(1, 13).reshape(3, 4)\n", + "print(a)\n", + "\n", + "b = a\n", + "c = a.view()\n", + "d = a.copy()\n", + "\n", + "a[0, 0] = 100\n", + "\n", + "print(b)\n", + "print(c)\n", + "print(d)\n", + "\n", + "print(b is a)\n", + "print(c is a)\n", + "print(d is a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Numpy ни позволява да прилагаме функции към нашите масиви. Например, можем да приложим функцията `sqrt` към всеки елемент на масива." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7 8 9]\n", + "arr=array([ 1, 4, 9, 16, 25, 36, 49, 64, 81])\n", + "arr.shape=(9,)\n", + "arr.dtype=dtype('int64')\n", + "arr.ndim=1\n", + "arr.size=9\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "def square(x):\n", + " return x ** 2\n", + "\n", + "a = np.arange(1, 10)\n", + "\n", + "print(a)\n", + "\n", + "b = square(a)\n", + "display_numpy_array_info(b)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matplotlib" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Seaborne" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From e0127940df0479fe9005e9c61020ba8172a6f1a5 Mon Sep 17 00:00:00 2001 From: Lyuboslav Karev Date: Wed, 18 Jan 2023 15:16:53 +0200 Subject: [PATCH 2/2] Added examples for lecture 18 --- .../18 - numpy, pandas, matplotlib.ipynb | 1761 ++++++++++++++++- .../titanic/test.csv | 419 ++++ .../titanic/train.csv | 892 +++++++++ 3 files changed, 3071 insertions(+), 1 deletion(-) create mode 100644 18 - numpy, pandas, matplotlib/titanic/test.csv create mode 100644 18 - numpy, pandas, matplotlib/titanic/train.csv diff --git a/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb b/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb index 60145d6..3e7e430 100644 --- a/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb +++ b/18 - numpy, pandas, matplotlib/18 - numpy, pandas, matplotlib.ipynb @@ -623,6 +623,1279 @@ "## Pandas" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pandas е библиотека, която ни позволява да работим с таблични данни. Поддържа множество формати за входни данни - csv, json, html, excel, sql и др." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pandas\n", + " Using cached pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from pandas) (2.8.2)\n", + "Collecting pytz>=2020.1\n", + " Downloading pytz-2022.7.1-py2.py3-none-any.whl (499 kB)\n", + "\u001b[K |████████████████████████████████| 499 kB 2.2 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.20.3; python_version < \"3.10\" in /home/lyubolp/.local/lib/python3.8/site-packages (from pandas) (1.24.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.1->pandas) (1.14.0)\n", + "Installing collected packages: pytz, pandas\n", + "Successfully installed pandas-1.5.2 pytz-2022.7.1\n" + ] + } + ], + "source": [ + "!pip install pandas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pandas поддържа 3 вида структури - `Series`, `DataFrame` и `Panel`\n", + "\n", + "- `Series` - едномерен масив\n", + "- `DataFrame` - двумерна таблица\n", + "- `Panel` - тримерна структура" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Series" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 10\n", + "1 20\n", + "2 30\n", + "3 40\n", + "4 50\n", + "dtype: int64\n", + "0 1.1\n", + "1 2.2\n", + "2 3.3\n", + "3 4.4\n", + "4 5.5\n", + "dtype: float32\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = pd.Series([10, 20, 30, 40, 50])\n", + "b = pd.Series([1.1, 2.2, 3.3, 4.4, 5.5], dtype=np.float32)\n", + "\n", + "print(a)\n", + "print(b)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a 10\n", + "b 20\n", + "c 30\n", + "d 40\n", + "e 50\n", + "dtype: int64\n", + "a 10\n", + "b 20\n", + "c 30\n", + "d 40\n", + "e 50\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = pd.Series([10, 20, 30, 40, 50], index=['a', 'b', 'c', 'd', 'e'])\n", + "b = pd.Series({'a': 10, 'b': 20, 'c': 30, 'd': 40, 'e': 50})\n", + "\n", + "print(a)\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n", + "20\n", + "b 20\n", + "c 30\n", + "d 40\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = pd.Series([10, 20, 30, 40, 50], index=['a', 'b', 'c', 'd', 'e'])\n", + "\n", + "\n", + "print(a[0])\n", + "print(a['b'])\n", + "print(a[1:4])" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 11\n", + "1 22\n", + "2 33\n", + "3 44\n", + "4 55\n", + "dtype: int64\n", + "0 9\n", + "1 18\n", + "2 27\n", + "3 36\n", + "4 45\n", + "dtype: int64\n", + "0 10\n", + "1 40\n", + "2 90\n", + "3 160\n", + "4 250\n", + "dtype: int64\n", + "0 10.0\n", + "1 10.0\n", + "2 10.0\n", + "3 10.0\n", + "4 10.0\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = pd.Series([10, 20, 30, 40, 50])\n", + "b = pd.Series([1, 2, 3, 4, 5])\n", + "\n", + "print(a + b)\n", + "print(a - b)\n", + "print(a * b)\n", + "print(a / b)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "150\n", + "50\n", + "10\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "a = pd.Series([10, 20, 30, 40, 50])\n", + "\n", + "print(a.sum())\n", + "print(a.max())\n", + "print(a.min())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### DataFrame" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
01
12
23
34
45
\n", + "
" + ], + "text/plain": [ + " 0\n", + "0 1\n", + "1 2\n", + "2 3\n", + "3 4\n", + "4 5" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "data = [1, 2, 3, 4, 5]\n", + "df = pd.DataFrame(data)\n", + "\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAge
0Alex20
1Bob22
2Clarke23
\n", + "
" + ], + "text/plain": [ + " Name Age\n", + "0 Alex 20\n", + "1 Bob 22\n", + "2 Clarke 23" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "data = [['Alex', 20], ['Bob', 22], ['Clarke', 23]]\n", + "df = pd.DataFrame(data, columns=['Name', 'Age'])\n", + "\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAge
0Alex20
1Bob22
2Clarke23
\n", + "
" + ], + "text/plain": [ + " Name Age\n", + "0 Alex 20\n", + "1 Bob 22\n", + "2 Clarke 23" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({'Name': ['Alex', 'Bob', 'Clarke'], 'Age': [20, 22, 23]})\n", + "\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Alex\n", + "1 Bob\n", + "2 Clarke\n", + "Name: Name, dtype: object" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({'Name': ['Alex', 'Bob', 'Clarke'], 'Age': [20, 22, 23]})\n", + "\n", + "df['Name']" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeHeight
0Alex20170
1Bob22180
2Clarke23175
\n", + "
" + ], + "text/plain": [ + " Name Age Height\n", + "0 Alex 20 170\n", + "1 Bob 22 180\n", + "2 Clarke 23 175" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny'], \n", + " 'Age': [20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.loc[:2]" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Name Bob\n", + "Age 22\n", + "Height 180\n", + "Name: 1, dtype: object" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny'], \n", + " 'Age': [20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.loc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Name Bob\n", + "Age 22\n", + "Height 180\n", + "Name: 1, dtype: object" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny'], \n", + " 'Age': [20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.iloc[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeHeight
0Alex20170
1Bob22180
2Clarke23175
3Nathan19165
4Johny21172
\n", + "
" + ], + "text/plain": [ + " Name Age Height\n", + "0 Alex 20 170\n", + "1 Bob 22 180\n", + "2 Clarke 23 175\n", + "3 Nathan 19 165\n", + "4 Johny 21 172" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameAgeHeight
5Bobby20170
6Roger22180
7Tom23175
8Jerry19165
9Mickey21172
\n", + "
" + ], + "text/plain": [ + " Name Age Height\n", + "5 Bobby 20 170\n", + "6 Roger 22 180\n", + "7 Tom 23 175\n", + "8 Jerry 19 165\n", + "9 Mickey 21 172" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeHeight
count10.00000010.000000
mean21.000000172.400000
std1.4907125.274677
min19.000000165.000000
25%20.000000170.000000
50%21.000000172.000000
75%22.000000175.000000
max23.000000180.000000
\n", + "
" + ], + "text/plain": [ + " Age Height\n", + "count 10.000000 10.000000\n", + "mean 21.000000 172.400000\n", + "std 1.490712 5.274677\n", + "min 19.000000 165.000000\n", + "25% 20.000000 170.000000\n", + "50% 21.000000 172.000000\n", + "75% 22.000000 175.000000\n", + "max 23.000000 180.000000" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Height
Age
19165.0
20170.0
21172.0
22180.0
23175.0
\n", + "
" + ], + "text/plain": [ + " Height\n", + "Age \n", + "19 165.0\n", + "20 170.0\n", + "21 172.0\n", + "22 180.0\n", + "23 175.0" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df[['Age', 'Height']].groupby('Age').mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Height
Age
192
202
212
222
232
\n", + "
" + ], + "text/plain": [ + " Height\n", + "Age \n", + "19 2\n", + "20 2\n", + "21 2\n", + "22 2\n", + "23 2" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df[['Age', 'Height']].groupby('Age').count()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
\n", + "
" + ], + "text/plain": [ + " PassengerId Survived Pclass \\\n", + "0 1 0 3 \n", + "1 2 1 1 \n", + "2 3 1 3 \n", + "3 4 1 1 \n", + "4 5 0 3 \n", + "\n", + " Name Sex Age SibSp \\\n", + "0 Braund, Mr. Owen Harris male 22.0 1 \n", + "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", + "2 Heikkinen, Miss. Laina female 26.0 0 \n", + "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", + "4 Allen, Mr. William Henry male 35.0 0 \n", + "\n", + " Parch Ticket Fare Cabin Embarked \n", + "0 0 A/5 21171 7.2500 NaN S \n", + "1 0 PC 17599 71.2833 C85 C \n", + "2 0 STON/O2. 3101282 7.9250 NaN S \n", + "3 0 113803 53.1000 C123 S \n", + "4 0 373450 8.0500 NaN S " + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import os\n", + "\n", + "df = pd.read_csv(os.path.join('titanic', 'train.csv'))\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import os\n", + "\n", + "df = pd.DataFrame({\n", + " 'Name': ['Alex', 'Bob', 'Clarke', 'Nathan', 'Johny', 'Bobby', 'Roger', 'Tom', 'Jerry', 'Mickey'], \n", + " 'Age': [20, 22, 23, 19, 21, 20, 22, 23, 19, 21], \n", + " 'Height': [170, 180, 175, 165, 172, 170, 180, 175, 165, 172]\n", + " })\n", + "\n", + "df.to_csv('people.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ",Name,Age,Height\n", + "0,Alex,20,170\n", + "1,Bob,22,180\n", + "2,Clarke,23,175\n", + "3,Nathan,19,165\n", + "4,Johny,21,172\n", + "5,Bobby,20,170\n", + "6,Roger,22,180\n", + "7,Tom,23,175\n", + "8,Jerry,19,165\n", + "9,Mickey,21,172\n" + ] + } + ], + "source": [ + "!cat people.csv" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -630,11 +1903,497 @@ "## Matplotlib" ] }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting matplotlib\n", + " Downloading matplotlib-3.6.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.4 MB)\n", + "\u001b[K |████████████████████████████████| 9.4 MB 7.1 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting pyparsing>=2.2.1\n", + " Downloading pyparsing-3.0.9-py3-none-any.whl (98 kB)\n", + "\u001b[K |████████████████████████████████| 98 kB 4.7 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib) (22.0)\n", + "Collecting contourpy>=1.0.1\n", + " Downloading contourpy-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (300 kB)\n", + "\u001b[K |████████████████████████████████| 300 kB 8.1 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: python-dateutil>=2.7 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib) (2.8.2)\n", + "Collecting pillow>=6.2.0\n", + " Downloading Pillow-9.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB)\n", + "\u001b[K |████████████████████████████████| 3.3 MB 5.5 MB/s eta 0:00:01\n", + "\u001b[?25hCollecting fonttools>=4.22.0\n", + " Downloading fonttools-4.38.0-py3-none-any.whl (965 kB)\n", + "\u001b[K |████████████████████████████████| 965 kB 7.8 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.19 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib) (1.24.1)\n", + "Collecting cycler>=0.10\n", + " Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)\n", + "Collecting kiwisolver>=1.0.1\n", + " Downloading kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.2 MB)\n", + "\u001b[K |████████████████████████████████| 1.2 MB 5.4 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.7->matplotlib) (1.14.0)\n", + "Installing collected packages: pyparsing, contourpy, pillow, fonttools, cycler, kiwisolver, matplotlib\n", + "\u001b[33m WARNING: The scripts fonttools, pyftmerge, pyftsubset and ttx are installed in '/home/lyubolp/.local/bin' which is not on PATH.\n", + " Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n", + "Successfully installed contourpy-1.0.7 cycler-0.11.0 fonttools-4.38.0 kiwisolver-1.4.4 matplotlib-3.6.3 pillow-9.4.0 pyparsing-3.0.9\n" + ] + } + ], + "source": [ + "!pip install matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGzCAYAAADJ3dZzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHs0lEQVR4nO3dd3RU1f7+8WcS0kilpkhIIh0REpo0JQoSEREULwpKiRSvgoBI9SJSlCYCFgRBqoL4QxARlSrgFQHpFzSGYhBUirSEUJKQ7N8frMyXIQGSMCHh8H6tNWsx++yzz2fmJJOHc/Y5YzPGGAEAAFiUS0EXAAAAkJ8IOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIO8AtEB0drejo6IIuI98cPHhQNptNs2fPdsp4w4YNk81m04kTJ5wy3rWEh4frscceu2E/m82mYcOGOXXb+THmzejcubPCw8Nv6TYz9zOQ3wg7uKPNnj1bNpst28egQYPybbt///23hg0bpp07d+bbNgAAlxUp6AKAwmDEiBGKiIhwaKtWrZrTxl+5cqXD87///lvDhw9XeHi4IiMjnbYd5I8LFy6oSBE+LoHbFb+9gKTmzZurdu3aOep78eJFubu7y8Ul5wdG3d3d81oaCgFPT8+CLgE3YIzRxYsX5eXlVdCloBDiNBZwHevWrZPNZtOCBQs0ZMgQ3XXXXSpatKiSkpKuOd8g89TYwYMH7W1XztlZt26d6tSpI0mKjY21nza73nyXs2fPqk+fPgoPD5eHh4dKly6thx9+WNu3b7f3CQ8PV+fOnbOse/V8oczX9Pnnn+u1115TUFCQvL299fjjj+vw4cNZ1q1WrZq2bdumBg0ayMvLSxEREZo6dep137dZs2bJZrNpx44dWZaNGjVKrq6u+uuvv647hiSdOHFCbdu2lZ+fn0qUKKHevXvr4sWL9uWNGzdWjRo1sl23UqVKiomJueE2rjZnzhwVKVJE/fv3t7ddPb8mc9/v379fnTt3VkBAgPz9/RUbG6vz5887jJeSkqJXXnlFpUqVkq+vrx5//HH9+eefOaolNTVVQ4cOVa1ateTv7y9vb2/df//9Wrt2rUO/zDlT48eP17Rp01SuXDl5eHioTp062rJlS5ZxlyxZomrVqsnT01PVqlXTl19+mYt3SPruu+/UuHFj+fr6ys/PT3Xq1NH8+fMd+ixcuFC1atWSl5eXSpYsqeeeey5H+/zSpUsaOXKk/TWEh4frtddeU0pKikO/zPlWK1asUO3ateXl5aWPPvooV68Ddw7CDiApMTFRJ06ccHhcaeTIkfrmm2/Ur18/jRo16qaO1FSpUkUjRoyQJHXv3l2ffPKJPvnkEz3wwAPXXOff//63pkyZojZt2ujDDz9Uv3795OXlpbi4uDzX8dZbb+mbb77RwIED1atXL61atUpNmzbVhQsXHPqdPn1ajz76qGrVqqVx48apTJkyevHFFzVz5sxrjv3UU0/Jy8tL8+bNy7Js3rx5io6O1l133XXDGtu2bauLFy9q9OjRevTRR/Xee++pe/fu9uUdOnTQ//73P+3Zs8dhvS1btmjv3r167rnnbriNK02bNk2xsbEaNGiQ3n777RzVd/bsWY0ePVpt27bV7NmzNXz4cIc+Xbt21aRJk9SsWTONGTNGbm5uatGiRY7qSUpK0scff6zo6GiNHTtWw4YN0z///KOYmJhs53vNnz9fb7/9tl544QW9+eabOnjwoJ588kmlpaXZ+6xcuVJt2rSRzWbT6NGj1bp1a8XGxmrr1q05qmn27Nlq0aKFTp06pcGDB2vMmDGKjIzU8uXLHfq0bdtWrq6uGj16tLp166bFixerUaNGOnPmzHXH79q1q4YOHaqaNWtq4sSJaty4sUaPHq1nnnkmS9/4+Hi1a9dODz/8sN59911OCePaDHAHmzVrlpGU7cMYY9auXWskmbvvvtucP3/eYd033njDZPcrlDlmQkKCva1x48amcePG9udbtmwxksysWbNyVKe/v7/p0aPHdfuEhYWZTp06ZWm/etuZr+muu+4ySUlJ9vb/9//+n5Fk3n33XYd1JZl33nnH3paSkmIiIyNN6dKlTWpqqjHGmISEhCyvp127diYkJMSkp6fb27Zv356j15353j7++OMO7S+99JKRZHbt2mWMMebMmTPG09PTDBw40KFfr169jLe3t0lOTr7udsLCwkyLFi2MMca8++67xmazmZEjR2bpJ8m88cYbWep7/vnnHfo98cQTpkSJEvbnO3fuNJLMSy+95NCvffv2WcbMzqVLl0xKSopD2+nTp01gYKDDtjPf/xIlSphTp07Z27/66isjyXz99df2tsjISBMcHGzOnDljb1u5cqWRZMLCwq5bz5kzZ4yvr6+57777zIULFxyWZWRkGGOMSU1NNaVLlzbVqlVz6LNs2TIjyQwdOtTedvXvUOb71bVrV4ex+/XrZySZ77//3t4WFhZmJJnly5dft2bAGGM4sgNImjx5slatWuXwuFKnTp0KdC5AQECANm/erL///ttpY3bs2FG+vr7250899ZSCg4P17bffOvQrUqSIXnjhBftzd3d3vfDCCzp+/Li2bdt23fH//vtvh1Mu8+bNk5eXl9q0aZOjGnv06OHw/OWXX5Yke43+/v5q1aqVPvvsMxljJEnp6en6/PPP1bp1a3l7e+doO+PGjVPv3r01duxYDRkyJEfrSJePuF3p/vvv18mTJ5WUlORQZ69evRz69enTJ0fju7q62o8iZmRk6NSpU7p06ZJq167tcAoz09NPP61ixYo51CNJv//+uyTpyJEj2rlzpzp16iR/f397v4cfflhVq1a9YT2rVq3S2bNnNWjQoCzzmDJP6W7dulXHjx/XSy+95NCnRYsWqly5sr755ptrjp/5fvXt29eh/dVXX5WkLOtGRETk6VQl7jyEHUBS3bp11bRpU4fHla6+UutWGzdunPbs2aPQ0FDVrVtXw4YNs/8By6sKFSo4PLfZbCpfvrzDXCNJCgkJyRIaKlasKElZ+l7p4YcfVnBwsP1UVkZGhj777DO1atXKIWTlpsZy5crJxcXFYbsdO3bUoUOH9N///leStHr1ah07dkwdOnTI0TbWr1+vgQMHauDAgQ7zdHKibNmyDs8zg8bp06clSX/88YdcXFxUrlw5h36VKlXK8TbmzJmj6tWry9PTUyVKlFCpUqX0zTffKDExMU/1SFnf15zWdODAAUnXv1IxcxvZjVe5cmX78mut6+LiovLlyzu0BwUFKSAgIMu6Bf17idsHYQfIgeyO6lzrZmjp6elO337btm31+++/6/3331dISIjefvtt3XPPPfruu+8KpJ6ccHV1Vfv27bVo0SJdvHhRa9eu1d9//53reTRXyu41xsTEKDAwUJ9++qkk6dNPP1VQUFCWwHot99xzjypVqqRPPvlECQkJuarH1dU12/bMo0w369NPP1Xnzp1Vrlw5zZgxQ8uXL9eqVav00EMPKSMj45bXc6vk9EaDXHmFnCLsAHmU+b/mqydcXu9/rpnyctfY4OBgvfTSS1qyZIkSEhJUokQJvfXWWw71ZDf581r17Nu3z+G5MUb79+/Pchfdv//+W+fOnXNo27t3ryTd8I67HTt2VFJSkr7++mvNmzdPpUqVytVph6tr3L9/vzIyMhy2mxmqvvjiC50+fVpLlixRu3btrvmH/2olS5bU6tWr5ebmpiZNmjj1VGFYWJgyMjLsR0QyxcfH52j9L774QnfffbcWL16sDh06KCYmRk2bNnW4Ii239UhZ39ec1pR5hOrqCeHZbSO78eLj4+3Lr7VuRkZGlvqOHTumM2fOXHdd4HoIO0AeZX7w//DDD/a2c+fOac6cOTdcN/O00I2uTJEuH5m5+pRF6dKlFRIS4nA5brly5bRp0yalpqba25YtW5blcvJMc+fO1dmzZ+3Pv/jiCx05ckTNmzd36Hfp0iWHS3pTU1P10UcfqVSpUqpVq9Z1a69evbqqV6+ujz/+WIsWLdIzzzyTq5vzTZ482eH5+++/L0lZauzQoYNOnz6tF154QcnJybk+elSmTBmtXr1aFy5c0MMPP6yTJ0/mav1ryazzvffec2ifNGlSjtbPDGxXHpnZvHmzNm7cmKd6goODFRkZqTlz5jj8TK1atUq//vrrDddv1qyZfH19NXr06CyBK7PG2rVrq3Tp0po6darDz+d3332nuLi4616J9uijj0rK+v5MmDBBknJ8FRtwNW4qCORRs2bNVLZsWXXp0kX9+/eXq6urZs6cqVKlSunQoUPXXbdcuXIKCAjQ1KlT5evrK29vb913333ZzkE4e/asypQpo6eeeko1atSQj4+PVq9erS1btuidd96x9+vatau++OILPfLII2rbtq0OHDigTz/9NMt8kUzFixdXo0aNFBsbq2PHjmnSpEkqX768unXr5tAvJCREY8eO1cGDB1WxYkV9/vnn2rlzp6ZNmyY3N7cbvk8dO3ZUv379JCnXISQhIUGPP/64HnnkEW3cuFGffvqp2rdvn+XeOlFRUapWrZoWLlyoKlWqqGbNmrnajiSVL19eK1euVHR0tGJiYvT999/Lz88v1+NcKTIyUu3atdOHH36oxMRENWjQQGvWrNH+/ftztP5jjz2mxYsX64knnlCLFi2UkJCgqVOnqmrVqkpOTs5TTaNHj1aLFi3UqFEjPf/88zp16pTef/993XPPPTcc08/PTxMnTlTXrl1Vp04dtW/fXsWKFdOuXbt0/vx5zZkzR25ubho7dqxiY2PVuHFjtWvXTseOHdO7776r8PBwvfLKK9ccv0aNGurUqZOmTZumM2fOqHHjxvr55581Z84ctW7dWg8++GCeXjPApee4o2VeJr5ly5Zsl2depr1w4cJsl2/bts3cd999xt3d3ZQtW9ZMmDAhR5eeG3P5suCqVauaIkWKXPdy7JSUFNO/f39To0YN4+vra7y9vU2NGjXMhx9+mKXvO++8Y+666y7j4eFhGjZsaLZu3XrNS88/++wzM3jwYFO6dGnj5eVlWrRoYf744w+H8Ro3bmzuueces3XrVlO/fn3j6elpwsLCzAcffODQL7tLzzMdOXLEuLq6mooVK2b7+rKTeUnyr7/+ap566inj6+trihUrZnr27JnlkudM48aNM5LMqFGjcrydKy89z7R582bj6+trHnjgAfvtBnSNS8//+ecfh3Wz2/cXLlwwvXr1MiVKlDDe3t6mZcuW5vDhwzm69DwjI8OMGjXKhIWFGQ8PDxMVFWWWLVtmOnXq5HCZeOb7//bbb2cZI7vtLFq0yFSpUsV4eHiYqlWrmsWLF2cZ83qWLl1qGjRoYLy8vIyfn5+pW7eu+eyzzxz6fP755yYqKsp4eHiY4sWLm2effdb8+eefDn2yu31DWlqaGT58uImIiDBubm4mNDTUDB482Fy8eNGhX3b7DrgWmzG32cw1ADdl3bp1evDBB7Vw4UI99dRT1+0bHR2tEydOXHeOxo2cOHFCwcHBGjp0qF5//fU8j3Mj7777rl555RUdPHgwy1VJAO5szNkBkK9mz56t9PT0HF8KnhfGGM2YMUONGzcm6ADIgjk7APLF999/r19//VVvvfWWWrdufcMrt/Li3LlzWrp0qdauXavdu3frq6++cvo2ANz+CDsA8sWIESP0008/qWHDhvarqJztn3/+Ufv27RUQEKDXXntNjz/+eL5sB8DtjTk7AADA0pizAwAALI2wAwAALI05O7r8BYV///23fH1983QbfwAAcOsZY3T27FmFhITIxeXax28IO7r83T+hoaEFXQYAAMiDw4cPq0yZMtdcTtiR5OvrK+nym3Wzt4cHAAC3RlJSkkJDQ+1/x6+FsKP/+wZqPz8/wg4AALeZG01BYYIyAACwNMIOAACwNMIOAACwNObsAABwDenp6UpLSyvoMu5Yrq6uKlKkyE3fFoawAwBANpKTk/Xnn3+Kb1UqWEWLFlVwcLDc3d3zPAZhBwCAq6Snp+vPP/9U0aJFVapUKW44WwCMMUpNTdU///yjhIQEVahQ4bo3Drwewg4AAFdJS0uTMUalSpWSl5dXQZdzx/Ly8pKbm5v++OMPpaamytPTM0/jMEEZAIBr4IhOwcvr0RyHMZxQBwAAQKFF2AEAAJZWoGHnhx9+UMuWLRUSEiKbzaYlS5Y4LDfGaOjQoQoODpaXl5eaNm2qffv2OfQ5deqUnn32Wfn5+SkgIEBdunRRcnLyLXwVAADkv3Xr1slms+nMmTO3dLuzZ89WQEDALd2msxVo2Dl37pxq1KihyZMnZ7t83Lhxeu+99zR16lRt3rxZ3t7eiomJ0cWLF+19nn32Wf3yyy9atWqVli1bph9++EHdu3e/VS8BAIAsOnfuLJvNluWxf//+PI/ZoEEDHTlyRP7+/pKsEUJulQK9Gqt58+Zq3rx5tsuMMZo0aZKGDBmiVq1aSZLmzp2rwMBALVmyRM8884zi4uK0fPlybdmyRbVr15Ykvf/++3r00Uc1fvx4hYSE3LLXAgDAlR555BHNmjXLoa1UqVJZ+qWmpuboHjLu7u4KCgpyWn23Ulpamtzc3Aps+4V2zk5CQoKOHj2qpk2b2tv8/f113333aePGjZKkjRs3KiAgwB50JKlp06ZycXHR5s2brzl2SkqKkpKSHB4AADiTh4eHgoKCHB6urq6Kjo5Wz5491adPH5UsWVIxMTE6ePCgbDabdu7caV//zJkzstlsWrdunSTH01jr1q1TbGysEhMT7UeNhg0bds1avv76a9WpU0eenp4qWbKknnjiCfuy06dPq2PHjipWrJiKFi2q5s2bZ5kycrUpU6aoXLlycnd3V6VKlfTJJ584LLfZbJoyZYoef/xxeXt766233sr1++dMhfY+O0ePHpUkBQYGOrQHBgbalx09elSlS5d2WF6kSBEVL17c3ic7o0eP1vDhw51cMe404YO+KegS7lgHx7Qo6BKAmzJnzhy9+OKL2rBhQ57Wb9CggSZNmqShQ4cqPj5ekuTj45Nt32+++UZPPPGE/vOf/2ju3LlKTU3Vt99+a1/euXNn7du3T0uXLpWfn58GDhyoRx99VL/++mu2R2O+/PJL9e7dW5MmTVLTpk21bNkyxcbGqkyZMnrwwQft/YYNG6YxY8Zo0qRJKlKkYONGoQ07+Wnw4MHq27ev/XlSUpJCQ0MLsCIAgNUsW7bMIYA0b95cCxculCRVqFBB48aNsy87ePBgrsZ2d3eXv7+/bDbbDU9tvfXWW3rmmWcc/pNfo0YNSbKHnA0bNqhBgwaSpHnz5ik0NFRLlizRv/71ryzjjR8/Xp07d9ZLL70kSerbt682bdqk8ePHO4Sd9u3bKzY2NlevK78U2tNYmTvv2LFjDu3Hjh2zLwsKCtLx48cdll+6dEmnTp267s738PCQn5+fwwMAAGd68MEHtXPnTvvjvffesy+rVavWLatj586datKkSbbL4uLiVKRIEd133332thIlSqhSpUqKi4u75joNGzZ0aGvYsGGW/ldOMSlohTbsREREKCgoSGvWrLG3JSUlafPmzapfv74kqX79+jpz5oy2bdtm7/P9998rIyPDYccBAHCreXt7q3z58vZHcHCww7IrZd4l+MovHXXWt60X1NddXP0aC1KBhp3k5GR74pUuT0reuXOnDh06JJvNpj59+ujNN9/U0qVLtXv3bnXs2FEhISFq3bq1JKlKlSp65JFH1K1bN/3888/asGGDevbsqWeeeYYrsQAAt43Mq7SOHDlib7tysnJ23N3dlZ6efsOxq1ev7nDg4EpVqlTRpUuXHC7qOXnypOLj41W1atVrrnP1XKMNGzZcs39hUKBzdrZu3epwfi9zHk2nTp00e/ZsDRgwQOfOnVP37t115swZNWrUSMuXL3f4IrB58+apZ8+eatKkiVxcXNSmTRuHQ4UAABR2Xl5eqlevnsaMGaOIiAgdP35cQ4YMue464eHhSk5O1po1a1SjRg0VLVpURYsWzdLvjTfeUJMmTVSuXDk988wzunTpkr799lsNHDhQFSpUUKtWrdStWzd99NFH8vX11aBBg3TXXXfZb/tytf79+6tt27aKiopS06ZN9fXXX2vx4sVavXq1U96L/FCgR3aio6NljMnymD17tqTLl66NGDFCR48e1cWLF7V69WpVrFjRYYzixYtr/vz5Onv2rBITEzVz5sxrzkgHAKCwmjlzpi5duqRatWrZz2xcT4MGDfTvf/9bTz/9tEqVKuUw4flK0dHRWrhwoZYuXarIyEg99NBD+vnnn+3LZ82apVq1aumxxx5T/fr1ZYzRt99+e8374rRu3Vrvvvuuxo8fr3vuuUcfffSRZs2apejo6Dy/9vxmM1eeILxDJSUlyd/fX4mJiUxWRo5x6XnB4dJz5LeLFy8qISFBERERDmcTcOtdb1/k9O93oZ2gDAAA4AyEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGkF+t1YAADcTuIqV7ml26vyW9wt3V6m6OhoRUZGatKkSQWyfWfjyA4AALA0wg4AABaVmppa0CUUCoQdAAAsIjo6Wj179lSfPn1UsmRJxcTEaM+ePWrevLl8fHwUGBioDh066MSJE/Z1zp07p44dO8rHx0fBwcF65513CvAV5A/CDgAAFjJnzhy5u7trw4YNGjNmjB566CFFRUVp69atWr58uY4dO6a2bdva+/fv31/r16/XV199pZUrV2rdunXavn17Ab4C52OCMgAAFlKhQgWNGzdOkvTmm28qKipKo0aNsi+fOXOmQkNDtXfvXoWEhGjGjBn69NNP1aRJE0mXw1KZMmUKpPb8QtgBAMBCatWqZf/3rl27tHbtWvn4+GTpd+DAAV24cEGpqam677777O3FixdXpUqVbkmttwphBwAAC/H29rb/Ozk5WS1bttTYsWOz9AsODtb+/ftvZWkFhrADAIBF1axZU4sWLVJ4eLiKFMn6J79cuXJyc3PT5s2bVbZsWUnS6dOntXfvXjVu3PhWl5tvmKAMAIBF9ejRQ6dOnVK7du20ZcsWHThwQCtWrFBsbKzS09Pl4+OjLl26qH///vr++++1Z88ede7cWS4u1ooHHNkBACCHCuqOxnkVEhKiDRs2aODAgWrWrJlSUlIUFhamRx55xB5o3n77bfvpLl9fX7366qtKTEws4Mqdy2aMMQVdREFLSkqSv7+/EhMT5efnV9Dl4DYRPuibgi7hjnVwTIuCLgEWd/HiRSUkJCgiIkKenp4FXc4d7Xr7Iqd/v611nAoAAOAqhB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpfF0EAAA5dKvvnJ7bu4VHR0crMjJSkyZNynZ5eHi4+vTpoz59+tx8cbcRjuwAAABLI+wAAABLI+wAAGAhly5dUs+ePeXv76+SJUvq9ddfV3bf+X3w4EHZbDbt3LnT3nbmzBnZbDatW7fO3rZnzx41b95cPj4+CgwMVIcOHXTixIlb8Eqch7ADAICFzJkzR0WKFNHPP/+sd999VxMmTNDHH3+cp7HOnDmjhx56SFFRUdq6dauWL1+uY8eOqW3btk6uOn8xQRkAAAsJDQ3VxIkTZbPZVKlSJe3evVsTJ05Ut27dcj3WBx98oKioKI0aNcreNnPmTIWGhmrv3r2qWLGiM0vPNxzZAQDAQurVqyebzWZ/Xr9+fe3bt0/p6em5HmvXrl1au3atfHx87I/KlStLkg4cOOC0mvMbR3YAALgDubhcPt5x5XyetLQ0hz7Jyclq2bKlxo4dm2X94ODg/C3QiQg7AABYyObNmx2eb9q0SRUqVJCrq6tDe6lSpSRJR44cUVRUlCQ5TFaWpJo1a2rRokUKDw9XkSK3b2TgNBYAABZy6NAh9e3bV/Hx8frss8/0/vvvq3fv3ln6eXl5qV69ehozZozi4uK0fv16DRkyxKFPjx49dOrUKbVr105btmzRgQMHtGLFCsXGxubptFhBuX1jGgAAt1hu72hcEDp27KgLFy6obt26cnV1Ve/evdW9e/ds+86cOVNdunRRrVq1VKlSJY0bN07NmjWzLw8JCdGGDRs0cOBANWvWTCkpKQoLC9MjjzxiPw12OyDsAABgEVfeH2fKlClZlh88eNDheZUqVfTTTz85tF19T54KFSpo8eLFTquxINw+sQwAACAPCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSuIMyAAA5Ncz/Fm8v8dZuz6I4sgMAACyNsAMAwB3KGKNLly4VdBn5jrADAICFpKSkqFevXipdurQ8PT3VqFEjbdmyRdLlLwq12Wz67rvvVKtWLXl4eOjHH3/UgQMH1KpVKwUGBsrHx0d16tTR6tWrHcYNDw/XqFGj9Pzzz8vX11dly5bVtGnTHPr89NNPioyMlKenp2rXrq0lS5bIZrNp586d9j579uxR8+bN5ePjo8DAQHXo0EEnTpzI1/eEsAMAgIUMGDBAixYt0pw5c7R9+3aVL19eMTExOnXqlL3PoEGDNGbMGMXFxal69epKTk7Wo48+qjVr1mjHjh165JFH1LJlSx06dMhh7HfeeUe1a9fWjh079NJLL+nFF19UfHy8JCkpKUktW7bUvffeq+3bt2vkyJEaOHCgw/pnzpzRQw89pKioKG3dulXLly/XsWPH1LZt23x9T5igDACARZw7d05TpkzR7Nmz1bx5c0nS9OnTtWrVKs2YMUN16tSRJI0YMUIPP/ywfb3ixYurRo0a9ucjR47Ul19+qaVLl6pnz5729kcffVQvvfSSJGngwIGaOHGi1q5dq0qVKmn+/Pmy2WyaPn26PD09VbVqVf3111/q1q2bff0PPvhAUVFRGjVqlL1t5syZCg0N1d69e1WxYsV8eV84sgMAgEUcOHBAaWlpatiwob3Nzc1NdevWVVxcnL2tdu3aDuslJyerX79+qlKligICAuTj46O4uLgsR3aqV69u/7fNZlNQUJCOHz8uSYqPj1f16tXl6elp71O3bl2H9Xft2qW1a9fKx8fH/qhcubK99vzCkR0AAO4w3t7eDs/79eunVatWafz48Spfvry8vLz01FNPKTU11aGfm5ubw3ObzaaMjIwcbzc5OVktW7bU2LFjsywLDg7OxSvInUJ9ZCc9PV2vv/66IiIi5OXlpXLlymnkyJEyxtj7GGM0dOhQBQcHy8vLS02bNtW+ffsKsGoAAApGuXLl5O7urg0bNtjb0tLStGXLFlWtWvWa623YsEGdO3fWE088oXvvvVdBQUE6ePBgrrZdqVIl7d69WykpKfa2zInRmWrWrKlffvlF4eHhKl++vMPj6gDmTIU67IwdO1ZTpkzRBx98oLi4OI0dO1bjxo3T+++/b+8zbtw4vffee5o6dao2b94sb29vxcTE6OLFiwVYOQAAt563t7defPFF9e/fX8uXL9evv/6qbt266fz58+rSpcs116tQoYIWL16snTt3ateuXWrfvn2ujthIsq/TvXt3xcXFacWKFRo/fryky0eAJKlHjx46deqU2rVrpy1btujAgQNasWKFYmNjlZ6envcXfgOF+jTWTz/9pFatWqlFixaSLl/29tlnn+nnn3+WdPmozqRJkzRkyBC1atVKkjR37lwFBgZqyZIleuaZZwqsdgCABd0GdzQeM2aMMjIy1KFDB509e1a1a9fWihUrVKxYsWuuM2HCBD3//PNq0KCBSpYsqYEDByopKSlX2/Xz89PXX3+tF198UZGRkbr33ns1dOhQtW/f3j6PJyQkRBs2bNDAgQPVrFkzpaSkKCwsTI888ohcXPLv+IvNXHlOqJAZNWqUpk2bppUrV6pixYratWuXmjVrpgkTJujZZ5/V77//rnLlymnHjh2KjIy0r9e4cWNFRkbq3XffzXbclJQUh8NsSUlJCg0NVWJiovz8/PL7ZcEiwgd9U9Al3LEOjmlR0CXA4i5evKiEhARFREQ4TLhF7sybN0+xsbFKTEyUl5dXnsa43r5ISkqSv7//Df9+F+ojO4MGDVJSUpIqV64sV1dXpaen66233tKzzz4rSTp69KgkKTAw0GG9wMBA+7LsjB49WsOHD8+/wgEAuAPNnTtXd999t+666y7t2rVLAwcOVNu2bfMcdJylUM/Z+X//7/9p3rx5mj9/vrZv3645c+Zo/PjxmjNnzk2NO3jwYCUmJtofhw8fdlLFAADcuY4eParnnntOVapU0SuvvKJ//etfWe6yXBAK9ZGd/v37a9CgQfa5N/fee6/++OMPjR49Wp06dVJQUJAk6dixYw6XrB07dszhtNbVPDw85OHhka+1AwBwpxkwYIAGDBhQ0GVkUaiP7Jw/fz7LhCVXV1f7DPGIiAgFBQVpzZo19uVJSUnavHmz6tevf0trBQAAhVOhPrLTsmVLvfXWWypbtqzuuece7dixwz5jXLp8KVufPn305ptvqkKFCoqIiNDrr7+ukJAQtW7dumCLBwDc9grxNTx3DGfsg0Iddt5//329/vrreumll3T8+HGFhITohRde0NChQ+19BgwYoHPnzql79+46c+aMGjVqpOXLlzN7HgCQZ66urpKk1NTUAp9ce6c7f/68pKx3b86NQn3p+a2S00vXgCtx6XnB4dJz5DdjjA4dOqS0tDSFhITk6z1gkD1jjM6fP6/jx48rICAg26+TsMSl5wAAFASbzabg4GAlJCTojz/+KOhy7mgBAQH2C5LyirADAEA23N3dVaFChSxfholbx83NzX5K8WYQdgAAuAYXFxfmgFoAJyEBAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICl5TrszJo1S+fPn8+PWgAAAJwu12Fn0KBBCgoKUpcuXfTTTz/lR00AAABOk+uw89dff2nOnDk6ceKEoqOjVblyZY0dO1ZHjx7Nj/oAAABuSq7DTpEiRfTEE0/oq6++0uHDh9WtWzfNmzdPZcuW1eOPP66vvvpKGRkZ+VErAABArt3UBOXAwEA1atRI9evXl4uLi3bv3q1OnTqpXLlyWrdunZNKBAAAyLs8hZ1jx45p/PjxuueeexQdHa2kpCQtW7ZMCQkJ+uuvv9S2bVt16tTJ2bUCAADkWq7DTsuWLRUaGqrZs2erW7du+uuvv/TZZ5+padOmkiRvb2+9+uqrOnz4sNOLBQAAyK1ch53SpUtr/fr12rNnj/r06aPixYtn6VOqVCklJCQ4pcC//vpLzz33nEqUKCEvLy/de++92rp1q325MUZDhw5VcHCwvLy81LRpU+3bt88p2wYAALe/XIedGTNmqH79+tftY7PZFBYWlueiMp0+fVoNGzaUm5ubvvvuO/3666965513VKxYMXufcePG6b333tPUqVO1efNmeXt7KyYmRhcvXrzp7QMAgNtfkZx0eu+993I8YK9evfJczNXGjh2r0NBQzZo1y94WERFh/7cxRpMmTdKQIUPUqlUrSdLcuXMVGBioJUuW6JlnnnFaLQAA4PaUo7AzceLEHA1ms9mcGnaWLl2qmJgY/etf/9L69et111136aWXXlK3bt0kSQkJCTp69Kh9vpAk+fv767777tPGjRuvGXZSUlKUkpJif56UlOS0mgEAQOGSo7DjrPk3ufX7779rypQp6tu3r1577TVt2bJFvXr1kru7uzp16mS/kWFgYKDDeoGBgde9yeHo0aM1fPjwfK0dAAAUDjd1nx1jjIwxzqoli4yMDNWsWVOjRo1SVFSUunfvrm7dumnq1Kk3Ne7gwYOVmJhof3DlGAAA1pWnsDNjxgxVq1ZNnp6e8vT0VLVq1fTxxx87uzYFBweratWqDm1VqlTRoUOHJElBQUGSLt/350rHjh2zL8uOh4eH/Pz8HB4AAMCach12hg4dqt69e6tly5ZauHChFi5cqJYtW+qVV17R0KFDnVpcw4YNFR8f79C2d+9e+5VeERERCgoK0po1a+zLk5KStHnz5hteMQYAAO4MOZqzc6UpU6Zo+vTpateunb3t8ccfV/Xq1fXyyy9rxIgRTivulVdeUYMGDTRq1Ci1bdtWP//8s6ZNm6Zp06ZJujwhuk+fPnrzzTdVoUIFRURE6PXXX1dISIhat27ttDoAAMDtK9dhJy0tTbVr187SXqtWLV26dMkpRWWqU6eOvvzySw0ePFgjRoxQRESEJk2apGeffdbeZ8CAATp37py6d++uM2fOqFGjRlq+fLk8PT2dWgsAALg92UwuZxi//PLLcnNz04QJExza+/XrpwsXLmjy5MlOLfBWSEpKkr+/vxITE5m/gxwLH/RNQZdwxzo4pkVBlwCgEMjp3+9cH9mRLk9QXrlyperVqydJ2rx5sw4dOqSOHTuqb9++9n5XByIAAIBbLddhZ8+ePapZs6Yk6cCBA5KkkiVLqmTJktqzZ4+9n81mc1KJAAAAeZfrsLN27dr8qAMAACBf3NRNBQ8fPswN+QAAQKGW67Bz6dIlvf766/L391d4eLjCw8Pl7++vIUOGKC0tLT9qBAAAyLNcn8Z6+eWXtXjxYo0bN85+476NGzdq2LBhOnnypKZMmeL0IgEAAPIq12Fn/vz5WrBggZo3b25vq169ukJDQ9WuXTvCDgAAKFRyfRrLw8ND4eHhWdojIiLk7u7ujJoAAACcJtdhp2fPnho5cqRSUlLsbSkpKXrrrbfUs2dPpxYHAABws3J9GmvHjh1as2aNypQpoxo1akiSdu3apdTUVDVp0kRPPvmkve/ixYudVykAAEAe5DrsBAQEqE2bNg5toaGhTisIAADAmXIddmbNmpUfdQAAkL+G+Rd0BXeuYYkFuvmbuqkgAABAYZfrIzsRERHX/d6r33///aYKAgAAcKZch50+ffo4PE9LS9OOHTu0fPly9e/f31l1AQAAOEWuw07v3r2zbZ88ebK2bt160wUBAAA4k9Pm7DRv3lyLFi1y1nAAAABO4bSw88UXX6h48eLOGg4AAMApcn0aKyoqymGCsjFGR48e1T///KMPP/zQqcUBAADcrFyHndatWzs8d3FxUalSpRQdHa3KlSs7qy4AAACnyHXYeeONN/KjDgAAgHyR6zk727dv1+7du+3Pv/rqK7Vu3VqvvfaaUlNTnVocAADAzcp12HnhhRe0d+9eSZdvIPj000+raNGiWrhwoQYMGOD0AgEAAG5GrsPO3r17FRkZKUlauHChGjdurPnz52v27Nlceg4AAAqdXIcdY4wyMjIkSatXr9ajjz4q6fI3n584ccK51QEAANykXIed2rVr680339Qnn3yi9evXq0WLFpKkhIQEBQYGOr1AAACAm5HrsDNp0iRt375dPXv21H/+8x+VL19e0uWbCjZo0MDpBQIAANyMXF96Xr16dYersTK9/fbbcnV1dUpRAAAAzpLrsHMtnp6ezhoKAADAaZz23VgAAACFEWEHAABYGmEHAABYWq7DzogRI3T+/Pks7RcuXNCIESOcUhQAAICz5DrsDB8+XMnJyVnaz58/r+HDhzulKAAAAGfJ0x2UbTZblvZdu3apePHiTikKAADAWXJ86XmxYsVks9lks9lUsWJFh8CTnp6u5ORk/fvf/86XIgEAAPIqx2Fn0qRJMsbo+eef1/Dhw+Xv729f5u7urvDwcNWvXz9figQAAMirHIedTp06SZIiIiLUoEEDubm55VtRAAAAzpKjsJOUlCQ/Pz9JUlRUlC5cuKALFy5k2zezHwAAQGGQo7BTrFgxHTlyRKVLl1ZAQEC2E5QzJy6np6c7vUgAAIC8ylHY+f777+1XWq1duzZfCwIAAHCmHIWdxo0bZ/tvAACAwi7X33r+ww8/XHf5Aw88kOdiAAAAnC3XYSc6OjpL29X33AEAACgscn0H5dOnTzs8jh8/ruXLl6tOnTpauXJlftQIAACQZ7k+snPlzQQzPfzww3J3d1ffvn21bds2pxQGAADgDLk+snMtgYGBio+Pd9ZwAAAATpHrIzv/+9//HJ4bY3TkyBGNGTNGkZGRzqoLAADAKXIddiIjI2Wz2WSMcWivV6+eZs6c6bTCAAAAnCHXYSchIcHhuYuLi0qVKiVPT0+nFQUAAOAsuZqzk5aWpueff16pqakKCwtTWFiYQkNDCToAAKDQylXYcXNzyzJnBwAAoDDL9dVYzz33nGbMmJEftQAAADhdrufsXLp0STNnztTq1atVq1YteXt7OyyfMGGC04oDAAC4WbkOO3v27FHNmjUlSXv37nVYduXXRgAAABQGOQo7//vf/1StWjW5uLho7dq1+V0TAACA0+Rozk5UVJROnDghSbr77rt18uTJfC0KAADAWXIUdgICAuz31zl48KAyMjLytSgAAABnydFprDZt2qhx48YKDg6WzWZT7dq15erqmm3f33//3akFAgAA3IwchZ1p06bpySef1P79+9WrVy9169ZNvr6++V0bAADATcvx1ViPPPKIJGnbtm3q3bt3gYSdMWPGaPDgwerdu7cmTZokSbp48aJeffVVLViwQCkpKYqJidGHH36owMDAW14fAAAofHJ9U8FZs2YVSNDZsmWLPvroI1WvXt2h/ZVXXtHXX3+thQsXav369fr777/15JNP3vL6AABA4ZTrsFMQkpOT9eyzz2r69OkqVqyYvT0xMVEzZszQhAkT9NBDD6lWrVqaNWuWfvrpJ23atOma46WkpCgpKcnhAQAArCnXNxUsCD169FCLFi3UtGlTvfnmm/b2bdu2KS0tTU2bNrW3Va5cWWXLltXGjRtVr169bMcbPXq0hg8fnu91S1Jc5Sq3ZDvIqspvcQVdAgCgECj0R3YWLFig7du3a/To0VmWHT16VO7u7goICHBoDwwM1NGjR6855uDBg5WYmGh/HD582NllAwCAQqJQH9k5fPiwevfurVWrVsnT09Np43p4eMjDw8Np4wEAgMKrUB/Z2bZtm44fP66aNWuqSJEiKlKkiNavX6/33ntPRYoUUWBgoFJTU3XmzBmH9Y4dO6agoKCCKRoAABQqhfrITpMmTbR7926HttjYWFWuXFkDBw5UaGio3NzctGbNGrVp00aSFB8fr0OHDql+/foFUTIAAChkCnXY8fX1VbVq1RzavL29VaJECXt7ly5d1LdvXxUvXlx+fn56+eWXVb9+/WtOTgYAAHeWQh12cmLixIlycXFRmzZtHG4qCAAAIN2GYWfdunUOzz09PTV58mRNnjy5YAoCAACFWqGeoAwAAHCzCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSCDsAAMDSihR0AQBQ2MRVrlLQJdyRqvwWV9AlwKI4sgMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACytUIed0aNHq06dOvL19VXp0qXVunVrxcfHO/S5ePGievTooRIlSsjHx0dt2rTRsWPHCqhiAABQ2BTqsLN+/Xr16NFDmzZt0qpVq5SWlqZmzZrp3Llz9j6vvPKKvv76ay1cuFDr16/X33//rSeffLIAqwYAAIVJkYIu4HqWL1/u8Hz27NkqXbq0tm3bpgceeECJiYmaMWOG5s+fr4ceekiSNGvWLFWpUkWbNm1SvXr1CqJsAABQiBTqIztXS0xMlCQVL15ckrRt2zalpaWpadOm9j6VK1dW2bJltXHjxmuOk5KSoqSkJIcHAACwptsm7GRkZKhPnz5q2LChqlWrJkk6evSo3N3dFRAQ4NA3MDBQR48eveZYo0ePlr+/v/0RGhqan6UDAIACdNuEnR49emjPnj1asGDBTY81ePBgJSYm2h+HDx92QoUAAKAwKtRzdjL17NlTy5Yt0w8//KAyZcrY24OCgpSamqozZ844HN05duyYgoKCrjmeh4eHPDw88rNkAABQSBTqIzvGGPXs2VNffvmlvv/+e0VERDgsr1Wrltzc3LRmzRp7W3x8vA4dOqT69evf6nIBAEAhVKiP7PTo0UPz58/XV199JV9fX/s8HH9/f3l5ecnf319dunRR3759Vbx4cfn5+enll19W/fr1uRILAABIKuRhZ8qUKZKk6Ohoh/ZZs2apc+fOkqSJEyfKxcVFbdq0UUpKimJiYvThhx/e4koBAEBhVajDjjHmhn08PT01efJkTZ48+RZUBAAAbjeFes4OAADAzSLsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAASyPsAAAAS7NM2Jk8ebLCw8Pl6emp++67Tz///HNBlwQAAAoBS4Sdzz//XH379tUbb7yh7du3q0aNGoqJidHx48cLujQAAFDALBF2JkyYoG7duik2NlZVq1bV1KlTVbRoUc2cObOgSwMAAAWsSEEXcLNSU1O1bds2DR482N7m4uKipk2bauPGjdmuk5KSopSUFPvzxMRESVJSUpLT60tOT3f6mMiZ/NifV8pIOZ+v4+Pa8nvf8ntbMPJ7vyrF5O/4uLZ82reZPzPGXH/f3vZh58SJE0pPT1dgYKBDe2BgoH777bds1xk9erSGDx+epT00NDRfakQB8fcv6AqQT/wnFXQFyBf8zlrXmPzdt2fPnpX/dX5+bvuwkxeDBw9W37597c8zMjJ06tQplShRQjabrQArK1ySkpIUGhqqw4cPy8/Pr6DLgZOwX62LfWtd7NvsGWN09uxZhYSEXLffbR92SpYsKVdXVx07dsyh/dixYwoKCsp2HQ8PD3l4eDi0BQQE5FeJtz0/Pz9+uSyI/Wpd7FvrYt9mdb0jOplu+wnK7u7uqlWrltasWWNvy8jI0Jo1a1S/fv0CrAwAABQGt/2RHUnq27evOnXqpNq1a6tu3bqaNGmSzp07p9jY2IIuDQAAFDBLhJ2nn35a//zzj4YOHaqjR48qMjJSy5cvzzJpGbnj4eGhN954I8spP9ze2K/Wxb61LvbtzbGZG12vBQAAcBu77efsAAAAXA9hBwAAWBphBwAAWBphBwAAWBphB3k2e/ZsbsaYR9HR0erTp881l4eHh2vSpEm3dJsoXA4ePCibzaadO3cWdCnAbY+wAwAALI2wAyDP0tPTlZGRkaU9NTW1AKpBTmS3b661H5G/jDG6dOlSQZdxRyDsWNTy5cvVqFEjBQQEqESJEnrsscd04MABSf93eHzBggVq0KCBPD09Va1aNa1fv96+/rp162Sz2fTNN9+oevXq8vT0VL169bRnz57rbverr75SzZo15enpqbvvvlvDhw/nl/kaLl26pJ49e8rf318lS5bU66+/ruxue5Xd6YwzZ87IZrNp3bp19rY9e/aoefPm8vHxUWBgoDp06KATJ07kapspKSnq16+f7rrrLnl7e+u+++5z2EbmqculS5eqatWq8vDw0KFDhxQeHq6RI0eqY8eO8vPzU/fu3fXQQw+pZ8+eDtv/559/5O7u7vD1Lne6jIwMjRs3TuXLl5eHh4fKli2rt956y778999/14MPPqiiRYuqRo0a2rhxo8P6P/74o+6//355eXkpNDRUvXr10rlz5+zLs9s32e3HH3/8UW5ubjp69KjD+H369NH999+fv2+ChaSkpKhXr14qXbq0PD091ahRI23ZskXS/32ufvfdd6pVq5b9fT9w4IBatWqlwMBA+fj4qE6dOlq9erXDuOHh4Ro1apSef/55+fr6qmzZspo2bZpDn59++kmRkZHy9PRU7dq1tWTJkiyfHTn5nLAkA0v64osvzKJFi8y+ffvMjh07TMuWLc29995r0tPTTUJCgpFkypQpY7744gvz66+/mq5duxpfX19z4sQJY4wxa9euNZJMlSpVzMqVK83//vc/89hjj5nw8HCTmppqjDFm1qxZxt/f377NH374wfj5+ZnZs2ebAwcOmJUrV5rw8HAzbNiwgngLCrXGjRsbHx8f07t3b/Pbb7+ZTz/91BQtWtRMmzbNGGNMWFiYmThxojHG2PfXjh077OufPn3aSDJr1661Py9VqpQZPHiwiYuLM9u3bzcPP/ywefDBB3O8TWOM6dq1q2nQoIH54YcfzP79+83bb79tPDw8zN69e40xl/e5m5ubadCggdmwYYP57bffzLlz50xYWJjx8/Mz48ePN/v37zf79+838+bNM8WKFTMXL160jz9hwgQTHh5uMjIy8umdvf0MGDDAFCtWzMyePdvs37/f/Pe//zXTp0+37/fKlSubZcuWmfj4ePPUU0+ZsLAwk5aWZowxZv/+/cbb29tMnDjR7N2712zYsMFERUWZzp0728fPbt9caz9WrFjRjBs3zr5uamqqKVmypJk5c+Ytf19uV7169TIhISHm22+/Nb/88ovp1KmTKVasmDl58qT9c7V69epm5cqVZv/+/ebkyZNm586dZurUqWb37t1m7969ZsiQIcbT09P88ccf9nHDwsJM8eLFzeTJk82+ffvM6NGjjYuLi/ntt9+MMcYkJiaa4sWLm+eee8788ssv5ttvvzUVK1Z0+OzIyeeEVRF27hD//POPkWR2795t/xAdM2aMfXlaWpopU6aMGTt2rDHm/8LOggUL7H1OnjxpvLy8zOeff26MyRp2mjRpYkaNGuWw3U8++cQEBwfn4yu7PTVu3NhUqVLF4Y/+wIEDTZUqVYwxuQ87I0eONM2aNXPYxuHDh40kEx8fn6Nt/vHHH8bV1dX89ddfDuM0adLEDB482BhzeZ9LMjt37nToExYWZlq3bu3QduHCBVOsWDH7z4sxxlSvXp3we4WkpCTj4eFhpk+fnmVZ5n7/+OOP7W2//PKLkWTi4uKMMcZ06dLFdO/e3WG9//73v8bFxcVcuHDBGJP9vrnWfhw7dqz958EYYxYtWmR8fHxMcnLyzb3QO0RycrJxc3Mz8+bNs7elpqaakJAQM27cOPvn6pIlS2441j333GPef/99+/OwsDDz3HPP2Z9nZGSY0qVLmylTphhjjJkyZYopUaKEfb8bY8z06dMdPjty8jlhVZzGsqh9+/apXbt2uvvuu+Xn56fw8HBJ0qFDh+x9rvxW+CJFiqh27dqKi4tzGOfKPsWLF1elSpWy9Mm0a9cujRgxQj4+PvZHt27ddOTIEZ0/f96Jr84a6tWrJ5vNZn9ev3597du3T+np6bkea9euXVq7dq3De1+5cmVJsp++vNE2d+/erfT0dFWsWNFhnPXr1zuM4e7ururVq2epoXbt2g7PPT091aFDB82cOVOStH37du3Zs0edO3fO9euzqri4OKWkpKhJkybX7HPlex0cHCxJOn78uKTL+3327NkO+ysmJkYZGRlKSEiwr3f1vpGy34+dO3fW/v37tWnTJkmXT1u2bdtW3t7eeX+Rd5ADBw4oLS1NDRs2tLe5ubmpbt26Dp+bV++P5ORk9evXT1WqVFFAQIB8fHwUFxfn8HktOf4s2Gw2BQUF2X8W4uPj7VMOMtWtW9dh/Zx+TliRJb4IFFm1bNlSYWFhmj59ukJCQpSRkaFq1arl68TR5ORkDR8+XE8++WSWZVf+AiJ3XFwu/5/EXDG3Ji0tzaFPcnKyWrZsqbFjx2ZZP/MP5I0kJyfL1dVV27Ztk6urq8MyHx8f+7+9vLwcAlOm7P4gdu3aVZGRkfrzzz81a9YsPfTQQwoLC8tRPXcCLy+vG/Zxc3Oz/zvzfc+cTJycnKwXXnhBvXr1yrJe2bJl7f/Obt9ktx9Lly6tli1batasWYqIiNB3333nMGcLznH1/ujXr59WrVql8ePHq3z58vLy8tJTTz2V5fP6yp8F6fLPQ24mljvjc+J2RdixoJMnTyo+Pl7Tp0+3Tyz88ccfs/TbtGmTHnjgAUmXJ65u27Yty4TSTZs22T80T58+rb1796pKlSrZbrdmzZqKj49X+fLlnflyLGvz5s0Ozzdt2qQKFSpkCRqlSpWSJB05ckRRUVGSlOXeKzVr1tSiRYsUHh6uIkWu/Wt9vW1GRUUpPT1dx48fd9qE1HvvvVe1a9fW9OnTNX/+fH3wwQdOGdcqKlSoIC8vL61Zs0Zdu3bN9fo1a9bUr7/+6tTfua5du6pdu3YqU6aMypUr53CUAtdXrlw5ubu7a8OGDfZQn5aWpi1btlz3HlcbNmxQ586d9cQTT0i6HEoOHjyYq21XqlRJn376qVJSUuzfjJ45MTpTTj8nrIjTWBZUrFgxlShRQtOmTdP+/fv1/fffq2/fvln6TZ48WV9++aV+++039ejRQ6dPn9bzzz/v0GfEiBFas2aN/fRDyZIl1bp162y3O3ToUM2dO1fDhw/XL7/8ori4OC1YsEBDhgzJj5d52zt06JD69u2r+Ph4ffbZZ3r//ffVu3fvLP28vLxUr149jRkzRnFxcVq/fn2W97RHjx46deqU2rVrpy1btujAgQNasWKFYmNjHU6LXW+bFStW1LPPPquOHTtq8eLFSkhI0M8//6zRo0frm2++yfPr7Nq1q8aMGSNjjP3DHJd5enpq4MCBGjBggObOnasDBw5o06ZNmjFjRo7WHzhwoH766Sf17NlTO3fu1L59+/TVV19l+U9LbsTExMjPz09vvvmmYmNj8zzOncjb21svvvii+vfvr+XLl+vXX39Vt27ddP78eXXp0uWa61WoUEGLFy/Wzp07tWvXLrVv3z7XtwLIXKd79+6Ki4vTihUrNH78eEn/d0Qwp58TVkTYsSAXFxctWLBA27ZtU7Vq1fTKK6/o7bffztJvzJgxGjNmjGrUqKEff/xRS5cuVcmSJbP06d27t2rVqqWjR4/q66+/lru7e7bbjYmJ0bJly7Ry5UrVqVNH9erV08SJEzltcQ0dO3bUhQsXVLduXfXo0UO9e/dW9+7ds+07c+ZMXbp0SbVq1VKfPn305ptvOiwPCQnRhg0blJ6ermbNmunee+9Vnz59FBAQYD8NlpNtzpo1Sx07dtSrr76qSpUqqXXr1tqyZYvDKZHcateunYoUKaJ27dpxOjMbr7/+ul599VUNHTpUVapU0dNPP22fh3Ej1atX1/r167V3717df//9ioqK0tChQxUSEpLnelxcXNS5c2elp6erY8eOeR7nTjVmzBi1adNGHTp0UM2aNbV//36tWLFCxYoVu+Y6EyZMULFixdSgQQO1bNlSMTExqlmzZq626+fnp6+//lo7d+5UZGSk/vOf/2jo0KGS/m8aQU4/J6zIZkw2N/aApR08eFARERHasWOHIiMjs+2zbt06Pfjggzp9+jRfCYGbcvDgQZUrV05btmzJ9Qc4CkaXLl30zz//aOnSpQVdCm7CvHnzFBsbq8TExBzND7OyO+ukHYBbJi0tTSdPntSQIUNUr149gs5tIDExUbt379b8+fMJOrehuXPn6u6779Zdd92lXbt2aeDAgWrbtu0dH3Qkwg6AfLJhwwY9+OCDqlixor744ouCLgc50KpVK/3888/697//rYcffrigy0EuHT16VEOHDtXRo0cVHBysf/3rXw53476TcRoLAABYmrVnJAEAgDseYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFgaYQcAAFja/wcJbdIkgP1m+QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "fruits = ['apple', 'blueberry', 'cherry', 'orange']\n", + "counts = [40, 100, 30, 55]\n", + "bar_labels = ['red', 'blue', '_red', 'orange']\n", + "bar_colors = ['tab:red', 'tab:blue', 'tab:red', 'tab:orange']\n", + "\n", + "ax.bar(fruits, counts, label=bar_labels, color=bar_colors)\n", + "\n", + "ax.set_ylabel('fruit supply')\n", + "ax.set_title('Fruit supply by kind and color')\n", + "ax.legend(title='Fruit color')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGzCAYAAAA1yP25AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9dUlEQVR4nO3deVyU5f7/8fcgMGwCogiSgLjiWq6JWqjhlt+yotNmJzOz5ailno5JnY5bSau2uKBFmJlHs9JTmZoZaimuZdlmaqaWgnZUUBRQuX5/9HNOE6AIyMwNr+fjMY8Hc933fc3nnkucN9e9jM0YYwQAAGBBHq4uAAAAoKwIMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLIIMgAAwLIIMkA1YLPZNHz4cFeXgfOYM2eObDabfv75Z1eXctGsXDusjyCDamn79u26+eabFR0dLR8fH1122WXq1auXXnnlFVeXBgC4CAQZVDvr169Xhw4d9NVXX2no0KGaNm2a7r33Xnl4eOill15ydXkAgIvg6eoCgMr21FNPKSgoSJs3b1ZwcLDTskOHDlVqLSdPnpSfn1+lvqY7MsYoLy9Pvr6+ri4FbiA3N1f+/v6uLgMWwYwMqp3du3erZcuWRUKMJNWtW7dI27x589SpUyf5+fmpVq1auvrqq/Xxxx87rTNjxgy1bNlSdrtdERERGjZsmI4dO+a0Tvfu3dWqVStt3bpVV199tfz8/PTYY49JkvLz8zVu3Dg1btxYdrtdkZGRGjNmjPLz8536WLlypbp166bg4GAFBASoWbNmjj5K46233lKzZs3k4+Oj9u3ba+3atY5l6enpstlsWrx4cZHt5s+fL5vNpoyMjPP2//XXXys+Pl6+vr6qX7++nnzySaWlpRU5f6JBgwb6v//7P61YsUIdOnSQr6+vZs2aJUn66aef9Je//EUhISHy8/NT586dtXTpUqfXKemcjNWrV8tms2n16tWOtj++7126dJGvr69iYmKUkpJSqvcsLS1NPXv2VN26dWW329WiRQvNnDmzyHrn9unzzz9Xp06d5OPjo4YNG2ru3LlF1v3222/Vs2dPp/epsLCwVPVI0qJFi9SiRQv5+PioVatWWrx4se6++241aNDAab3CwkK9+OKLatmypXx8fBQWFqb7779fR48erZTaly1bpquuukr+/v6qWbOm+vfvr2+//dZpnbvvvlsBAQHavXu3rr32WtWsWVMDBw4s9XsByADVTO/evU3NmjXN9u3bL7ju+PHjjSTTpUsX89xzz5mXXnrJ3HHHHebRRx91rDNu3DgjySQkJJhXXnnFDB8+3NSoUcN07NjRFBQUONaLj4834eHhJjQ01IwYMcLMmjXLLFmyxJw9e9b07t3b+Pn5mZEjR5pZs2aZ4cOHG09PTzNgwADH9t98843x9vY2HTp0MC+99JJJSUkxjzzyiLn66qsvuB+STKtWrUydOnXMxIkTzTPPPGOio6ONr6+v430oLCw0kZGRJjExscj21157rWnUqNF5X+OXX34xISEhpnbt2mbChAnm+eefN7Gxsebyyy83ksyePXsc60ZHR5vGjRubWrVqmbFjx5qUlBSTnp5uMjMzTVhYmKlZs6Z5/PHHzZQpU8zll19uPDw8zHvvvefYPi0trUifxhiTnp5uJJn09HSn9z0iIsLUrVvXDB8+3Lz88sumW7duRpJJTU294HvXsWNHc/fdd5upU6eaV155xfTu3dtIMtOmTXNaLzo62jRr1syEhYWZxx57zEybNs20a9fO2Gw288033zjWO3jwoAkNDTW1atUy48ePN88995xp0qSJadOmTbH79Gcffvihsdlspk2bNmbKlCnmiSeeMLVq1TKtWrUy0dHRTuvee++9xtPT0wwdOtSkpKSYRx991Pj7+xf5t3kpap87d66x2Wymb9++5pVXXjHPPPOMadCggQkODnZab9CgQcZut5tGjRqZQYMGmZSUFDN37twLjgtwDkEG1c7HH39satSoYWrUqGHi4uLMmDFjzIoVK5z+YzfGmJ07dxoPDw9z4403mrNnzzotKywsNMYYc+jQIePt7W169+7ttM60adOMJPP666872uLj440kk5KS4tTXm2++aTw8PMxnn33m1J6SkmIkmXXr1hljjJk6daqRZA4fPnzR+yzJSDJbtmxxtO3du9f4+PiYG2+80dGWlJRk7Ha7OXbsmKPt0KFDxtPT04wbN+68rzFixAhjs9nMl19+6Wj773//a0JCQooNMpLM8uXLnfoYOXKkkeT0Xhw/ftzExMSYBg0aON7jiw0ykswLL7zgaMvPzzdXXHGFqVu3bpFx/7OTJ08WaevTp49p2LChU9u5fVq7dq2j7dChQ8Zut5u///3vRfZx48aNTusFBQWVKsi0bt3a1K9f3xw/ftzRtnr1aiPJKch89tlnRpJ56623nLZfvnx5kfaKrv348eMmODjYDB061Om1MzMzTVBQkFP7oEGDjCQzduzY8+43UBKCDKqlTZs2mRtvvNH4+fk5PuRDQ0PNf/7zH8c6zz33nJHk9MH8Z/PnzzeSzEcffeTUnp+fbwIDA51mN+Lj443dbjf5+flO615//fWmZcuW5vDhw06PH3/80UgyTz75pDHmfx/er732WpFgdSGSTFxcXJH2W2+91fj5+ZkzZ84YY4z5/vvvHa9xziuvvGIkmZ07d573NZo0aWK6dOlSpH3EiBHFBpmYmJgi6zZt2tR06tSpSHtycrKR5Jg9utgg4+npaU6cOOG07syZM40kk5GRcd79+qNjx46Zw4cPm8mTJxtJToEvOjratGjRosg2bdq0cQqLTZs2NZ07dy6y3t/+9rcLBplff/3VSDKPPfZYkWWtW7d2CjIPPfSQCQoKMocOHSrybysgIMDce++9l6z29957z0gyn376aZHX7t27t2ncuLFj23NBZu/evSXuN3A+nCODaqljx4567733dPToUW3atElJSUk6fvy4br75Zn333XeSfj+XxsPDQy1atCixn71790qSmjVr5tTu7e2thg0bOpafc9lll8nb29upbefOnfr2228VGhrq9GjatKmk/52AfOutt6pr16669957FRYWpttuu01vv/12qc+taNKkSZG2pk2b6uTJkzp8+LAkKTY2Vh07dtRbb73lWOett95S586d1bhx4/P2v3fv3mLXKWm7mJiYYvv483spSc2bN3csL4uIiIgiJ4+ee38vdO+TdevWKSEhQf7+/goODlZoaKjjvKTs7GyndaOioopsX6tWLadzUvbu3VvsWBS33392bv9L8z7v3LlT2dnZqlu3bpF/WydOnChyYntF1r5z505JUs+ePYu89scff1zktT09PVW/fv3z7TpQIq5aQrXm7e2tjh07qmPHjmratKkGDx6sRYsWady4cZfk9Yq7KqewsFCtW7fWlClTit0mMjLSse3atWuVnp6upUuXavny5Vq4cKF69uypjz/+WDVq1KiQGu+66y49/PDD+uWXX5Sfn68NGzZo2rRpFdL3H5XnCiWbzVZs+9mzZ8vcZ3F2796ta665RrGxsZoyZYoiIyPl7e2tjz76SFOnTi0SIksaA2NMhdZVGoWFhapbt65TKP2j0NBQp+cVWfu59+XNN99UeHh4keWens4fPXa7XR4e/F2NsiHIAP9fhw4dJEkHDx6UJDVq1EiFhYX67rvvdMUVVxS7TXR0tCRpx44datiwoaO9oKBAe/bsUUJCwgVft1GjRvrqq690zTXXlPgBfY6Hh4euueYaXXPNNZoyZYomT56sxx9/XOnp6Rd8rXN/Jf/Rjz/+KD8/P6cPtdtuu02jR4/Wv//9b506dUpeXl669dZbL7gf0dHR2rVrV5H24trO18eOHTuKtP/www+O5dLvMwWSilwZVtKMzYEDB4pc0vvjjz9KUpErff7ogw8+UH5+vt5//32nGYv09PQL70wJoqOjix2L4va7uG2l4t/TP7c1atRIn3zyibp27Vphl7WXtvZGjRpJ+v0qwNL8DgDlQQRGtZOenl7sX5kfffSRpP9Nk99www3y8PDQxIkTi/zlfW77hIQEeXt76+WXX3bqMzU1VdnZ2erfv/8F67nlllv066+/6tVXXy2y7NSpU8rNzZUkHTlypMjycwHrz5dpFycjI0NffPGF4/n+/fv1n//8R71793b6a7xOnTrq16+f5s2bp7feekt9+/ZVnTp1Lth/nz59lJGRoW3btjnajhw5UuKMQHGuvfZabdq0yeky79zcXM2ePVsNGjRwHOY790H5x8vHz549q9mzZxfb75kzZxyXd0u/B81Zs2YpNDRU7du3L7Gec+/LH8c2OztbaWlppd6nP7v22mu1YcMGbdq0ydF2+PDhUr1PERERatWqlebOnasTJ0442tesWaPt27c7rXvLLbfo7NmzmjRpUpF+zpw5UyQEVmTtffr0UWBgoCZPnqzTp08X6efcoUygIjAjg2pnxIgROnnypG688UbFxsaqoKBA69ev18KFC9WgQQMNHjxY0u/nHDz++OOaNGmSrrrqKt10002y2+3avHmzIiIilJycrNDQUCUlJWnChAnq27evrr/+eu3YsUMzZsxQx44ddeedd16wnr/+9a96++239cADDyg9PV1du3bV2bNn9cMPP+jtt9923Gtl4sSJWrt2rfr376/o6GgdOnRIM2bMUP369dWtW7cLvk6rVq3Up08fPfTQQ7Lb7ZoxY4YkacKECUXWveuuu3TzzTdLUrEfhMUZM2aM5s2bp169emnEiBHy9/fXa6+9pqioKB05cuSCs02SNHbsWP373/9Wv3799NBDDykkJERvvPGG9uzZo3fffddx+KFly5bq3LmzkpKSdOTIEYWEhGjBggU6c+ZMsf1GRETomWee0c8//6ymTZtq4cKF2rZtm2bPni0vL68S6+ndu7e8vb113XXX6f7779eJEyf06quvqm7duo6Zu4s1ZswYvfnmm+rbt68efvhh+fv7a/bs2YqOjtbXX399we0nT56sAQMGqGvXrho8eLCOHj2qadOmqVWrVk7hJj4+Xvfff7+Sk5O1bds29e7dW15eXtq5c6cWLVqkl156yTHGFV17YGCgZs6cqb/+9a9q166dbrvtNoWGhmrfvn1aunSpunbtekkOV6KacuWZxoArLFu2zNxzzz0mNjbWBAQEGG9vb9O4cWMzYsQIk5WVVWT9119/3bRt29bY7XZTq1YtEx8fb1auXOm0zrRp00xsbKzx8vIyYWFh5sEHHzRHjx51Wic+Pt60bNmy2JoKCgrMM888Y1q2bOl4nfbt25sJEyaY7OxsY4wxq1atMgMGDDARERHG29vbREREmNtvv938+OOPF9xnSWbYsGFm3rx5pkmTJsZut5u2bds6Xd3zR/n5+aZWrVomKCjInDp16oL9n/Pll1+aq666ytjtdlO/fn2TnJxsXn75ZSPJZGZmOtaLjo42/fv3L7aP3bt3m5tvvtkEBwcbHx8f06lTJ/Phhx8Wu15CQoKx2+2O+5+sXLmy2KuWWrZsabZs2WLi4uKMj4+PiY6OLnIfmJK8//77pk2bNsbHx8c0aNDAPPPMM+b1118v9kqs4vYpPj7exMfHO7V9/fXXJj4+3vj4+JjLLrvMTJo0yaSmppbq8mtjjFmwYIGJjY01drvdtGrVyrz//vsmMTHRxMbGFll39uzZpn379sbX19fUrFnTtG7d2owZM8YcOHDgkteenp5u+vTpY4KCgoyPj49p1KiRufvuu51uAzBo0CDj7+9/wX0GSmIzxgVnoQFwa2fOnFFERISuu+46paamlquvkSNHatasWTpx4kSFnZB8Mbp3767ffvtN33zzTaW/dmW64oorFBoaqpUrV7q6FKBScY4MgCKWLFmiw4cP66677rqo7U6dOuX0/L///a/efPNNdevWzSUhpio6ffp0kUNoq1ev1ldffaXu3bu7pijAhThHBoDDxo0b9fXXX2vSpElq27at4uPjL2r7uLg4de/eXc2bN1dWVpZSU1OVk5OjJ5544hJVXP38+uuvSkhI0J133qmIiAj98MMPSklJUXh4uB544AFXlwdUOoIMAIeZM2dq3rx5uuKKKzRnzpyL3v7aa6/VO++8o9mzZ8tms6ldu3ZKTU3V1VdfXfHFVlO1atVS+/bt9dprr+nw4cPy9/dX//799fTTT6t27dquLg+odJwjAwAALItzZAAAgGURZAAAgGVV+XNkCgsLdeDAAdWsWbNUN+QCAACuZ4zR8ePHFRERcd7v4qryQebAgQOOL90DAADWsn///vN+O3qVDzI1a9aU9PsbERgY6OJqAABAaeTk5CgyMtLxOV6SKh9kzh1OCgwMJMgAAGAxFzothJN9AQCAZRFkAACAZRFkAACAZVX5c2QAADjn7NmzOn36tKvLgKQaNWrI09Oz3LdGIcgAAKqFEydO6JdffhHfzOM+/Pz8VK9ePXl7e5e5D4IMAKDKO3v2rH755Rf5+fkpNDSUG6S6mDFGBQUFOnz4sPbs2aMmTZqc96Z350OQAQBUeadPn5YxRqGhofL19XV1OZDk6+srLy8v7d27VwUFBfLx8SlTP5zsCwCoNpiJcS9lnYVx6qMC6gAAAHAJggwAALAszpEBAFRbDcYurdTX+/np/pX6etUBMzIAALixu+++WzabTQ888ECRZcOGDZPNZtPdd99d+YW5CYIMAABuLjIyUgsWLNCpU6ccbXl5eZo/f76ioqJcWJnrEWQAAHBz7dq1U2RkpN577z1H23vvvaeoqCi1bdvW0VZYWKjk5GTFxMTI19dXl19+ud555x3H8tWrV8tms2nVqlXq0KGD/Pz81KVLF+3YsaNS96ciEWSAEuTm5spms8lmsyk3N9fV5QCo5u655x6lpaU5nr/++usaPHiw0zrJycmaO3euUlJS9O2332rUqFG68847tWbNGqf1Hn/8cb3wwgvasmWLPD09dc8991TKPlwKnOwLAIAF3HnnnUpKStLevXslSevWrdOCBQu0evVqSVJ+fr4mT56sTz75RHFxcZKkhg0b6vPPP9esWbMUHx/v6Oupp55yPB87dqz69++vvLy8Mt+UzpUIMgAAWEBoaKj69++vOXPmyBij/v37q06dOo7lu3bt0smTJ9WrVy+n7QoKCpwOP0lSmzZtHD/Xq1dPknTo0CFLnm9DkAEAwCLuueceDR8+XJI0ffp0p2UnTpyQJC1dulSXXXaZ0zK73e703MvLy/HzubsdFxYWVni9lYEgAwCARfTt21cFBQWy2Wzq06eP07IWLVrIbrdr3759ToeRqjqCDAAAFlGjRg19//33jp//qGbNmnrkkUc0atQoFRYWqlu3bsrOzta6desUGBioQYMGuaLkS86lQaZBgwaOk5b+6G9/+5umT5+uvLw8/f3vf9eCBQuUn5+vPn36aMaMGQoLC3NBtQCAqsaKd9oNDAwscdmkSZMUGhqq5ORk/fTTTwoODla7du302GOPVWKFlctmjDGuevHDhw/r7NmzjufffPONevXqpfT0dHXv3l0PPvigli5dqjlz5igoKEjDhw+Xh4eH1q1bV+rXyMnJUVBQkLKzs887+MCf5ebmKiAgQNLvx579/f1dXBGAssrLy9OePXsUExNjyStzqqrzjUtpP79dOiMTGhrq9Pzpp59Wo0aNFB8fr+zsbKWmpmr+/Pnq2bOnJCktLU3NmzfXhg0b1LlzZ1eUDAAA3Ijb3BCvoKBA8+bN0z333CObzaatW7fq9OnTSkhIcKwTGxurqKgoZWRklNhPfn6+cnJynB4AAKBqcpsgs2TJEh07dszxxVeZmZny9vZWcHCw03phYWHKzMwssZ/k5GQFBQU5HpGRkZewagAA4EpuE2RSU1PVr18/RURElKufpKQkZWdnOx779++voAoBAIC7cYvLr/fu3atPPvnE6cuwwsPDVVBQoGPHjjnNymRlZSk8PLzEvux2e5Eb/wAAgKrJLWZk0tLSVLduXfXv/7/L4Nq3by8vLy+tWrXK0bZjxw7t27fP8R0SAACgenP5jExhYaHS0tI0aNAgeXr+r5ygoCANGTJEo0ePVkhIiAIDAzVixAjFxcVxxRIAAJDkBkHmk08+0b59+4r9CvGpU6fKw8NDiYmJTjfEAwAAkNwgyPTu3Vsl3ZPPx8dH06dPL/LFWAAAAJIbBBkAAFxmfFAlv1525b5eNeAWJ/sCAICiUlJSVLNmTZ05c8bRduLECXl5eal79+5O665evVo2m027d++u5CpdiyADAICb6tGjh06cOKEtW7Y42j777DOFh4dr48aNysvLc7Snp6crKipKjRo1ckWpLkOQAQDATTVr1kz16tXT6tWrHW2rV6/WgAEDFBMTow0bNji19+jRQ/n5+XrooYdUt25d+fj4qFu3btq8ebPTejabTStWrFDbtm3l6+urnj176tChQ1q2bJmaN2+uwMBA3XHHHTp58qRju8LCQiUnJysmJka+vr66/PLL9c477xTpd9WqVerQoYP8/PzUpUsX7dix45K+RwQZAADcWI8ePZSenu54np6eru7duys+Pt7RfurUKW3cuFE9evTQmDFj9O677+qNN97QF198ocaNG6tPnz46cuSIU7/jx4/XtGnTtH79eu3fv1+33HKLXnzxRc2fP19Lly7Vxx9/rFdeecWxfnJysubOnauUlBR9++23GjVqlO68806tWbPGqd/HH39cL7zwgrZs2SJPT89ir0quSJzsCwCAG+vRo4dGjhypM2fO6NSpU/ryyy8VHx+v06dPKyUlRZKUkZGh/Px8de/eXUOHDtWcOXPUr18/SdKrr76qlStXKjU1Vf/4xz8c/T755JPq2rWrJGnIkCFKSkrS7t271bBhQ0nSzTffrPT0dD366KPKz8/X5MmT9cknnzhuStuwYUN9/vnnmjVrluLj4x39PvXUU47nY8eOVf/+/ZWXlycfH59L8v4QZAAAcGPdu3dXbm6uNm/erKNHj6pp06YKDQ1VfHy8Bg8erLy8PK1evVoNGzZUdna2Tp8+7QgokuTl5aVOnTrp+++/d+q3TZs2jp/DwsLk5+fnCDHn2jZt2iRJ2rVrl06ePKlevXo59VFQUKC2bduW2G+9evUkSYcOHVJUVFQ534niEWQAAHBjjRs3Vv369ZWenq6jR486ZjsiIiIUGRmp9evXKz09XT179ryofr28vBw/22w2p+fn2goLCyX9fqWUJC1dulSXXXaZ03p//n7DP/crydHPpUCQQdVV3vtDFPzhRo1P1ZO8beWsh/tHACibHj16aPXq1Tp69KjT4aGrr75ay5Yt06ZNm/Tggw+qUaNG8vb21rp16xQdHS1JOn36tDZv3qyRI0eW+fVbtGghu92uffv2OR1GcgcEGQAA3FyPHj00bNgwnT592ilIxMfHa/jw4SooKFCPHj3k7++vBx98UP/4xz8UEhKiqKgoPfvsszp58qSGDBlS5tevWbOmHnnkEY0aNUqFhYXq1q2bsrOztW7dOgUGBmrQoEEVsZtlQpABAFRfFpkp7dGjh06dOqXY2FiFhYU52uPj43X8+HHHZdqS9PTTT6uwsFB//etfdfz4cXXo0EErVqxQrVq1ylXDpEmTFBoaquTkZP30008KDg5Wu3bt9Nhjj5Wr3/KymZK+6KiKyMnJUVBQkLKzsxUYGOjqclCZynloKbfAKCD5uCTpRFJN+XNoCbCsvLw87dmzRzExMZfs6hlcvPONS2k/v7mPDAAAsCyCDABLys3Nlc1mk81mU25urqvLAeAiBBkAAGBZBBkAAGBZBBkAQLVRxa9vsZyKGA+CDACgyqtRo4ak32+pD/dx7tu1/3xX4YvBfWQAAFWep6en/Pz8dPjwYXl5ecnDg7/jXckYo5MnT+rQoUMKDg52BM2yIMgAAKo8m82mevXqac+ePdq7d6+ry8H/FxwcrPDw8HL1QZABAFQL3t7eatKkCYeX3ISXl1e5ZmLOIcgAAKoNDw8P7uxbxRBkALgG304OoAJwthMAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAsggwAALAs7uwLlMDf2yYzLtDVZaAEjA8AiRkZAABgYQQZAABgWQQZAABgWQQZAABgWQQZAABgWS4PMr/++qvuvPNO1a5dW76+vmrdurW2bNniWG6M0b/+9S/Vq1dPvr6+SkhI0M6dO11YMQAAcBcuDTJHjx5V165d5eXlpWXLlum7777TCy+8oFq1ajnWefbZZ/Xyyy8rJSVFGzdulL+/v/r06aO8vDwXVg4AANyBS+8j88wzzygyMlJpaWmOtpiYGMfPxhi9+OKL+uc//6kBAwZIkubOnauwsDAtWbJEt912W6XXDAAA3IdLZ2Tef/99dejQQX/5y19Ut25dtW3bVq+++qpj+Z49e5SZmamEhARHW1BQkK688kplZGQU22d+fr5ycnKcHgAAoGpyaZD56aefNHPmTDVp0kQrVqzQgw8+qIceekhvvPGGJCkzM1OSFBYW5rRdWFiYY9mfJScnKygoyPGIjIy8tDsBAABcxqVBprCwUO3atdPkyZPVtm1b3XfffRo6dKhSUlLK3GdSUpKys7Mdj/3791dgxQAAwJ24NMjUq1dPLVq0cGpr3ry59u3bJ0kKDw+XJGVlZTmtk5WV5Vj2Z3a7XYGBgU4PAABQNbk0yHTt2lU7duxwavvxxx8VHR0t6fcTf8PDw7Vq1SrH8pycHG3cuFFxcXGVWisAAHA/Lr1qadSoUerSpYsmT56sW265RZs2bdLs2bM1e/ZsSZLNZtPIkSP15JNPqkmTJoqJidETTzyhiIgI3XDDDa4sHQAAuAGXBpmOHTtq8eLFSkpK0sSJExUTE6MXX3xRAwcOdKwzZswY5ebm6r777tOxY8fUrVs3LV++XD4+Pi6sHAAAuAObMca4uohLKScnR0FBQcrOzuZ8mepmfJCrK3A2PtvVFbgXxgfAeZT289vlX1EAAABQVgQZAABgWQQZAABgWQQZAECFy83Nlc1mk81mU25urqvLQRVGkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJZFkAEAAJbl6eoCAABuZnxQ+fsoMP/7+al6kretfP2Nzy7f9nDIzc1VQECAJOnEiRPy9/d3cUXlw4wMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLIIMAACwLE9XFwAAqHr8vW0y4wJdXUbVND6ofNsXmP/9/FQ9ydtWznqyy7d9OTEjAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALMulQWb8+PGy2WxOj9jYWMfyvLw8DRs2TLVr11ZAQIASExOVlZXlwooBAIA7cfmMTMuWLXXw4EHH4/PPP3csGzVqlD744AMtWrRIa9as0YEDB3TTTTe5sFoAAOBOXH4fGU9PT4WHhxdpz87OVmpqqubPn6+ePXtKktLS0tS8eXNt2LBBnTt3ruxSAQCAm3H5jMzOnTsVERGhhg0bauDAgdq3b58kaevWrTp9+rQSEhIc68bGxioqKkoZGRkl9pefn6+cnBynBwAAqJpcGmSuvPJKzZkzR8uXL9fMmTO1Z88eXXXVVTp+/LgyMzPl7e2t4OBgp23CwsKUmZlZYp/JyckKCgpyPCIjIy/xXgAAAFdx6aGlfv36OX5u06aNrrzySkVHR+vtt9+Wr69vmfpMSkrS6NGjHc9zcnIIMwAAVFEuP7T0R8HBwWratKl27dql8PBwFRQU6NixY07rZGVlFXtOzTl2u12BgYFODwAAUDW5VZA5ceKEdu/erXr16ql9+/by8vLSqlWrHMt37Nihffv2KS4uzoVVAgAAd+HSQ0uPPPKIrrvuOkVHR+vAgQMaN26catSoodtvv11BQUEaMmSIRo8erZCQEAUGBmrEiBGKi4vjiiUAACDJxUHml19+0e23367//ve/Cg0NVbdu3bRhwwaFhoZKkqZOnSoPDw8lJiYqPz9fffr00YwZM1xZMgAAlubvbZMZV3VOu3BpkFmwYMF5l/v4+Gj69OmaPn16JVUEAACsxK3OkQEAALgYBBkAAGBZBBkAAGBZBBkXy83NdXzzd25urqvLAQDAUggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsggyAADAsjxdXYCljQ8qfx8F5n8/P1VP8raVr7/x2eXbHgAAC2FGBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWBZBBgAAWJZnRXSSk5OjTz/9VM2aNVPz5s0rostqw9/bJjMu0NVlAABgSWWakbnllls0bdo0SdKpU6fUoUMH3XLLLWrTpo3efffdCi0QAACgJGUKMmvXrtVVV10lSVq8eLGMMTp27JhefvllPfnkkxVaIAAAQEnKFGSys7MVEhIiSVq+fLkSExPl5+en/v37a+fOnRVaIAAAQEnKFGQiIyOVkZGh3NxcLV++XL1795YkHT16VD4+PhVaIAAAQEnKdLLvyJEjNXDgQAUEBCgqKkrdu3eX9Pshp9atW1dkfQAAACUq04zM3/72N2VkZOj111/XunXr5OHxezcNGzYs8zkyTz/9tGw2m0aOHOloy8vL07Bhw1S7dm0FBAQoMTFRWVlZZeofAABUPWW+j0yHDh3Uv39//frrrzpz5owkqX///uratetF97V582bNmjVLbdq0cWofNWqUPvjgAy1atEhr1qzRgQMHdNNNN5W1ZAAAUMWUKcicPHlSQ4YMkZ+fn1q2bKl9+/ZJkkaMGKGnn376ovo6ceKEBg4cqFdffVW1atVytGdnZys1NVVTpkxRz5491b59e6WlpWn9+vXasGFDWcoGAABVTJmCTFJSkr766iutXr3a6eTehIQELVy48KL6GjZsmPr376+EhASn9q1bt+r06dNO7bGxsYqKilJGRkaJ/eXn5ysnJ8fpAQAAqqYyney7ZMkSLVy4UJ07d5bNZnO0t2zZUrt37y51PwsWLNAXX3yhzZs3F1mWmZkpb29vBQcHO7WHhYUpMzOzxD6Tk5M1YcKEUtcAAACsq0wzMocPH1bdunWLtOfm5joFm/PZv3+/Hn74Yb311lsVesl2UlKSsrOzHY/9+/dXWN8AAMC9lCnIdOjQQUuXLnU8PxdeXnvtNcXFxZWqj61bt+rQoUNq166dPD095enpqTVr1ujll1+Wp6enwsLCVFBQoGPHjjltl5WVpfDw8BL7tdvtCgwMdHoAAICqqUyHliZPnqx+/frpu+++05kzZ/TSSy/pu+++0/r167VmzZpS9XHNNddo+/btTm2DBw9WbGysHn30UUVGRsrLy0urVq1SYmKiJGnHjh3at29fqcMSAACo2soUZLp166avvvpKycnJat26tT7++GO1a9dOGRkZpb4hXs2aNdWqVSunNn9/f9WuXdvRPmTIEI0ePVohISEKDAzUiBEjFBcXp86dO5elbAAAUMVcdJA5ffq07r//fj3xxBN69dVXL0VNDlOnTpWHh4cSExOVn5+vPn36aMaMGZf0NQEAgHVcdJDx8vLSu+++qyeeeKLCi1m9erXTcx8fH02fPl3Tp0+v8NcCAADWV6aTfW+44QYtWbKkgksBAAC4OGU6R6ZJkyaaOHGi1q1bp/bt28vf399p+UMPPVQhxQEAAJxPmYJMamqqgoODtXXrVm3dutVpmc1mI8gAAIBKUaYgs2fPnoquA3A7uQVGAcnHJUknkmrK37t0N3sEAFSeMn/79TnGGBljKqIWAACAi1LmIDN37ly1bt1avr6+8vX1VZs2bfTmm29WZG0AAADnVaZDS1OmTNETTzyh4cOHq2vXrpKkzz//XA888IB+++03jRo1qkKLBAAAKE6Zgswrr7yimTNn6q677nK0XX/99WrZsqXGjx9PkAEAAJWiTIeWDh48qC5duhRp79Kliw4ePFjuogAAAEqjTEGmcePGevvtt4u0L1y4UE2aNCl3UQAAAKVRpkNLEyZM0K233qq1a9c6zpFZt26dVq1aVWzAAQAAuBTKNCOTmJiojRs3qk6dOlqyZImWLFmiOnXqaNOmTbrxxhsrukYAAIBilWlGRpLat2+vefPmVWQtAIAqghtKorKUaUbmo48+0ooVK4q0r1ixQsuWLSt3UQAAAKVRpiAzduxYnT17tki7MUZjx44td1EAAAClUaYgs3PnTrVo0aJIe2xsrHbt2lXuogAAAEqjTEEmKChIP/30U5H2Xbt2yd/fv9xFAQAAlEaZTvYdMGCARo4cqcWLF6tRo0aSfg8xf//733X99ddXaIFAWTXIm1+u7QsL8iTdLElqnpcmj0KfcvX3c7m2BipPeX93JH5/UHnKNCPz7LPPyt/fX7GxsYqJiVFMTIxiY2NVu3ZtPf/88xVdIwAAQLHKNCMTFBSk9evXa+XKlfrqq6/k6+uryy+/XFdddVVF1wcAAFCii5qRycjI0IcffihJstls6t27t+rWravnn39eiYmJuu+++5Sfn39JCgUAAPiziwoyEydO1Lfffut4vn37dg0dOlS9evXS2LFj9cEHHyg5ObnCiwQAACjORR1a2rZtmyZNmuR4vmDBAnXq1EmvvvqqJCkyMlLjxo3T+PHjK7RIAPgz7hzr3jy8fRT96IeuLgPVwEXNyBw9elRhYWGO52vWrFG/fv0czzt27Kj9+/dXXHUAAADncVFBJiwsTHv27JEkFRQU6IsvvlDnzp0dy48fPy4vL6+KrRAAAKAEFxVkrr32Wo0dO1afffaZkpKS5Ofn53Sl0tdff+24rwwAAMCldlHnyEyaNEk33XST4uPjFRAQoDfeeEPe3t6O5a+//rp69+5d4UUCAAAU56KCTJ06dbR27VplZ2crICBANWrUcFq+aNEiBQQEVGiBAAAAJSnzDfGKExISUq5iAAAALkaZvqIAAADAHRBkAACAZRFkAACAZZXpHBmgOuDOpADg/piRAQAAlkWQAQAAlkWQAQAAlkWQAQAAlkWQAQAAluXSIDNz5ky1adNGgYGBCgwMVFxcnJYtW+ZYnpeXp2HDhql27doKCAhQYmKisrKyXFgxAABwJy4NMvXr19fTTz+trVu3asuWLerZs6cGDBigb7/9VpI0atQoffDBB1q0aJHWrFmjAwcO6KabbnJlyQAAwI249D4y1113ndPzp556SjNnztSGDRtUv359paamav78+erZs6ckKS0tTc2bN9eGDRvUuXNnV5QMAADciNucI3P27FktWLBAubm5iouL09atW3X69GklJCQ41omNjVVUVJQyMjJK7Cc/P185OTlODwAAUDW5/M6+27dvV1xcnPLy8hQQEKDFixerRYsW2rZtm7y9vRUcHOy0flhYmDIzM0vsLzk5WRMmTLjEVQMorwZ588u1fWFBnqSbJUnN89LkUehTrv5+LtfWAFzF5TMyzZo107Zt27Rx40Y9+OCDGjRokL777rsy95eUlKTs7GzHY//+/RVYLQAAcCcun5Hx9vZW48aNJUnt27fX5s2b9dJLL+nWW29VQUGBjh075jQrk5WVpfDw8BL7s9vtstvtl7psAADgBlw+I/NnhYWFys/PV/v27eXl5aVVq1Y5lu3YsUP79u1TXFycCysEAADuwqUzMklJSerXr5+ioqJ0/PhxzZ8/X6tXr9aKFSsUFBSkIUOGaPTo0QoJCVFgYKBGjBihuLg4rlgCAACSXBxkDh06pLvuuksHDx5UUFCQ2rRpoxUrVqhXr16SpKlTp8rDw0OJiYnKz89Xnz59NGPGDFeWDACApeUWGAUkH5cknUiqKX9vm4srKh+XBpnU1NTzLvfx8dH06dM1ffr0SqoIAABYidudIwMAAFBaBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZBBkAAGBZLv+uJQAAUHp8c7wzZmQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlcbIvAEvy8PZR9KMfuroMAC7GjAwAALAsggwAALAsggwAALAsggwAALAsTvYFAKAaqWonyjMjAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsgAwAALIsg42K5BUa2CTmyTchRboFxdTkAAFgKQQYAAFgWQQYAAFgWQQYAAFgWQQYAAFgWQQYAAFiWS4NMcnKyOnbsqJo1a6pu3bq64YYbtGPHDqd18vLyNGzYMNWuXVsBAQFKTExUVlaWiyoGAADuxKVBZs2aNRo2bJg2bNiglStX6vTp0+rdu7dyc3Md64waNUoffPCBFi1apDVr1ujAgQO66aabXFg1AABwF56ufPHly5c7PZ8zZ47q1q2rrVu36uqrr1Z2drZSU1M1f/589ezZU5KUlpam5s2ba8OGDercubMrygYAAG7Crc6Ryc7OliSFhIRIkrZu3arTp08rISHBsU5sbKyioqKUkZFRbB/5+fnKyclxegAAgKrJpTMyf1RYWKiRI0eqa9euatWqlSQpMzNT3t7eCg4Odlo3LCxMmZmZxfaTnJysCRMmXOpyJUkN8uaXu4/CgjxJN0uSmuelyaPQp1z9/VzuigAAsA63mZEZNmyYvvnmGy1YsKBc/SQlJSk7O9vx2L9/fwVVCAAA3I1bzMgMHz5cH374odauXav69es72sPDw1VQUKBjx445zcpkZWUpPDy82L7sdrvsdvulLhkAALgBl87IGGM0fPhwLV68WJ9++qliYmKclrdv315eXl5atWqVo23Hjh3at2+f4uLiKrtcAADgZlw6IzNs2DDNnz9f//nPf1SzZk3HeS9BQUHy9fVVUFCQhgwZotGjRyskJESBgYEaMWKE4uLiuGIJAAC4NsjMnDlTktS9e3en9rS0NN19992SpKlTp8rDw0OJiYnKz89Xnz59NGPGjEquFAAAuCOXBhljzAXX8fHx0fTp0zV9+vRKqAgAAFiJ21y1BAAAcLEIMgAAwLLc4vLr6szD20fRj37o6jIAALAkZmQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBlEWQAAIBluTTIrF27Vtddd50iIiJks9m0ZMkSp+XGGP3rX/9SvXr15Ovrq4SEBO3cudM1xQIAALfj0iCTm5uryy+/XNOnTy92+bPPPquXX35ZKSkp2rhxo/z9/dWnTx/l5eVVcqUAAMAdebryxfv166d+/foVu8wYoxdffFH//Oc/NWDAAEnS3LlzFRYWpiVLlui2224rdrv8/Hzl5+c7nufk5FR84QAAwC247Tkye/bsUWZmphISEhxtQUFBuvLKK5WRkVHidsnJyQoKCnI8IiMjK6NcAADgAm4bZDIzMyVJYWFhTu1hYWGOZcVJSkpSdna247F///5LWicAAHAdlx5auhTsdrvsdrurywAAAJXAbWdkwsPDJUlZWVlO7VlZWY5lAACgenPbIBMTE6Pw8HCtWrXK0ZaTk6ONGzcqLi7OhZUBAAB34dJDSydOnNCuXbscz/fs2aNt27YpJCREUVFRGjlypJ588kk1adJEMTExeuKJJxQREaEbbrjBdUUDAAC34dIgs2XLFvXo0cPxfPTo0ZKkQYMGac6cORozZoxyc3N133336dixY+rWrZuWL18uHx8fV5UMAADciEuDTPfu3WWMKXG5zWbTxIkTNXHixEqsCgAAWIXbniMDAABwIQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWQQZAABgWZYIMtOnT1eDBg3k4+OjK6+8Ups2bXJ1SQAAwA24fZBZuHChRo8erXHjxumLL77Q5Zdfrj59+ujQoUOuLg0AALiY2weZKVOmaOjQoRo8eLBatGihlJQU+fn56fXXX3d1aQAAwMU8XV3A+RQUFGjr1q1KSkpytHl4eCghIUEZGRnFbpOfn6/8/HzH8+zsbElSTk5OhddXmH+ywvssr0uxn1blbuPD2DhjfNyXu42NxPj8kbuNz6Uam3P9GmPOu55bB5nffvtNZ8+eVVhYmFN7WFiYfvjhh2K3SU5O1oQJE4q0R0ZGXpIa3U3Qi66uACVhbNwb4+PeGB/3danH5vjx4woKCipxuVsHmbJISkrS6NGjHc8LCwt15MgR1a5dWzabzYWVlSwnJ0eRkZHav3+/AgMDXV0O/oCxcW+Mj3tjfNyXFcbGGKPjx48rIiLivOu5dZCpU6eOatSooaysLKf2rKwshYeHF7uN3W6X3W53agsODr5UJVaowMBAt/0HVd0xNu6N8XFvjI/7cvexOd9MzDlufbKvt7e32rdvr1WrVjnaCgsLtWrVKsXFxbmwMgAA4A7cekZGkkaPHq1BgwapQ4cO6tSpk1588UXl5uZq8ODBri4NAAC4mNsHmVtvvVWHDx/Wv/71L2VmZuqKK67Q8uXLi5wAbGV2u13jxo0rckgMrsfYuDfGx70xPu6rKo2NzVzouiYAAAA35dbnyAAAAJwPQQYAAFgWQQYAAFgWQQYAAFgWQQYAAFgWQaYSZWZm6uGHH1bjxo3l4+OjsLAwde3aVTNnztTJk79/Cdjs2bPVvXt3BQYGymaz6dixY64tupq40NgcOXJEI0aMULNmzeTr66uoqCg99NBDji8lxaVVmt+d+++/X40aNZKvr69CQ0M1YMCAEr+TDRWrNONzjjFG/fr1k81m05IlS1xTcDVSmrHp3r27bDab0+OBBx5wceWl5/b3kakqfvrpJ3Xt2lXBwcGaPHmyWrduLbvdru3bt2v27Nm67LLLdP311+vkyZPq27ev+vbt6/St37h0SjM2DRs21IEDB/T888+rRYsW2rt3rx544AEdOHBA77zzjqt3oUor7e9O+/btNXDgQEVFRenIkSMaP368evfurT179qhGjRqu3o0qq7Tjc86LL77ott97V9VczNgMHTpUEydOdGzr5+fnqrIvnkGl6NOnj6lfv745ceJEscsLCwudnqenpxtJ5ujRo5VQXfV2sWNzzttvv228vb3N6dOnL2V51V5Zx+err74yksyuXbsuZXnV3sWMz5dffmkuu+wyc/DgQSPJLF68uJKqrJ5KOzbx8fHm4YcfrsTKKhaHlirBf//7X3388ccaNmyY/P39i12Hv1Bcozxjk52drcDAQHl6MrF5qZR1fHJzc5WWlqaYmBhFRkZe6jKrrYsZn5MnT+qOO+7Q9OnTS/zSX1Sci/3deeutt1SnTh21atVKSUlJRQ4JujOCTCXYtWuXjDFq1qyZU3udOnUUEBCggIAAPfrooy6qrnor69j89ttvmjRpku67777KKrVautjxmTFjhqN92bJlWrlypby9vSu77GrjYsZn1KhR6tKliwYMGOCKUqudixmbO+64Q/PmzVN6erqSkpL05ptv6s4773RF2WXCn5IutGnTJhUWFmrgwIHKz893dTn4g/ONTU5Ojvr3768WLVpo/PjxrimwmitpfAYOHKhevXrp4MGDev7553XLLbdo3bp18vHxcWG11c+fx+f999/Xp59+qi+//NLVpVV7xf3u/PEPstatW6tevXq65pprtHv3bjVq1MhVpZYaQaYSNG7cWDabTTt27HBqb9iwoSTJ19fXFWVBFz82x48fV9++fVWzZk0tXrxYXl5elVZrdXSx4xMUFKSgoCA1adJEnTt3Vq1atbR48WLdfvvtlVZzdVLa8fn000+1e/duBQcHO62XmJioq666SqtXr66McquV8nzuXHnllZJ+n9WxQpDh0FIlqF27tnr16qVp06YpNzfX1eXgDy5mbHJyctS7d295e3vr/fff56/8SlCe3x1jjIwxzHZeQqUdn7Fjx+rrr7/Wtm3bHA9Jmjp1qtLS0iqp2uqlPL8758anXr16l6CyikeQqSQzZszQmTNn1KFDBy1cuFDff/+9duzYoXnz5umHH35wXB6amZmpbdu2adeuXZKk7du3a9u2bTpy5Igry6/SSjM250JMbm6uUlNTlZOTo8zMTGVmZurs2bOu3oUqrTTj89NPPyk5OVlbt27Vvn37tH79ev3lL3+Rr6+vrr32WlfvQpVWmvEJDw9Xq1atnB6SFBUVpZiYGBfvQdVVmrHZvXu3Jk2apK1bt+rnn3/W+++/r7vuuktXX3212rRp4+pdKB0XXjFV7Rw4cMAMHz7cxMTEGC8vLxMQEGA6depknnvuOZObm2uMMWbcuHFGUpFHWlqaa4uv4i40Nucuhy/usWfPHleXX+VdaHx+/fVX069fP1O3bl3j5eVl6tevb+644w7zww8/uLr0aqE0/7f9mbj8ulJcaGz27dtnrr76ahMSEmLsdrtp3Lix+cc//mGys7NdXXqp2YwxxjURCgAAoHw4tAQAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACyLIAMAACzr/wHqOYgsviRhMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "labels = ['G1', 'G2', 'G3', 'G4', 'G5']\n", + "men_means = [20, 35, 30, 35, 27]\n", + "women_means = [25, 32, 34, 20, 25]\n", + "men_std = [2, 3, 4, 1, 2]\n", + "women_std = [3, 5, 2, 3, 3]\n", + "width = 0.35 # the width of the bars: can also be len(x) sequence\n", + "\n", + "fig, ax = plt.subplots()\n", + "\n", + "ax.bar(labels, men_means, width, yerr=men_std, label='Men')\n", + "ax.bar(labels, women_means, width, yerr=women_std, bottom=men_means,\n", + " label='Women')\n", + "\n", + "ax.set_ylabel('Scores')\n", + "ax.set_title('Scores by group and gender')\n", + "ax.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Fixing random state for reproducibility\n", + "np.random.seed(19680801)\n", + "\n", + "dt = 0.01\n", + "t = np.arange(0, 30, dt)\n", + "nse1 = np.random.randn(len(t)) # white noise 1\n", + "nse2 = np.random.randn(len(t)) # white noise 2\n", + "\n", + "# Two signals with a coherent part at 10 Hz and a random part\n", + "s1 = np.sin(2 * np.pi * 10 * t) + nse1\n", + "s2 = np.sin(2 * np.pi * 10 * t) + nse2\n", + "\n", + "fig, axs = plt.subplots(2, 1)\n", + "axs[0].plot(t, s1, t, s2)\n", + "axs[0].set_xlim(0, 2)\n", + "axs[0].set_xlabel('Time')\n", + "axs[0].set_ylabel('s1 and s2')\n", + "axs[0].grid(True)\n", + "\n", + "cxy, f = axs[1].cohere(s1, s2, 256, 1. / dt)\n", + "axs[1].set_ylabel('Coherence')\n", + "\n", + "fig.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAAG1CAYAAADJKHpnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2hUlEQVR4nO3deXwV1f3/8dfkZs9NcpOQkARCWAMRkVUkUmVRvgERQbCgoIIbVhFxxaIoi1brT9za1FI3cAGkKGrVFhALggiCC6uAYQkESEhIyL7e3Pn9kXI1QCAoyWXC+/l43AfMzJmZz7252/ueOTOGaZomIiIiIiIiFuHl6QJERERERETOhEKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYirenC5CTq6qqorKy0tNliIiIiIicMZvNhre3N4Zh1Mv2FWLOQUVFRRw4cABdh1RERERErCowMJCYmBh8fX3P+rYNU9+UzylVVVWkpqYSGBhIZGRkvaVXEREREZH6YJomFRUVZGdnU1VVRbt27fDyOrujWNQTc46prKzENE0iIyMJCAjwdDkiIiIiImcsICAAHx8f9u3bR0VFBf7+/md1+xrYf45SD4yIiIiIWNnZ7n2pse1627KIiIiIiEg9UIgRERERERFLUYgRy5s+fTq33377b97O3LlzufLKKwHYv38/DofjN29T6p/dbufQoUOeLkN+o9O95lauXEnbtm0brqDzjGEYHDhwAIBBgwaxcOFCD1ckcn47W99tGjMN7LeAQ0N71tu2Yz9eX+e2q1atYvLkyWzfvh1vb286d+7MG2+8QatWrZg+fToHDhzg9ddfr7daG1KLFi3Iy8vzdBke5Vo+sd627XXlX+vctmXLlmRlZeHl5YWfnx9du3bl3nvv5ZprrgGqT0l+vjNZUW/bNuhX57YtW7bENE127dqFj48PAH/4wx+Ijo5m+vTpp1z3+Ndc3759uf3227nxxht/TdnyG/znP//xdAke9Wnag/W6/atbPn9G7du3b09QUBDff/99PVXkGX0Xja63ba/8/fw6tz2fvts0NuqJkTrJz89n6NChTJ48maNHj7Jv3z4mTpyIzWar0/pOp7OeK7Q2PT6ntmzZMoqKitixYwejRo3ipptuYvbs2Q1eh/5Op1dYWMicOXM8XUat6vNveC4+P87Fmn7pXK/P09avX8+hQ4fYunUr27dvP+P1TdPE5XLVQ2WNg77b1M4K900hRurkp59+ws/Pj+HDh+Pl5YXdbufaa6+lRYsWrFy5kqeffpq33noLu93OoEGDgOrDE1JSUmjVqhX9+vXD5XIxbdo04uLiiImJ4d5776W8vByoPpSrf//+3HXXXYSEhHDBBRfU+NXpm2++oVOnToSEhPCHP/yBPn368O67755Q5//93/8xd+5c93RxcTHBwcHuwyR+qbi4mDFjxuBwOOjWrRupqanuZWlpaXh7/9xR+ac//YmYmBhCQkLo1KkTP/74IwBvvvkmCQkJBAcHc9FFF7Fy5Ur3OocPHyY5OZmQkBD69evHhAkT3F3Dc+fOpV+/ftx5552EhoYyZ84ccnNzGT16NFFRUbRu3Zq33nrLva3S0lLuueceYmNjad68OX/+85/P5M/XaERGRnLHHXfw5JNPMnXqVKqqqmocBvPmm28SHx9PcHAw7du3d/89Pv30Uzp16kRwcDDt2rVj0aJF7m0WFRVx/fXXu58HU6dOdR9WeOwQpmnTptGkSROmTZt2yr9FVVUV06ZNIz4+nqZNm/Lggw9a4oPgbLr//vt5+umnqaysPOny999/n44dOxIeHs4111xDVlYWUPM19+STT7J69Wpuv/127HY7Tz/9tHv9mTNnEh4eTsuWLVm6dKl7/qleP3379uXxxx+nR48eBAUFnbS24cOHExUVRXh4OL///e/Jzc11L/vkk09o27Yt4eHhzJgxg5YtW/LVV1/Vuu0vv/yS7t2743A46Nu3L7t373Zva8uWLVx++eWEhYXRvXt3vv3225M+Tseee7Xd3/T0dK666irCwsK44IIL+Pjjj8/o/r755pvExcURHR3Nq6++WmNZ37593e+v69ato2vXroSEhNCsWTNefPFFAHbv3s3ll1+Ow+EgNjaWRx99tMY2Zs6cSVRUFC1btuSvf/1rjffT4z8bAP72t7/Rrl07mjRpwtixYykuLna3r+05cz549913GTp0KAMGDOCdd95xzz/VZ+K4ceO455576N+/P4GBgezevfuUz7v9+/czePBgIiIiSExMZMmSJQ1+Pz2lMX63+eabb7j44osJCQkhPj6ev/715yMfnE4n99xzDxEREXTo0IFnn33WfZjusffg2bNn06xZM8aNG3faz7RTvW4bgkKM1ElCQgIVFRXcfvvtfP755xQUFLiX9e3bl0cffZSxY8dSVFRU41CEzz//nE2bNrFs2TLeeOMN3n//fdauXcvWrVv57rvveOaZZ9xtV69ezeWXX87Ro0cZPnw4999/PwDl5eUMHz6c++67j5ycHC666CK+/vrrk9Z54403smDBAvf0xx9/TPfu3WnevPkJbWfMmMHhw4fZv38/8+fP5+233z7pNnfs2MHs2bP54YcfyM/PZ9GiRYSHhwMQHR3NF198QV5eHhMnTuT66693v3ndfffdNG/enKysLJ555hnmzZtXY7urV68mKSmJo0ePcuONN3LTTTcRGxtLeno6//73v5kyZQqbN28G4KGHHiI3N5effvqJ9evX88477/Dpp5/W/gdr5K655hpycnLYuXOne15xcTH33Xcfy5cvp7CwkGXLlhEfHw9AcHAw77//Pvn5+bz88svccsstZGZmAjBt2jTy8vJIT0/nvffeO+F5kJaWhs1mIyMjg6lTp57yb/HCCy+wevVqvv32W3bu3Mn333/vkR4jT+rXrx8tWrSo8YF7zPr167nvvvt47733OHz4MB06dODuu+8+od3jjz/OZZddxuuvv05RUZH7C3JaWhp+fn5kZWXx6KOPMn78ePc6p3r9ACxYsID33nuP/Pz8Gl+ojxk+fDh79+5l7969FBYWMnPmTACysrIYPXo0KSkpZGZmUlZWxsGDB2us+8ttZ2Zmct111/HSSy+Rk5PDiBEjuP7664HqwDxw4EAmTZrEkSNHePzxxxk+fDhlZWUnfSxPdX9vuOEGOnbsSGZmJq+88go33ngju3btqtP93bp1K/fddx/vv/8+e/fudQeyk7nvvvt46KGHKCgoYOvWrfTt29e97Mknn+TIkSN8+eWXvPvuu3z00UdAdeh7/fXXWbt2LZs2bTrpe9UvPxsWLVrE7NmzWb58Oenp6VRWVjJt2jSg7s+ZxsjpdLJw4UJGjRrF9ddfz/z58zFNs06fie+99x7PPfcchYWFREdH1/q8c7lcDBkyhOTkZA4fPsybb77JTTfdxOHDhz10rxtWY/xu4+Pjwz/+8Q/y8vL44IMPmDp1Kj/88AMAf//731mzZg3bt29nxYoVvPfeezXWraqqYuPGjezevZvXXnvtlJ9pp3rdNhSFGKmT0NBQVq1aRXl5OTfddBORkZHceOONFBYWnnK9P/7xj4SEhBAQEMB7773HQw89RPPmzYmIiOCJJ56o8aLs0KEDN9xwAzabjdGjR7Np0yYA1q5di7+/P7fddhs+Pj7cfffdxMTEnHR/w4cPZ926de5f6hYsWMDo0Sc/7nbRokVMnTqVkJAQOnTowNixY0/aztvbm/LycrZv305VVRUdOnQgOjoagKuuuoq4uDhsNht33HEHhmGQmpqK0+nk448/Ztq0afj7+9OrVy+GDBlSY7tt2rRh3LhxeHl5kZ+fz8qVK3nmmWfw8/OjQ4cOjB49msWLF2OaJnPmzGHWrFnY7XZiY2O56667eP/990/52Ddmxx7/o0eP1phvGAbbtm2jvLyc+Ph4WrVqBUCfPn1o3749Xl5eXHXVVXTq1Mn9S+QHH3zAo48+SnBwMAkJCSc8D/z8/Hj00Ufx8fHB39//lH+LN954g6eeeorIyEgcDgcPPvjgefl3mjZt2kl7Y958803uvvtuOnXqhI+PD48//jgff/xxnXurgoKCePjhh/H29ubGG29k//795OXlkZmZWevr55jbbruNtm3b4u/vf9LrcN14440EBQURGhrK/fff7/5i/+9//5uLL76YgQMH4uvryxNPPHHC+r/c9rx587j22mu57LLLsNlsTJw4kbS0NNLS0vj000/p2LEjI0aMwGazMWzYMKKioli3bt0Z3d/09HS+/fZbZs6ciZ+fH3379uXqq6+u0cN4qvv7wQcfMHz4cC655BICAgJ44oknan3MfXx82LVrF7m5uYSFhdG1a1eg+v2rT58+eHt7065dO8aMGeN+zD744ANuv/122rRpQ2hoKJMnTz5hu7/8bHjjjTeYMmUK8fHxBAQE8Oijj7pfN7/1OWNly5Yto6KiguTkZIYNG8bhw4dZvXp1nT4TR4wYQffu3fH29uazzz6r9Xm3fv16SktLuffee/H29iYpKYk+ffqcN+OiGuN3m27dutGtWze8vLzo0aMHV111FWvWrAGqX5v3338/UVFRxMTEcM8995yw/rHvLcdem7V9pp3qddtQFGKkzi688ELeeecdMjMz+frrr/n666/505/+dMp1fvkrwaFDh2jRooV7Oj4+vsZZpZo2ber+f2BgoHvAdmZmJs2aNaux3eOnj7Hb7QwePJhFixaRm5vLihUruO66607aNiMjg7i4OPf0L///S23btuX555/n0UcfpWnTptx+++3uX2s++ugjunXrhsPhwOFwkJWVRU5ODkeOHKGqqqpGncf/YvLL6f3791NWVuZ+o3A4HPzjH/8gMzOT7OxsSktLueCCC9zLHn300fPml7KTycjIACAsLMw9LygoiAULFvCXv/yFpk2b8vvf/979/Prqq6/o3bs34eHhOBwOvv32W3JycoDq59cv/xbH/52io6Pdv2Sf7m+xf/9+Bg0a5F42ZsyY8+rQl2OuuOIKmjVrVuOQLqh+fP70pz+5H5+4uDi8vb3dvWKnExkZ6b5wWmBgIFDdu3Gq188xJ/vF8hin08l9991HfHw8ISEhXHfddbU+PwICAoiIiKix/vGv5Xfeecddh8PhoLi4mIMHD7J//36+/PLLGsu2b99e69n1aru/hw4dIjIykoCAAHfb499PT3V/6/reB/D666+zbds22rZty+9+9zvWrl0LwMGDB7n22muJjo4mNDTU3fN0ssfsZLUc/5jdeeed7sfkd7/7HdnZ2e5lv+U5Y2Xvvvsuw4YNw9fXl+DgYK666irefffdOn0mHv/41va8279/P3v37q2xbMmSJe732PNBY/tus23bNgYMGEBkZCShoaEsXry4zq9NLy+vGkHqVJ9pp3rdNhSFGPlVunfvzvDhw9m6dSvASX/ZPH5+bGws+/fvd0/v37+f2NjY0+4rOjr6hMM3jp/+pWPdrh988AFXXHGF+9Cv48XExJCenu6e/uX/j3fTTTexdu1adu7cSVpaGi+88ALl5eXccMMN/OlPfyInJ4e8vDyioqIwTZMmTZpgs9lqvJEdf+zqLx+bZs2aYbfbOXr0KHl5eeTl5VFYWMjs2bNp0qQJfn5+7Nmzx72soKDgvPml7GQ+/fRTIiIiaN++fY35V111Ff/97385cOCAuwcFqv9+Y8eOJTMzk7y8PHr06IFpmsCJz69T/Z1O97do1qwZK1ascC/Lz893j58635ysN6ZZs2Y8+eST7scnLy+P0tLSk37Jre095WRO9fqpy/bmzZvHypUr+frrrykoKOD999+v9flRVlbm/kJwsm03a9aMO+64o8Z9LCkpoXfv3jRr1ozk5OQay4qLi2v9RbU2sbGxZGdn1zgM7fj301Pd3zN572vfvj3//Oc/ycrK4vrrr+eGG24AYOrUqYSFhfHTTz+Rn5/PfffdV+fX1PH1HQu8xz8ux5bV9TnTmBQVFfHxxx/zwQcfEB0dTXR0NMuWLeP9998nLCzstJ+Jxz++tT3vmjVrRmJiYo1lRUVFTJkypUHu57mmMXy3ueeee0hKSmL//v3k5+czfPjwX/V5B6f+TDvV67ahKMRInezYsYMXX3zR/aX8p59+4pNPPqFnz+rTP0dFRbFv3z73C+VkRo0axfPPP8/BgwfJzc3lySefdB8rfipJSUmUlpYyZ84cnE4ns2fPPuWvRP/3f//Hrl27eOmll0755eC6667j6aefpqCggJ07d9Y6Jmbnzp2sXLmSiooKAgMD8fPzw2azUV5eTkVFBVFRUQC8/PLL7l8hvL29ueaaa5g5cybl5eWsX7+eTz75pNZamjVrRlJSElOnTqWkpASn08n333/Pjz/+iJeXF2PHjuXBBx8kLy8Pl8vF9u3bWb++7qfHbixycnJ44403ePzxx5kxY0aNM8gcPnyYTz/9lNLSUvz8/AgMDHQvLywsJCIiAh8fHz744AO+++4793rDhw/nmWeeobCwkNTU1BqDZ493ur/FrbfeytSpU8nIyMA0TdLS0vjyyy/r6dE4tw0YMIDo6Gj3OAmAW265hZSUFPfhFLm5uTUGpP9SVFQUaWlpddrXqV4/dVFYWIi/vz9hYWEcOXKEWbNmuZcNGjSI9evXs2zZMiorK3nyySdP+T43evRoFi1axOrVq3G5XBQWFroPsbj66qv54Ycf+Oijj3A6nZSWlrJkyRLy8/PrVOcxcXFxdOvWjWnTplFRUcGqVav45JNPav1l9ngjRoxg8eLFbNiwgdLSUp566qla286bN4+cnBy8vb0JDg6u8ZoKDg7GbrezdevWGoORhw8fzhtvvMGePXsoKCio8XiezK233srTTz/tPgFCRkaGe3D5mTxnGpPFixcTFhbGzp072bhxIxs3bmTHjh14e3u7g1xdPxNP9by75JJLcLlc/P3vf6eiooKKigpWr15d40t5Y9YYv9sUFhbicDjw9/dn9erVfPbZZ+5lw4cP56WXXiIrK4vMzEz+9re/nbLGU32mnep122BMOaeUlpaaP/74o1laWurpUmo4cOCAed1115nR0dFmYGCgGRcXZ95///1meXm5aZqmmZWVZfbq1csMDQ01Bw8ebJqmaQJmenq6extOp9OcOnWqGRsbazZt2tScMGGC+37OmTPHvOKKK9xt9+7da9psNvf0119/bXbs2NEMDg4277zzTjMpKcn85z//aZqmaU6bNs287bbbatQ7ceJE0263myUlJbXep8LCQvP66683Q0JCzK5du5qPPvqou4Zf7n/Tpk1mjx49TLvdbkZERJg33HCDWVhYaJqmaT7//PNmRESE2aRJE/Pxxx8327dvb65YscI0TdPMyMgwBwwYYNrtdrNv377mHXfcYd59990nvb+maZpHjhwxb775ZrNp06ZmWFiYedlll5nffvutaZqmWVxcbE6aNMls3ry5GRoaavbo0cNcsmTJaf9ujUF8fLwZEBBgBgUFmWFhYWb//v3NxYsXu5cfe54dOnTIvOyyy8zg4GDT4XCYV111lXno0CHTNE1z/vz5ZmxsrBkaGmrecccd5pVXXmnOmTPHNE3TLCgoMEeOHOl+HkyePNm86qqrTNM0zRUrVpht2rSpUc+p/haVlZXmzJkzzVatWpnBwcHmhRdeaL7zzjsN8CidG+Lj483Vq1e7p5csWWIC5rRp09zzPvjgA/Oiiy4yg4ODzfj4ePPhhx82TfPE1/zq1avNNm3amKGhoeYzzzxz0r/FL99jTvX66dOnzyn/Dvn5+ebAgQNNu91udujQwZw1a5YZHx/vXv7RRx+ZrVu3NsPCwszp06ebzZo1M9evX1/rtleuXGlecsklZmhoqBkbG2veeOON7mWbNm0y+/fvb4aFhZlRUVHmtddea+bl5Z1Q0+nu7759+8zk5GQzNDTU7NChg/nBBx+4253u/pqmab722mtms2bNzKioKPMf//hHjW3/cv3Ro0ebERERpt1uN7t162Z+9dVX7vvRqVMnMygoyOzXr585adIkc+zYse7tT5s2zWzSpInZokUL8/nnnzcDAwNPej+OeeWVV8z27dubwcHBZrt27cznn3/evay250xjNmDAgBqvm2MeeeQR89prrz3lZ+LYsWPNJ598ssZ6p3repaWlmUOHDjWbNGliRkREmMnJyebevXvr+y6eExrjd5vly5ebrVu3Nu12uzl8+HBzzJgx7udSRUWFedddd5lhYWFmQkKC+eSTT5oXXHDBSWszzdN/pp3qdXtMfX6vNUzzFPFSGlxZWRl79+6lVatW+Pv7e7qcc5JpmjRv3pxFixZx6aWXnrTNrFmz2LRp0yl/VW9oN9xwA506dTrhVKRybpkyZQo5OTknnHZWBKrPgudwONi3b1+dDhkRWLp0KRMnTuSnn37ydCmNUl0+E+Xc54nvNv/4xz/44IMPWLZs2VnZ3snU5/daHU4mlrBy5UqOHDlCRUUFzz77LIZh0KNHj5O2LSws5I033uC2225r4Cpr2rZtG9u3b8flcrF8+XI+/vhj91Xm5dyRnp7O+vXrcblcfPfdd7zxxhsMHTrU02XJOWTp0qUUFhZSUlLCI488QteuXRVgTuOjjz6isrKSzMxMZs6cqdfUWXYmn4ly7mro7zaFhYUsX76cqqoqdu3axQsvvGDp16ZCjFjCli1buOCCC4iIiGDx4sUsXrwYX1/fE9r961//Ijo6mqSkpBrXM/CEvLw8Bg8ejN1u56677uKVV17hwgsv9GhNcqLy8nLGjh2L3W53n8N/8ODBni5LziErV64kPj6emJgYfvzxx5NejE5qeumllwgPD6dTp060a9fulKdxljNX189EObc19Hcbl8vF5MmTCQ0N5fLLL2fw4ME1rj9lNTqc7Byjw8lEREREpDHQ4WTnIWVLEREREbEyl8tVb9v2rrcty6/i4+ODYRhkZ2cTGRl5RtdKEBERERHxNNM0qaioIDs7Gy8vr3o53FGHk52DioqKOHDggHpjRERERMSyAgMDiYmJUYg5n1RVVdW40rWIiIiIiFXYbDa8vb3r7agihRgREREREbEUDewXERERERFLUYgRERERERFL0dnJPMTlcnHo0CGCg4N1BjIREREREarPbFZYWEhsbCxeXrX3tyjEeMihQ4eIi4vzdBkiIiIiIuec9PR0mjdvXutyhRgPCQ4OBqr/QCEhIR6uRkRERETE8woKCoiLi3N/V66NQoyHHDuELCQkRCFGREREROQXTjfcQgP7RURERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUhRiRERERETEUrw9XcD5LuP6fhT52DxdxjkneuIlni5B6si4crinS5B69lnap54uQUT+Z9aGDE+XIFKvnCWVdWqnnhgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUb08XIA3H94Ku2K+9EZ+2HbCFR5L79MOUffNljTbBo8cTOGAYXkF2KnZsJu/vz1KVke6hii3I0QYj/goIaYHhF4pr02uQvdm92LjgRozYS2qsYh75EXPj3xu6UjmF7OwKdu4o5ehRJ2VlLi7tHUKzZn7u5Yv+mX3S9S66KIj2HQIbqkyRE8QHJxEffCkB3uEAFFVk8lP+52SX7sDHK4AEx0AiAxIIsIVR4Sois2QrO48uwWmWebhyEc8Z3eEaLm92MS2CYymvqmBbTir/2LyA9KKMGu0uCG/H7Z1GkhjeBpfpYlfePh5e9WcqXHW7wrycXY0uxBiGwYcffsiwYcM8Xco5x/D3pzItlZIvPiF8yv87Ybl9+M0EDR5F3sszcB4+RPCYO4mY/hey7hkFlRUeqNiCbH5QdBDz0DqMznectIl55EfMH9/9eYbL2UDFSV05nSYOhzetWvnz9dcFJywfMiSixnRGZgXfbiikWXO/E9qKNKRSZz47jn5GceURAJrbL+biqFtYdegFDAz8bSH8mPsJRZWHCfAOo1PEdfjbQvgu+20PVy7iOV0iE/lo1+fsOLobm2Hj9k6jeO7yPzJu6WTKqsqB6gDz/y5/hPnbP+YvP8ylyuWijaMFJqaHqz9/nfHhZOnp6dx6663Exsbi6+tLfHw8kyZNIicnpz7qq9X06dPp0qXLCfMzMjIYNGhQve47IyOD0aNHk5CQgJeXF/fdd1+97u9sKf9+LYXzZlO2buVJlwcNuZ7CRW9Stn4Vzn27yHtpOrbwJvj36tOwhVpZzo+Yuz+r0ftyApcTKgp/vjlLG64+qZOYGD8u7BRUayjxD/CqcTt0sJyoKB/sdlsDVypSU1bpj2SV7qDYeYRi5xF25v0Hp6uCML94Cisz+S77LbJKf6TEmUNO2S52Hv03UYEdMXR0uZzHJq9+liX7VpFWcJDd+fv58/rZRAdFkhDWyt3mni43sjh1KfN3fkJawUHSizJYeeAbKvVDpMec0bvWnj176NGjB6mpqSxYsIBdu3Yxe/ZsvvjiC5KSksjNza2vOussOjoaP7/6/TW0vLycyMhIpk6dSufOnet1Xw3F1jQWW3gTyjetd88zS4qp+Gkbvu07ebCyRiisLcblT2MkTcXoMBJ8dPiRlZWVucjIqKBVK39PlyJyHIPYoC7YvHw5Wr7vpC28vQJwusowcTVwbSLnLvv/PpcLK4oAcPiFcEFEO46W55PSbzqLh/ydl/o+TqeI9p4s87x3RiFmwoQJ+Pr6smzZMvr06UOLFi0YNGgQy5cv5+DBgzz22GPutoZh8NFHH9VY3+FwMHfuXPd0eno6I0eOxOFwEB4eztChQ0lLS3MvX7lyJT179iQoKAiHw0Hv3r3Zt28fc+fOZcaMGWzatAnDMDAMw73d4/e7ZcsW+vfvT0BAABEREYwfP56ioiL38nHjxjFs2DBmzZpFTEwMERERTJgwgcrK2o9vbNmyJS+//DI333wzoaGhZ/IQnrO8wqoPj3Hl1QyirrxcbGERJ1tFfgUz50fMbe9gfvdXzF3/AkdbjC53A4anS5NfKS2tDG8fQ4eSyTkj2CeagS2e5qr4Z+kUcR3fZc2hqPLwCe18vIJo57iS/YXrPFClyLnJwOCeLjex5chO9hYcACA2KAqAcReM4NO9K5i8+s+kHt3L830epZk92pPlntfqHGJyc3NZunQpd999NwEBATWWRUdHM2bMGBYuXIhp1u3YwMrKSpKTkwkODmb16tWsWbMGu93OwIEDqaiowOl0MmzYMPr06cPmzZtZu3Yt48ePxzAMRo0axYMPPkjHjh3JyMggIyODUaNGnbCP4uJikpOTCQsLY8OGDSxatIjly5dzzz331Gi3YsUKdu/ezYoVK3jrrbeYO3dujbB1NpSXl1NQUFDjJuehw9/Dka1QnAHZmzE3/QMjNB7C2nm6MvmV0vaWEd/CD5tNQVTODUWV2aw69DxrMv7CvoKv6dzkBuw+TWu08Tb86Nn0NooqDvNT3lIPVSpy7rmv2y20Co1j5rq/uucZRvX7+yd7/suStC/ZlbePv216l/TCDK5qqUPuPaXOA/tTU1MxTZPExMSTLk9MTOTo0aNkZ2cTFRV12u0tXLgQl8vF66+/7n5yzJkzB4fDwcqVK+nRowf5+flcffXVtGnTxr2PY+x2O97e3kRH156A58+fT1lZGW+//TZBQUEApKSkMGTIEJ599lmaNq1+Uw8LCyMlJQWbzUaHDh0YPHgwX3zxBXfccfKB2b/GM888w4wZM87a9s4219HqMU1ejnD3/49NV+79yVNlNX6lOZgVhRAYCUf1OFtNdnYFhYVV9EoK8XQpIm4mVZQ4q9/H8ysOEOoXR6uQy9iS8z4ANsOPnk3H43SV8232XB1KJvI/k7qOIymmK/eumEl26c9HpuSU5gGw7389M8fsKzxIVGCThixRfuGMR/KdrqfF19e3TtvZtGkTu3btIjg4GLvdjt1uJzw8nLKyMnbv3k14eDjjxo0jOTmZIUOG8PLLL5ORkXH6Df/C9u3b6dy5szvAAPTu3RuXy8XOnTvd8zp27IjN9vOA3JiYGLKyss5oX6czZcoU8vPz3bf09HPrtMVVhw9RlXsEv4suds8zAoLwTehIxc4tHqyskfNzgE8QlOd7uhL5FfbuLSMszBuHo9Gd6FEaEQMDL6P6Oept+NGr6XhMnGzIehOXqUHJIlAdYH7XrAf3f/knMktqnkY/sySb7NJc4oJja8yPs8dwuORIQ5Ypv1DnT962bdtiGAbbt2/n2muvPWH59u3biYyMxOFwANVdb8cHnl+OMykqKqJ79+7MmzfvhG1FRkYC1T0z9957L0uWLGHhwoVMnTqVzz//nF69etW17Drx8fGpMW0YBi7X2f1lys/Pr95POHA6hn8Atpjm7mlb01i8W7XDLCyg6shhij95j+CRt+LMSKfq8CGCR/+BqtwjlK378hRblRpsvhAQ+fN0QATYm0FlCTiLMVoNwszaBBUFENAEo91QKDkCOTs8V7OcwFlpUlRU5Z4uLqoi76gTX1+DwKDqHzwqK10cSC+nc2e7p8oUOUEHx1Vkle6gtOoo3oYfzYK6EeHfhm8Ov4a34ccl0XdiM3z4IWs+Pl7+QPUJKcqrikCnipXz1H1db+HKFpfy2JrnKa0sJdyverxzUWWJ+xowC3d+yriO17E7bx+78vaR3PJyWoTEMm3tSx6s/PxW5xATERHBgAEDeOWVV7j//vtrjIvJzMxk3rx5TJgwwT0vMjKyRs9JamoqJSUl7ulu3bqxcOFCoqKiCAmp/VCMrl270rVrV6ZMmUJSUhLz58+nV69e+Pr6UlVVVet6UH342dy5cykuLnb3xqxZswYvLy/atz//zijh0zaRJn+a7Z4Ove1+AEq++JS8v8ykaPHbGP7+OO5+tPpil9s3kTNjkq4RcyZCWuDVfZJ70ithOADmoW8wdyyE4GbVF7v0DqjufcnZgbnnM9CvoeeU3KOVfLny596xTZuKgWLiW/rRs2f1+1X6/uprB7RooQH9cu7wtdnpEnkDfrYQnK5SCioy+Obwaxwp+4kI/zaE+cUD0L/5ozXW++LAU5Q6j3qiZBGPG9Z2AAAv93uixvw/r5/Nkn2rAHg/dQm+Xj5M6HITwb5B7M7bz0NfPsOh4rN75I7U3RkdA5GSksKll15KcnIyTz31FK1atWLbtm08/PDDJCQk8MQTP//x+/fvT0pKCklJSVRVVfHII4/U6PEYM2YMzz33HEOHDmXmzJk0b96cffv2sXjxYiZPnkxlZSWvvvoq11xzDbGxsezcuZPU1FRuvvlmoPoMYXv37mXjxo00b96c4ODgE3o6xowZw7Rp0xg7dizTp08nOzubiRMnctNNN7nHw/xaGzduBKp7lLKzs9m4cSO+vr5ccMEFv2m79ali6/ccGtrzlG0K579K4fxXG6iiRujoLlzLJ9a62PzhlQYsRn6tqChffj8y8pRtWrcJoHWbgFO2EWlom3P+WeuynLLdfJr2YANWI2INfReNrlO7+Ts/Yf7OT+q5GqmrMxoT065dOzZs2EDr1q0ZOXIk8fHxDBo0iISEBPfZxY55/vnniYuL47LLLmP06NE89NBDBAb+fD2MwMBAVq1aRYsWLRg+fDiJiYncdtttlJWVERISQmBgIDt27GDEiBEkJCQwfvx4JkyYwJ133gnAiBEjGDhwIP369SMyMpIFCxacUG9gYCBLly4lNzeXiy++mOuuu44rrriClJSUX/t4uR3rIfruu++YP38+Xbt25aqrrvrN2xURERERkVMzzLqeE7kW06ZN44UXXqiXsSqNWUFBAaGhoewY1I1gH13l+3jREy/xdAlSR8aVwz1dgtSzz9I+9XQJIvI/szac2UmORKzGWVLJmnHvk5+ff8ohJ7/5lDozZsygZcuWrFu3jp49e+LldcYnPBMREREREamzs3Je0FtuueVsbEZEREREROS01G0iIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKW8psvdim/zrGLXZ7uQj4iIiIiIueLun5HVk+MiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYirenCzjfZVzfjyIfm6fLEKkX0RMv8XQJcp4xrhzu6RJELOmztE89XcI5a9aGDE+XcF5xllTWqZ16YkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFK8PV2AyNlkHzEW/6R+eDePxywvp2LHFgre/itVB/fXaOfTvhMhN96FT0JHcFVRuTeVnOn3QkW5hyqX807LARiRnSGoKbgqIW8v5q6PoSSrerl3IEabqyC8A/iHQWURZG3G3P0ZVJV5tnaRWmzfXsLBA+UUFlZhs0FEhA8XXRREcMjPXzeKiqrYtKmII0cqcVVBdLQvXbvZ8ffX76rnk3C/1rQJ7Uuob3P8vUPZkDWHwyVba7RJcCTTwt4LH68Acsv3sjXnA4qdRzxU8bnpoiYduL791SSEtaJJQBhT17zAV4e+dS8fd8EI+sclERkYjtNVxU9H9/L61oVsz93twarPjkb3jmEYBh999JGnyxAP8b2wG8X/XsSRh28jZ9pEDG8bEdP/iuHn727j074TEdNepnzjOo48dAvZD42j+LNF4HJ5sHI53xiOtpgHVmNueB7z+7+Blw2j6wTw8q1u4BcKfqGYqR9hrnsGc9s8iLgA44LRni1c5BSysyto2zaA/lc4uLyPA5cJq1bl43SaADidJqu+zMMA+vZx0L+/A5fL5Kuv8jFN07PFS4OyeflSUHGIrbmLT7q8TUg/WoVcxpac9/kq42WqzAp6Nh2Pl6Hf33/J39uP3Xn7eOn7OSddnl6Ywcs/zOXWZX9k4orpZBZn89zlUwj1DW7gSs++Mw4x6enp3HrrrcTGxuLr60t8fDyTJk0iJyenPuqr1fTp0+nSpcsJ8zMyMhg0aFC97nvx4sUMGDCAyMhIQkJCSEpKYunSpfW6T6mb3BmTKP3vZzjT9+BMSyXv5Zl4R8Xg0ybR3Sb0tvso/nQhRR+8jTN9D1UH91O2Zjk4Kz1YuZxvzI1/h4xvoDgTig5ibnsXIyAcQuKqGxRnYG5+A45shdIjcPQnzN2fQOSFYDS635+kkbj8cgctW/kTGuqNw+FNz4uDKSlxcfRo9fvrkSOVFJe4uLhnMKEOb0Id3vTsGczRXCdZWXoPPp9kl+5gZ94SMo/rfTmmVcjlpOYt53DpNgorM9iYvQB/7xCiAy9s4ErPbeszN/HGtkU1el9+6Yv0r/kuaysZxVmkFRzkb5vexe4TSBtHiwau9Ow7o0/CPXv20KNHD1JTU1mwYAG7du1i9uzZfPHFFyQlJZGbm1tfddZZdHQ0fn5+9bqPVatWMWDAAP7973/z3Xff0a9fP4YMGcIPP/xQr/uVM2cE2gFwFeUD4BUahm/7Trjyj9Lk2ddp+tZ/iPjTbHwTO3uyTBHw/l9vYWXJKdoEgLMMTPUaijVUVlb3rvj6Vn/dcLlMDMDLy3C38bIZGAYcyVaIkWqB3uH4e4dwpOwn9zynWUZe+X7C/OI9WJm1eRs2hrTuT1FFMbvz9p9+hXPcGYWYCRMm4Ovry7Jly+jTpw8tWrRg0KBBLF++nIMHD/LYY4+5257ssC6Hw8HcuXPd0+np6YwcORKHw0F4eDhDhw4lLS3NvXzlypX07NmToKAgHA4HvXv3Zt++fcydO5cZM2awadMmDMPAMAz3do/f75YtW+jfvz8BAQFEREQwfvx4ioqK3MvHjRvHsGHDmDVrFjExMURERDBhwgQqK2t/M33ppZeYPHkyF198Me3atePpp5+mXbt2fPLJJ7WuU15eTkFBQY2b1DPDIPT2Byj/cSPO/XsAsDVtBkDw9XdQvOwjcqZPonLPTiKe/Bu2mDhPVivnNQMjYQRm3m4ozjh5E58gjFYD4eDXDVuayK9kmiYbNxYR0cSb0NDqQ4Aiwn2weRts2VyM02nidJps3lSEaUJZmcK5VPOzhQBQXlVYY355VaF7mdRdUkxX/nPtmywb8RbXJQziwVXPkF9RePoVz3F1DjG5ubksXbqUu+++m4CAgBrLoqOjGTNmDAsXLqzzMa2VlZUkJycTHBzM6tWrWbNmDXa7nYEDB1JRUYHT6WTYsGH06dOHzZs3s3btWsaPH49hGIwaNYoHH3yQjh07kpGRQUZGBqNGjTphH8XFxSQnJxMWFsaGDRtYtGgRy5cv55577qnRbsWKFezevZsVK1bw1ltvMXfu3Bph63RcLheFhYWEh4fX2uaZZ54hNDTUfYuL0xfm+hZ652S8W7Tm6KypP8/8369/xUsXU/rFpzj3/kTBGy/iPLiPwCuHeKhSOd8ZHX4P9hjMLXNP3sDmj9HlD1Ccibnn3w1am8iv9f33ReTnO+nV6+cvnX7+XiQlhXDoUDkfLj7CRx8eoaLSxBHmDcYpNiYiv9oPWT9y+7Ip3PPf6azP3MT0pHtx+Fk/DNZ5dFRqaiqmaZKYmHjS5YmJiRw9epTs7GyioqJOu72FCxficrl4/fXXMYzqd645c+bgcDhYuXIlPXr0ID8/n6uvvpo2bdq493GM3W7H29ub6OjoWvcxf/58ysrKePvttwkKCgIgJSWFIUOG8Oyzz9K0aVMAwsLCSElJwWaz0aFDBwYPHswXX3zBHXfcUafHZtasWRQVFTFy5Mha20yZMoUHHnjAPV1QUKAgU49Cxz+E/8W/48iUO3HlZLnnu3Krx2450/fWaO88kIYtsvbnkkh9Mdr/HppciPnty1Ced2IDmx9G17vAWY65+TUdSiaW8P33hWQcqqBfPweBgbYay6KjfblqcATl5S4Mo/pQs3/96wj2oPo9FFyso7yq+mgVP1twjd4YP1swBRUHPVWWZZVVlXOw+DAHiw/zY+4u3h34Ale16sv8Hf/ydGm/yRmPDj1dT4uvr2+dtrNp0yZ27dpFcHAwdrsdu91OeHg4ZWVl7N69m/DwcMaNG0dycjJDhgzh5ZdfJiOjlsMsarF9+3Y6d+7sDjAAvXv3xuVysXPnTve8jh07YrP9/CYbExNDVlYWdTF//nxmzJjBP//5z1OGNz8/P0JCQmrcpH6Ejn8I/159OTL1bqqyDtVYVpV1iKqcLLyb1Tym1ju2BVVZZ/b8EvmtjPa/h8iLML/7K5Sd5OQoNv/qM5aZVZib/gEuZ8MXKXIGTNPk++8LOXiwgj59Qwmy22pt6+fnha+vF1mHKygvM4mNrdv3B2n8Spy5lDkLaOLfzj3P2/DD4deCo+X7PFhZ42AYBr5ePp4u4zerc09M27ZtMQyD7du3c+21156wfPv27URGRuJwOIDqB+j4wPPLcSZFRUV0796defPmnbCtyMhIoLpn5t5772XJkiUsXLiQqVOn8vnnn9OrV6+6ll0nPj41/5CGYeCqw+l233vvPW6//XYWLVrElVdeeVZrkl8n9M7JBFyeTO7TD2GWluDliADAVVLkvgZM0YfvEnzDeCrTUqnc8xOB/Qfj3Syekmf/6MnS5TxjtB8J0d0xN71Wfd2XY6e7dJZVXzfG5o/R7W7w8sXc/Pb/Bv7/b/B/RRGg09HKueeH74vYv7+c3r1D8PH2oqy0+rPUx8fA5l191MXevWWEhNjw8/MiJ6eSjT8UkZAQUONaMtL42QxfgnyauKcDvcMJ8Y2loqqEsqo89hasom3olRRXHqHEmUP7sEGUOQtqPZvZ+SrA5kcz+89HkkQHRdI2NJ6CiiIKKoq4MXEYXx/6jpyyPEJ9gxnWdgCRAWGsPLDOg1WfHXV+x4iIiGDAgAG88sor3H///TXGxWRmZjJv3jwmTJjgnhcZGVmj5yQ1NZWSkp/PutOtWzcWLlxIVFTUKXslunbtSteuXZkyZQpJSUnMnz+fXr164evrS1VV1SlrTkxMZO7cuRQXF7t7Y9asWYOXlxft27ev610/qQULFnDrrbfy3nvvMXjw4N+0LTl7gq66DoAmT/+jxvyjL8+g9L+fAVD8yXsYvr6E3nY/hj0EZ1oqOdMmUpWpLmppOEbcZdX/9phUY75r27vVp14OaY4R2qq6Te9pNdt8NQ3KPH82SJHj7d5dfSHWlSvza8y/+OJgWraqDuGFhU62bCmiosIkKNBGYmIg7RICTtiWNG4OvziSou92T3cMHwpAetEGNh15j90FK7B5+dKpyXXVF7ss28v6w6/iMtUj/Uvtw1vzUt/H3dP3dLkJgCVpX/LCd2/SIjiG5EvvI9Q3mIKKInbk7mbiipmkFVj/O88Z/eyRkpLCpZdeSnJyMk899RStWrVi27ZtPPzwwyQkJPDEE0+42/bv35+UlBSSkpKoqqrikUceqdHjMWbMGJ577jmGDh3KzJkzad68Ofv27WPx4sVMnjyZyspKXn31Va655hpiY2PZuXMnqamp3HzzzQC0bNmSvXv3snHjRpo3b05wcPAJp1YeM2YM06ZNY+zYsUyfPp3s7GwmTpzITTfd5B4P82vMnz+fsWPH8vLLL3PJJZeQmZkJQEBAAKGhob96u/LbHRras07tij54m6IP3q7nakRq51o+8dQNju46fRuRc8zvR0aets1FF9m56CJ7A1Qj57Kcst18mvbgKdv8lLeUn/J0Hb5T2Zi9nb6Lar8I8hNrX2q4YhrYGY2JadeuHRs2bKB169aMHDmS+Ph4Bg0aREJCgvvsYsc8//zzxMXFcdlllzF69GgeeughAgMD3csDAwNZtWoVLVq0YPjw4SQmJnLbbbdRVlZGSEgIgYGB7NixgxEjRpCQkMD48eOZMGECd955JwAjRoxg4MCB9OvXj8jISBYsWHBCvYGBgSxdupTc3FwuvvhirrvuOq644gpSUlJ+7eMFwKuvvorT6WTChAnExMS4b5MmTTr9yiIiIiIi8psYZl3PiVyLadOm8cILL9TLWJXGrKCggNDQUHYM6kawT+0DH0WsLHriJZ4uQc4zxpXDPV2CiCV9lvapp0s4Z83aoBP/NCRnSSVrxr1Pfn7+KYec/OZRdDNmzKBly5asW7eOnj174uV1xic8ExERERERqbOzciqQW2655WxsRkRERERE5LTUbSIiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpbymy92Kb/OsYtdnu5CPiIiIiIi54u6fkdWT4yIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKt6cLON9lXN+PIh+bp8sQkXoQPfEST5cgIuco48rhni7hrPgs7dNftd6sDRlnuRJpLJwllXVqp54YERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFG9PFyDSmAQOHEHQoOHYomIAcO7fS+HC1yn/fi0AEU/9Hb9O3WusU7xkMfl//3OD1yoi9aDZ7zCa/w4CwqunizIx9y6BnB/BPxyv38046WquzW9A1saGq1Marc8+zaGkxHXC/DZt/OnWPbje998mtD8xgZ2w+0RRZVZytHwf23M/pdiZXe/7Ptdd1KQD17e/moSwVjQJCGPqmhf46tC37uVhfiHcedEN9Gh6EXafQDYf2cHLP7zFwaJMD1Z97mp0IcYwDD788EOGDRvm6VLkPFSVc5iCt/+G81A6GAaB/QcT/ugssu+/CWf6HgCKl35I4fxX3euY5WWeKldEzrbyPMxd/4KSbDDAiLkEo/MdmN88C8WHca16tGb7Zr0x4q+oDjkiZ8GVV4Zhmj9P5xc4WfVlPs3j/Bpk/xH+bUgr/Jq88v0YeNEh7CouiR7Plwefo8qsaJAazlX+3n7sztvHv/eu5KneD5yw/KneD+J0OXlszfOUVJby+4SreP7yKYxbOpmyqnIPVHxuO+PDydLT07n11luJjY3F19eX+Ph4Jk2aRE5OTn3UV6vp06fTpUuXE+ZnZGQwaNCget33V199Re/evYmIiCAgIIAOHTrw4osv1us+xRrKN3xF+XdfU5WRTtWh/RS++3fMshJ821/obmOWl+HKy3HfzNJiD1YsImfVka3VgaQ0G0qyMXd/ClXlENoSMKGisMbNiLoIDv8AVef3lzs5e/z8vfAP+PmWcaiCILsXkZE+DbL/9Ydf40DRBooqD1NYmcGmI+8R6B1OqG/zBtn/uWx95ibe2LaoRu/LMc3t0XSMaMeL37/JzqN7SC/K4MXv38TP5ssVLZI8UO2574x6Yvbs2UNSUhIJCQksWLCAVq1asW3bNh5++GH+85//sG7dOsLDw+ur1jqJjo6u930EBQVxzz33cNFFFxEUFMRXX33FnXfeSVBQEOPHj6/3/YtFeHnh3/sKDP8AKnZucc8O6DOQgL6DcB3NoWzDaooWvoFZoV9YRBofA5p2BZsv5KeduDg4DiM4DteORQ1emZwfXFUm+/aVkZAQgGEYHqnB28sfgEpXiUf2bxU+XtUhs6Kq0j3PxKTS5aRTk/Z8tnelhyo7d51RT8yECRPw9fVl2bJl9OnThxYtWjBo0CCWL1/OwYMHeeyxx9xtDcPgo48+qrG+w+Fg7ty57un09HRGjhyJw+EgPDycoUOHkpaW5l6+cuVKevbsSVBQEA6Hg969e7Nv3z7mzp3LjBkz2LRpE4ZhYBiGe7vH73fLli3079+fgIAAIiIiGD9+PEVFRe7l48aNY9iwYcyaNYuYmBgiIiKYMGEClZU/P4mO17VrV2644QY6duxIy5YtufHGG0lOTmb16tW1rlNeXk5BQUGNmzRO3vFtiH5vJTHvf4XjD38k95nJONP3AlC6ail5L04jZ+pdFH0wl8C+g3A8MNPDFYvIWRUUg9F3Fkb/FzE6jMLc9DoUn3hMuxGbhFmUAfl7G75GOS8cPFROZaVJy1b+HqrAoGP4MHLL9lJYqXEdp7K/8BCZxdnc0el67D5BeBs2bmg/hKjACML9wzxd3jmpziEmNzeXpUuXcvfddxMQEFBjWXR0NGPGjGHhwoWYvzwQ8xQqKytJTk4mODiY1atXs2bNGux2OwMHDqSiogKn08mwYcPo06cPmzdvZu3atYwfPx7DMBg1ahQPPvggHTt2JCMjg4yMDEaNGnXCPoqLi0lOTiYsLIwNGzawaNEili9fzj333FOj3YoVK9i9ezcrVqzgrbfeYu7cuTXC1un88MMPfP311/Tp06fWNs888wyhoaHuW1xcXJ23L9biPLiP7Ptu5MjDt1K85AMck6bhHdcKgJJlH1H+wzqc+3ZT+uVSjr40g4Ckftiim3m4ahE5a0qyML/5M+aG5+HAVxgdb4Sg444S8PKB6O6Yh9Z5pkY5L+zdU0Z0tC8BATaP7P/C8OEE+0bzffY7Htm/lVSZVTzx9UvEBUfz6bDXWDp8Ll2jLmBdxkZM88QTNcgZHE6WmpqKaZokJiaedHliYiJHjx4lOzubqKio025v4cKFuFwuXn/9dXcX55w5c3A4HKxcuZIePXqQn5/P1VdfTZs2bdz7OMZut+Pt7X3Kw8fmz59PWVkZb7/9NkFBQQCkpKQwZMgQnn32WZo2bQpAWFgYKSkp2Gw2OnTowODBg/niiy+44447TnkfmjdvTnZ2Nk6nk+nTp3P77bfX2nbKlCk88MDPg7gKCgoUZBorp5OqzANUAZW7d+Db7gKCrh510jOQVf60FQDvmDiqMg82cKEiUi/MKig9Uv3fwnSMkHiMuD6YOxb+3CaqS/VhZhnrPVOjNHrFxVUczqrk0ktDPLL/C8OvpWngBXyd+TfKqvI9UoPV/JS3l9s/f5Qg7wC8vbzJryjklf4z2Xl0j6dLOyed8cD+0/W0+Pr61mk7mzZtYteuXQQHB2O327Hb7YSHh1NWVsbu3bsJDw9n3LhxJCcnM2TIEF5++WUyMjLOqNbt27fTuXNnd4AB6N27Ny6Xi507d7rndezYEZvt518pYmJiyMrKOu32V69ezbfffsvs2bN56aWXWLBgQa1t/fz8CAkJqXGT84ThheFz8teFT6sEAKpyjzRkRSLSkAyjuufll7OaJUH2FqgsqmUlkd8mbW8Z/n5exMTU7XvZ2XRh+LVEB3ZiXebfKXXmNvj+ra7YWUp+RSHN7NG0D2/NmkPfebqkc1Kde2Latm2LYRhs376da6+99oTl27dvJzIyEofDAVSPTTk+8PxynElRURHdu3dn3rx5J2wrMjISqO6Zuffee1myZAkLFy5k6tSpfP755/Tq1auuZdeJj89xHy6Ggct1+q67Vq2qDxHq1KkThw8fZvr06dxwww1ntTaxluCb7qb8u7VUHcnECAgk4PJkfC/sRu70e7FFNyPg8mTKv/saV2E+3i3bEnrr/ZRv/R7nvl2eLl1EzgKjzRDMnB+h7CjY/DCie0BYW8wfXvm5UUATcLTB3Djbc4VKo2aaJmlpZcS39MPLq2EH9F8YPpxm9m5sOPwmTrMcP1v1tWkqXaW4TGeD1nKuCbD50cz+8xFE0UGRtA2Np6CiiKzSHPo0v4T88gIOl+TQOjSOiV1u5quD3/Lt4S2n2Or5q84hJiIiggEDBvDKK69w//331xgXk5mZybx585gwYYJ7XmRkZI2ek9TUVEpKfj4zRbdu3Vi4cCFRUVGn7JXo2rUrXbt2ZcqUKSQlJTF//nx69eqFr68vVVVVp6w5MTGRuXPnUlxc7O6NWbNmDV5eXrRv376ud71OXC4X5eU6w9T5zis0HMd907CFN8FVXIRz3y5yp99L+ab1eDWJwq9zT+xDbsDw96fqyGHK1q6g8J9verpsETlbfIMxOt4EfiHgLIPCQ9UBJvfn3n8jNgnK8yBnh+fqlEbt8OFKSkpctPLAgP6WIb0BuDRmQo35G4+8x4GiDQ1ez7mkfXhrXur7uHv6ni43AbAk7Uv+vOEfRPg7mND5RsL8Q8kpPcqyfV/x9o+LPVXuOe+MTrGckpLCpZdeSnJyMk899VSNUywnJCTwxBNPuNv279+flJQUkpKSqKqq4pFHHqnR4zFmzBiee+45hg4dysyZM2nevDn79u1j8eLFTJ48mcrKSl599VWuueYaYmNj2blzJ6mpqdx8880AtGzZkr1797Jx40aaN29OcHAwfn41L+Q0ZswYpk2bxtixY5k+fTrZ2dlMnDiRm266yT0e5tf429/+RosWLejQoQMAq1atYtasWdx7772/epvSOOSnPFXrMteRLHIe+0MDViMiDc3cPv/0bXZ/Ars/aYBq5HwVHe3L70dGemTfn6Y96JH9WsHG7O30XTS61uWLdy1l8a6lDViRtZ3RmJh27dqxYcMGWrduzciRI4mPj2fQoEEkJCS4zy52zPPPP09cXByXXXYZo0eP5qGHHiIwMNC9PDAwkFWrVtGiRQuGDx9OYmIit912G2VlZYSEhBAYGMiOHTsYMWIECQkJjB8/ngkTJnDnnXcCMGLECAYOHEi/fv2IjIw86XiUwMBAli5dSm5uLhdffDHXXXcdV1xxBSkpKb/28QKqe12mTJlCly5d6NGjB3/729949tlnmTlTp8oVEREREalvhlnXcyLXYtq0abzwwgv1MlalMSsoKCA0NJQdg7oR7OOZUx+KSP2KnniJp0sQkXOUceVwT5dwVnyW9umvWm/WhjM7WZOcP5wllawZ9z75+fmnHHJyRoeTncyMGTNo2bIl69ato2fPnnh5nfEJz0REREREROrsN4cYgFtuueVsbEZEREREROS01G0iIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKW8psvdim/zrGLXZ7uQj4iIiIiIueLun5HVk+MiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYikKMiIiIiIhYirenCzjfZVzfjyIfm6fLEDnvRU+8xNMlWJJx5XBPl+Bxn6V96ukSpI5mbcjwdAkichrOkso6tVNPjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIpCjIiIiIiIWIq3pwsQOdcFDhxB0KDh2KJiAHDu30vhwtcp/34thj2E4BvG49/1EmxNmlJVkEfZN19SOG82ZkmxhysXS3G0wYi/AkJaYPiF4tr0GmRv/nl5ZGeM5r0huAWGbxCudX+GooOeq9fDKitdbNtawsGD5ZSVuwhzeNOlq53wcB9Pl2YZ4X6taRPal1Df5vh7h7Ihaw6HS7a6l3ducj1x9otrrJNVuoP1h19r6FLlPHdN6ysZ2uZKooOaAJBWcJC3flzM+sxNADzQ7Ta6N72QJgFhlDrL2HrkJ17d8h77Cw95smypZ40uxBiGwYcffsiwYcM8XYo0ElU5hyl4+284D6WDYRDYfzDhj84i+/6bwABbeBPy57yMM30vtsgYHHf9EVt4E44+O8XTpYuV2Pyg6CDmoXUYne84yXJfzLw9cPgHjAtGN3x955hvvy2iIN9Jz0uCCfC3sW9fGV9+mc/A5DACAm2eLs8SbF6+FFQcIr1oPT2ibjlpm6yS7WzKWeiedpnOhipPxC27NJdXt7zHgaJMDCC55eX8qfeD3PH5FNIKDvLT0b0s37+GrJIjBPvaGddxBM9d/kdu+GwSLkxPly/15IwPJ0tPT+fWW28lNjYWX19f4uPjmTRpEjk5OfVRX62mT59Oly5dTpifkZHBoEGDGqyONWvW4O3tfdJapHEo3/AV5d99TVVGOlWH9lP47t8xy0rwbX8hzv17OPrsHynf8BVVmQep2PItBe/+Hf+LLwMvfZGSM5DzI+buz2r2vvxS5gbYuwRydzZsXeegKqfJwQPlXHRREJGRvtiDbXS8MAi73cbu3WWeLs8yskt3sDNvCZm/6H05nosqyqsK3bdKV2kDVihSbW3G93yTuZGDRZkcKMrkja3/pNRZxgXh7QD4dO9/2XxkB5klR0jNS+ONrf+kaWATooMiPVy51KczCjF79uyhR48epKamsmDBAnbt2sXs2bP54osvSEpKIjc3t77qrLPo6Gj8/PwaZF95eXncfPPNXHHFFQ2yPzkHeHnhf9kADP8AKnZuOXmTIDuukmJwVTVwcSLnB5dpYprgZTNqzLfZ4MiRSg9V1ThF+LdhQNx0+jZ7hAvDR+DjFejpkuQ854VB/7gk/G1+bMtJPWG5v82PQS37cKgoi6yShv2BXRrWGYWYCRMm4Ovry7Jly+jTpw8tWrRg0KBBLF++nIMHD/LYY4+52xqGwUcffVRjfYfDwdy5c93T6enpjBw5EofDQXh4OEOHDiUtLc29fOXKlfTs2ZOgoCAcDge9e/dm3759zJ07lxkzZrBp0yYMw8AwDPd2j9/vli1b6N+/PwEBAURERDB+/HiKiorcy8eNG8ewYcOYNWsWMTExREREMGHCBCorT/9B+Ic//IHRo0eTlJR02rbl5eUUFBTUuIl1eMe3Ifq9lcS8/xWOP/yR3Gcm40zfe0I7r+BQ7CNvpWTZRw1fpMh5wsfHi4gIb7b/WEJpaRWmy2TfvjJycpyUlrk8XV6jkV26g43ZC1iXOZvtRz8jwr81lzS9AzBOu67I2dYqJI7/XPsmn494mwe63crjX7/IvsKfxwUObXMl/7n2TZYMn8Ml0V14aNXTOE39mNiY1TnE5ObmsnTpUu6++24CAgJqLIuOjmbMmDEsXLgQ06zbsYeVlZUkJycTHBzM6tWrWbNmDXa7nYEDB1JRUYHT6WTYsGH06dOHzZs3s3btWsaPH49hGIwaNYoHH3yQjh07kpGRQUZGBqNGjTphH8XFxSQnJxMWFsaGDRtYtGgRy5cv55577qnRbsWKFezevZsVK1bw1ltvMXfu3Bph62TmzJnDnj17mDZtWp3u7zPPPENoaKj7FhcXV6f15NzgPLiP7Ptu5MjDt1K85AMck6bhHdeqRhsjIIjwJ17Emb6XwgWveqhSkfNDz0tCMIFPP8nlgw+OkJpaSos4P329PosOFW/kcOk2CiszOVyylQ1Zb+Dwa0GEf1tPlybnofTCQ9y+bAp3ffEEH+9ezpSefyA+uJl7+fJ9a7j980e5d8VM0osymJY0CV8vneijMavzwP7U1FRM0yQxMfGkyxMTEzl69CjZ2dlERUWddnsLFy7E5XLx+uuvYxjVHztz5szB4XCwcuVKevToQX5+PldffTVt2rRx7+MYu92Ot7c30dHRte5j/vz5lJWV8fbbbxMUFARASkoKQ4YM4dlnn6Vp06YAhIWFkZKSgs1mo0OHDgwePJgvvviCO+44yeDa/z0Wf/zjH1m9ejXe3nV7CKdMmcIDDzzgni4oKFCQsRKnk6rMA1QBlbt34NvuAoKuHkX+3/8MgBEQSMT0lzFLS8h9ZjJU6dcfkfpkt9vo18+B02lSWekiIMDG2rUFBNk1Fq2+lDhzKa8qIsg7ghxOPIxHpD45zSoOFh8G4Ke8vXQIb8OIdgN54fs3ACh2llJcVMrBokx+zEnlk2Gv8btmPfhv+lpPli316IwH9p+up8XX17dO29m0aRO7du0iODgYu92O3W4nPDycsrIydu/eTXh4OOPGjSM5OZkhQ4bw8ssvk5GRcUa1bt++nc6dO7sDDEDv3r1xuVzs3Pnz4NiOHTtis/38wRcTE0NWVtZJt1lVVcXo0aOZMWMGCQkJda7Fz8+PkJCQGjexMMMLw6f6uW4EBBEx/a+YlZXkPvUgVFZ4uDiR84e3t0FAgI2KCheHMytoFlu3zyA5c/62UHy9AimvKvR0KSIYhoGv7eQ/JBuGgYGhnphGrs49MW3btsUwDLZv38611157wvLt27cTGRmJw+EAqp9AxweeX44zKSoqonv37sybN++EbUVGVp9NYs6cOdx7770sWbKEhQsXMnXqVD7//HN69epV17LrxMen5pPcMAxcrpMfV11YWMi3337LDz/84D4szeVyYZom3t7eLFu2jP79+5/V+sSzgm+6m/Lv1lJ1JBMjIJCAy5PxvbAbudPvrQ4wM/6C4efP0RefwAi0YwTaAXAVHIVankciJ7D5QsAvzqQTEAH2ZlBZAuVHwTsQ/MPAL7R6eVB1TzIVBVBx/n2pzMysABOCg20UFVWxaXMRwcE2Wrby93RplmEzfAnyaeKeDvQOJ8Q3loqqEipdJSQ4/o+Mks2UVxUS6N2ExLDBFDtzyC7d4cGq5Xx0x4Wj+CZzE1klRwjwDuDKFpfSJTKRh1f9mZigKPrF9eLbzC3klRcQGRjO6A7XUF5VwbrMjZ4uXepRnUNMREQEAwYM4JVXXuH++++vMS4mMzOTefPmMWHCBPe8yMjIGj0nqamplJSUuKe7devGwoULiYqKOmWvRNeuXenatStTpkwhKSmJ+fPn06tXL3x9fak6zSE7iYmJzJ07l+LiYndvzJo1a/Dy8qJ9+/Z1ves1hISEsGVLzbNSvfLKK/z3v//l/fffp1WrVrWsKVblFRqO475p2MKb4CouwrlvF7nT76V803p8L+yGb/tOADT9x4c11jt8x1Cqss6s91DOYyEt8Oo+yT3plTAcAPPQN5g/vguRnfDqeOPPyztVX9fD3PNvzD3/adhazwGVlS62bC6mtNSFr68XzZr70unCILy8NCqmrhx+cSRF3+2e7hg+FID0og1syXmfYN9Ymtt74OMVQFlVAdmlO9l5dAkudLisNCyHfwiP9ryLcH8HxZUl7MlP5+FVf+a7rK1E+Du4qEkHrms3iGDfII6W5bMpewf3/Hc6eeU6iVJjdkYXu0xJSeHSSy8lOTmZp556ilatWrFt2zYefvhhEhISeOKJJ9xt+/fvT0pKCklJSVRVVfHII4/U6PEYM2YMzz33HEOHDmXmzJk0b96cffv2sXjxYiZPnkxlZSWvvvoq11xzDbGxsezcuZPU1FRuvvlmAFq2bMnevXvZuHEjzZs3Jzg4+IRTK48ZM4Zp06YxduxYpk+fTnZ2NhMnTuSmm25yj4c5U15eXlx44YU15kVFReHv73/CfGkc8lOeqnVZxdbvOTS0ZwNWI43W0V24lk+sfXnGN7gyvmm4es5xcXH+xMWp1+W3yCnbzadpD9a6fP1hnaBEzg3PfftarctyyvL441f/rwGrkXPFGY2JadeuHRs2bKB169aMHDmS+Ph4Bg0aREJCgvvsYsc8//zzxMXFcdlllzF69GgeeughAgN/Pr98YGAgq1atokWLFgwfPpzExERuu+02ysrKCAkJITAwkB07djBixAgSEhIYP348EyZM4M477wRgxIgRDBw4kH79+hEZGcmCBQtOqDcwMJClS5eSm5vLxRdfzHXXXccVV1xBSkrKr328RERERETEwwyzrudErsW0adN44YUX6mWsSmNWUFBAaGgoOwZ1I9hHZ9MR8bToiZd4ugRLMq4c7ukSPO6ztE89XYLU0awNOsRX5FznLKlkzbj3yc/PP+WQkzM6nOxkZsyYQcuWLVm3bh09e/bEy+uMT3gmIiIiIiJSZ785xADccsstZ2MzIiIiIiIip6VuExERERERsRSFGBERERERsRSFGBERERERsRSFGBERERERsRSFGBERERERsRSFGBERERERsZTffLFL+XWOXezydBfyERERERE5X9T1O7J6YkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFIUYkRERERExFK8PV3A+S7j+n4U+dg8XYY0ItETL/F0CSKWY1w53NMl1PBZ2qeeLqGGWRsyPF2CiJwnnCWVdWqnnhgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUhRgREREREbEUb08XIAJgHzEW/6R+eDePxywvp2LHFgre/itVB/e72wT+3zACLk/Gp017vALtZIzuj1lc5MGqRY7TcgBGZGcIagquSsjbi7nrYyjJ+rlNQBOMdsPA0Rq8vCFnO+bO96Gi0GNly2+zbWsxP/5YUmNecLCNgYPCPVJPguP/SHAk15hXVJnFyoPPeqQeOX+Mbj+E8RfdwPs//YeUTe8A4Ovlw12dx9A/Lglfmw/rMzfz0vdvcrS8wMPVitU1uhBjGAYffvghw4YN83QpcgZ8L+xG8b8XUZm6HWw2Qm66i4jpfyX7nlGY5WUAGH7+lP+wlvIf1hJy8z0erljkRIajLeaB1VCwDwwbRtshGF0nYK79E7gqwMsXo+vdUHQI87u/Vq/T5mqMzndibngeMD17B+RXCwmx0aePwz1tePg4h4KKDL45/A/3tMt0ebAaOR+0D2vNkDZXsCtvX435E7rcRK+YLkxf+zLFlaVM6jaOmZfez8QVMzxUqTQWZ/w2m56ezq233kpsbCy+vr7Ex8czadIkcnJy6qO+Wk2fPp0uXbqcMD8jI4NBgwbV675XrlyJYRgn3DIzM+t1v41Z7oxJlP73M5zpe3CmpZL38ky8o2LwaZPoblP8yXsUffA2FTu3erBSkdqZG/8OGd9AcSYUHcTc9i5GQDiExFU3cLSGgAjMbe9CcQYUZ2Bue6d6eXiCZ4uX38TwAv8AL/fNz8+zKcbERXlVoftW6Sr2aD3SuAXY/Jh6yQRmffs6RRU/P9eCvAO4qlVfXtn4Lj9k/8hPeXt5dsM/6NSkPReEt/VcwdIonNG77J49e+jRowepqaksWLCAXbt2MXv2bL744guSkpLIzc2trzrrLDo6Gj8/vwbZ186dO8nIyHDfoqKiGmS/5wMj0A6Aqyjfw5WI/Abe/tX/Vv7vUCMvbzBNcDl/buNygmliOFo3fH1y1hQVVvHJv3L492c5fLOugJLiKo/WE+TdhCubP0G/Zo/StckY/G0Oj9YjjdukbrewLuMHvsuq+SNjQlgrfLy8a8zfX3iIzOJsLoho19BlSiNzRiFmwoQJ+Pr6smzZMvr06UOLFi0YNGgQy5cv5+DBgzz22GPutoZh8NFHH9VY3+FwMHfuXPd0eno6I0eOxOFwEB4eztChQ0lLS3MvX7lyJT179iQoKAiHw0Hv3r3Zt28fc+fOZcaMGWzatMndC3Jsu8fvd8uWLfTv35+AgAAiIiIYP348RUU/j6MYN24cw4YNY9asWcTExBAREcGECROorKw87eMRFRVFdHS0++blVfvDWV5eTkFBQY2b1MIwCL39Acp/3Ihz/x5PVyPyKxkYCSMw83ZX97oA5KeBqwKj3TXg5VN9eFnCMAwvG/iGeLRa+fXCI7y5uGcIl10eSrfuwRQXV7FiRR6VlZ45hOto+X42HXmPbw6/xtacDwjwDufSmAnYjIb5gU/OL/3jkkgIa8lrWxaesCzc30FFVSVFlTXHjB0tLyDcP7ShSpRGqs4hJjc3l6VLl3L33XcTEBBQY1l0dDRjxoxh4cKFmGbdjumurKwkOTmZ4OBgVq9ezZo1a7Db7QwcOJCKigqcTifDhg2jT58+bN68mbVr1zJ+/HgMw2DUqFE8+OCDdOzY0d0LMmrUqBP2UVxcTHJyMmFhYWzYsIFFixaxfPly7rmn5niKFStWsHv3blasWMFbb73F3Llza4St2nTp0oWYmBgGDBjAmjVrTtn2mWeeITQ01H2Li4ur0+N0Pgq9czLeLVpzdNZUT5ci8qsZHX4P9hjMLXN/nllZhLn5TWhyIUa/WRh9/x94B2AW7EfjYawrJsaPuDg/HA5voqN9+d1loVRUmhxIL/dIPdmlO8go2UxhZQbZZTtZn/UaPl4BxAZ19kg90nhFBoRzT5ebeeqbv1HhOv2PvyJnU50H9qempmKaJomJiSddnpiYyNGjR8nOzq7TYVULFy7E5XLx+uuvYxgGAHPmzMHhcLBy5Up69OhBfn4+V199NW3atHHv4xi73Y63tzfR0dG17mP+/PmUlZXx9ttvExQUBEBKSgpDhgzh2WefpWnTpgCEhYWRkpKCzWajQ4cODB48mC+++II77rjjpNuNiYlh9uzZ9OjRg/Lycl5//XX69u3LN998Q7du3U66zpQpU3jggQfc0wUFBQoyJxE6/iH8L/4dR6bciSsn6/QriJyDjPa/hyYXYn77MpTn1VyYuwPz65ngEwSmC5ylGJf9CbP0e4/UKmefr68XwXYbRUWePaTsGKerjOLKbIK8m3i6FGlk2oe1Jtw/lNeufNo9z+Zl46LIDlzb9v94ePWf8bX5YPcJrNEbE+YXQm6ZDheX3+aMz052up4WX1/fOm1n06ZN7Nq1i+Dg4Brzy8rK2L17N//3f//HuHHjSE5OZsCAAVx55ZWMHDmSmJiYOte6fft2Onfu7A4wAL1798blcrFz5053iOnYsSM2m83dJiYmhi1bttS63fbt29O+fXv39KWXXsru3bt58cUXeeedd066jp+fX4ON1bGq0PEP4d+rL0ceu4uqrEOeLkfkVzHa/x4iL8L87i9QdooTnlT+b/BrWAL42iG79vccsRZnpUlRcRXx/ufGe77N8CXQuwllVd95uhRpZL7L2sotSyfXmPfIxXeyv/AQC3Z8QlZJDpUuJ92iOrLq4AYA4uwxRAdF8mNOqidKlkakziGmbdu2GIbB9u3bufbaa09Yvn37diIjI3E4HED12JTjA88vx5kUFRXRvXt35s2bd8K2IiMjgeqemXvvvZclS5awcOFCpk6dyueff06vXr3qWnad+Pj41Jg2DAOX68yOZe7ZsydfffXV2SzrvBJ652QCLk8m9+mHMEtL8HJEAOAqKYKK6kMyvBwReIWF4x1T3YPlE98WV2kxVdmHMYs0xkg8z2g/EqK7Y256DarKwPd/P9I4y6qvGwMQcwkUH4bKIghtiZFwHexfWfNaMmIpmzYWERvrS2CQjdJSF9u2FWMY0KKFv0fqSQwbwuGSbZRWHcXfFkqCIxkTF4eKf/BIPdJ4lTrL2FtwoMa8Mmc5BeVF7vn/3ruSuzvfSEFFMSWVpdzbdSxbj/zEj7m7PFGyNCJ1DjEREREMGDCAV155hfvvv7/GuJjMzEzmzZvHhAkT3PMiIyPJyMhwT6emplJS8nNXYrdu3Vi4cCFRUVGEhNQ+oLVr16507dqVKVOmkJSUxPz58+nVqxe+vr5UVZ26qz4xMZG5c+dSXFzs7o1Zs2YNXl5eNXpSzoaNGzeeUS+R1BR01XUANHn6HzXmH315BqX//ay6zcDhBN/w8yF+TZ559YQ2Ip5kxF1W/W+PSTXmu7a9W33qZcAIagptrwGfQCjNxUxbCvtXNHitcvaUlrpYt66QigoXfn5eNGniwxVXhOHn75nTLPt7h9It8kZ8bEFUVBWRW76XNRl/oUKnWRYP+NvGd3B1djHz0vvw8fJmQ+ZmXvp+jqfLkkbgjA4nS0lJ4dJLLyU5OZmnnnqKVq1asW3bNh5++GESEhJ44okn3G379+9PSkoKSUlJVFVV8cgjj9To8RgzZgzPPfccQ4cOZebMmTRv3px9+/axePFiJk+eTGVlJa+++irXXHMNsbGx7Ny5k9TUVG6++WYAWrZsyd69e9m4cSPNmzcnODj4hMO1xowZw7Rp0xg7dizTp08nOzubiRMnctNNN7kPJfs1XnrpJVq1akXHjh0pKyvj9ddf57///S/Lli371ds83x0a2vO0bQrfe43C915rgGpEfh3X8omnbWPu+hfs+lcDVCMNpVfSuXVmuR+y3/V0CXIeu+/Lp2pMV7gqefmHubz8w1zPFCSN1hn9TNSuXTs2bNhA69atGTlyJPHx8QwaNIiEhAT32cWOef7554mLi+Oyyy5j9OjRPPTQQwQGBrqXBwYGsmrVKlq0aMHw4cNJTEzktttuo6ysjJCQEAIDA9mxYwcjRowgISGB8ePHM2HCBO68804ARowYwcCBA+nXrx+RkZEsWLDghHoDAwNZunQpubm5XHzxxVx33XVcccUVpKSk/NrHC4CKigoefPBBOnXqRJ8+fdi0aRPLly/niiuu+E3bFRERERGR0zPMup4TuRbTpk3jhRdeqJexKo1ZQUEBoaGh7BjUjWAf2+lXEKmj6ImXeLoEEcsxrhzu6RJq+CztU0+XUMOsDRmnbyQichY4SypZM+598vPzTznk5IzPTna8GTNm0LJlS9atW0fPnj1PecFHERERERGR3+o3hxiAW2655WxsRkRERERE5LTUbSIiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpaiECMiIiIiIpbymy92Kb/OsYtdnu5CPiIiIiIi54u6fkdWT4yIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKQoyIiIiIiFiKt6cLON9lXN+PIh+bp8uoN9ETL/F0CXKOMq4c7ukSavgs7VNPlyDS6MzakOHpEkTEYpwllXVqp54YERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFIUYERERERGxFG9PFyD1zMuL4OvvIKDvIGyOcKpyj1Dy308p+uebnq6scXK0wYi/AkJaYPiF4tr0GmRv/nm5bzBG26EQ0QG8A+DoLsyd70NptudqtqBtW4v58ceSGvOCg20MHBTuoYrkbIoPTiI++FICvKv/nkUVmfyU/znZpTsA8DK8uSDsGmKDuuBleJNdupMtOR9Q4SryZNkicpxrWl/J0DZXEh3UBIC0goO89eNi1mduAiDcL5Q/dB5Nj6adCPD2J70wg3e3f8Sqgxs8WbZYRKMLMYZh8OGHHzJs2DBPl3JOsA+/mcBBI8h7aQbO9D34tE3Ece/jmCVFFH/6T0+X1/jY/KDoIOahdRid7zhhsXHRHWBWYW56FZxlGC36YXS7B3Ptn8BV4YGCrSskxEafPg73tKF+5Uaj1JnPjqOfUVx5BIDm9ou5OOoWVh16gaLKw1wQNpSmgYl8l/02TlcZF4ZfS4+ocXydmeLhykXkl7JLc3l1y3scKMrEAJJbXs6fej/IHZ9PIa3gIFN63oXdN4hHv3qe/IpCrmxxKdOSJnHn8sfYlbfP0+XLOe6MP/bT09O59dZbiY2NxdfXl/j4eCZNmkROTk591Fer6dOn06VLlxPmZ2RkMGjQoHrff3l5OY899hjx8fH4+fnRsmVL3nzz3Ovd8O1wEWXfrKL8uzVUZWVQ9vV/Kf/hG3zadfR0aY1Tzo+Yuz+r2ftyTGAkhqMV5o6FULAfSrIwd/wTbD4Q3b3ha7U4wwv8A7zcNz8/pZjGIqv0R7JKd1DsPEKx8wg78/6D01VBmF883oY/LYJ78mPuv8gp20V+xQE25iwk3L8VDr8Wni5dRH5hbcb3fJO5kYNFmRwoyuSNrf+k1FnGBeHtALiwSQKLU5ey4+huMoqzeGf7RxRVFNM+rJWHKxcrOKNP/T179tCjRw9SU1NZsGABu3btYvbs2XzxxRckJSWRm5tbX3XWWXR0NH5+fvW+n5EjR/LFF1/wxhtvsHPnThYsWED79u3rfb9nqmLHZvwu6oEttvrD3btlO3wv6Ez59197uLLzkPG/jk+X8xczTXA5MRxtPFKSlRUVVvHJv3L492c5fLOugJLiKk+XJPXCIDaoCzYvX46W7yPUr3n1IWRlP7lbFFdmUeLMJcyvpefKFJFT8sKgf1wS/jY/tuWkArD1yE/0j+tFsE8Qxv+W+9p82Ji13cPVihWcUYiZMGECvr6+LFu2jD59+tCiRQsGDRrE8uXLOXjwII899pi7rWEYfPTRRzXWdzgczJ071z2dnp7OyJEjcTgchIeHM3ToUNLS0tzLV65cSc+ePQkKCsLhcNC7d2/27dvH3LlzmTFjBps2bcIwDAzDcG/3+P1u2bKF/v37ExAQQEREBOPHj6eo6OfjpseNG8ewYcOYNWsWMTExREREMGHCBCorK2t9HJYsWcKXX37Jv//9b6688kpatmxJUlISvXv3rnWd8vJyCgoKatwaQtEHb1H61edE/e2fxHzwNZEvvkPxv96j9MulDbJ/+YWSw5iluRhth1SPhzFsEH8lhn8Y+IV4ujpLCY/w5uKeIVx2eSjdugdTXFzFihV5VFa6PF2anCXBPtEMbPE0V8U/S6eI6/guaw5FlYfxswVTZTpxuspqtK+oKsLPFuyhakWkNq1C4vjPtW/y+Yi3eaDbrTz+9YvsKzwIwIx1f8Hm5c0nw17j8xFv8UD323j86xc5WHzYw1WLFdQ5xOTm5rJ06VLuvvtuAgICaiyLjo5mzJgxLFy4ENM067S9yspKkpOTCQ4OZvXq1axZswa73c7AgQOpqKjA6XQybNgw+vTpw+bNm1m7di3jx4/HMAxGjRrFgw8+SMeOHcnIyCAjI4NRo0adsI/i4mKSk5MJCwtjw4YNLFq0iOXLl3PPPffUaLdixQp2797NihUreOutt5g7d26NsHW8f/3rX/To0YP/9//+H82aNSMhIYGHHnqI0tLSWtd55plnCA0Ndd/i4uLq9Dj9Vv6/u5LAPgM5+sLjZD9wE3kvz8A+7EYC+g1ukP3LL5guzM2vQ2AUXn3/H0a/5zHC2mEe2QZ1fN1ItZgYP+Li/HA4vImO9uV3l4VSUWlyIL3c06XJWVJUmc2qQ8+zJuMv7Cv4ms5NbsDu09TTZYnIGUovPMTty6Zw1xdP8PHu5Uzp+Qfig5sBcGvH32P3CeSBL//EncunsuinfzO91720CmmY70hibXUe2J+amoppmiQmJp50eWJiIkePHiU7O5uoqKjTbm/hwoW4XC5ef/11DMMAYM6cOTgcDlauXEmPHj3Iz8/n6quvpk2bNu59HGO32/H29iY6OrrWfcyfP5+ysjLefvttgoKCAEhJSWHIkCE8++yzNG1a/YEYFhZGSkoKNpuNDh06MHjwYL744gvuuOPEgdlQfVjdV199hb+/Px9++CFHjhzh7rvvJicnhzlz5px0nSlTpvDAAw+4pwsKChokyISOu5fCD96ibPXnADj37cYWGYP9urGUrvis3vcvxylMx/zmWUybP3h5Q2URxsUPVo+RkV/N19eLYLuNoiIdUtZYmFRR4qwea5lfcYBQvzhahVzGoeKN2AxvvL38a/TG+NrslFcVeqpcEamF06xy96z8lLeXDuFtGNFuIO/t/ITh7ZIZt/Rh0gqqe2Z25+/noiYduLbtAF74/twbZyznljMeCXu6nhZfX986bWfTpk3s2rWL4OBg7HY7drud8PBwysrK2L17N+Hh4YwbN47k5GSGDBnCyy+/TEZGxhnVun37djp37uwOMAC9e/fG5XKxc+dO97yOHTtis9nc0zExMWRlZdW6XZfLhWEYzJs3j549e3LVVVfxwgsv8NZbb9XaG+Pn50dISEiNW0MwfP3BddzfzFWFoVM5eVZVGVQWQUAkhLTAzN7i6YoszVlpUlRchb+/nteNlYGBl+FNfvkBXKaTJv7t3MuCvCMJ9A7naHma5woUkToxDANfmzd+turxy67jvldWmS59R5E6qfOzpG3bthiGwfbtJx9stX37diIjI3E4HED1k/T4wPPLcSZFRUV0796djRs31rj99NNPjB49GqjumVm7di2XXnopCxcuJCEhgXXr1p3pfTwtHx+fGtOGYeBy1X5sfUxMDM2aNSM0NNQ9LzExEdM0OXDgwFmv77co27Ca4N+Pw697b2xRMfj36kvQ0NGUrlvp6dIaJ5sv2JtV3wACIqr/7xdWPR3VBcLaVs+P7ITRbUL1mcxyd3isZCvatLGI7KwKiourOHKkkjVf52MY0KKFv6dLk7Ogg+Mqwv1aE+AdRrBPNB0cVxHh34aDRd/jNMvYX7ieC8KvIcK/DaG+zenc5Hpyy9LIK1ePpsi55I4LR3FRkw5EBzahVUgcd1w4ii6RiXy+bw37Cw9xoDCTB7vfRoewNsQGRTEy4Sp6NL2Qrw5+6+nSxQLqfDhZREQEAwYM4JVXXuH++++vMS4mMzOTefPmMWHCBPe8yMjIGj0nqamplJT8fHG6bt26sXDhQqKiok7ZK9G1a1e6du3KlClTSEpKYv78+fTq1QtfX1+qqk596EhiYiJz586luLjY3RuzZs0avLy8ftOZxHr37s2iRYsoKirCbrcD8NNPP+Hl5UXz5s1/9XbrQ/5rswgefSehf5iMLTSs+mKXSz+kcOHrni6tcQppgVf3Se5Jr4ThAJiHvsH88V3wC8VIGA6+wVBeABnrMfcu8VS1llVa6mLdukIqKlz4+XnRpIkPV1wRhp96YhoFX5udLpE34GcLwekqpaAig28Ov8aR/52R7MejHwMm3SPH4WXYyC7dydbcxZ4tWkRO4PAP4dGedxHu76C4soQ9+ek8vOrPfJe1FYBHvvp/jO90PU//7iECvP04WHSYZ9bP5pvMjZ4tXCzhjC52mZKSwqWXXkpycjJPPfUUrVq1Ytu2bTz88MMkJCTwxBNPuNv279+flJQUkpKSqKqq4pFHHqnR4zFmzBiee+45hg4dysyZM2nevDn79u1j8eLFTJ48mcrKSl599VWuueYaYmNj2blzJ6mpqdx8880AtGzZkr1797Jx40aaN29OcHDwCadWHjNmDNOmTWPs2LFMnz6d7OxsJk6cyE033eQeD/NrjB49mieffJJbbrmFGTNmcOTIER5++GFuvfXWE0564GlmaQkFb7xIwRsverqU88PRXbiWT6x9efqXmOlfNlw9jVSvJJ3NrTHbnHPqC/G6TCdbcxcruIic45779rVTLj9YlMm0tS81TDHS6JzRz5bt2rVjw4YNtG7dmpEjRxIfH8+gQYNISEhwn13smOeff564uDguu+wyRo8ezUMPPURgYKB7eWBgIKtWraJFixYMHz6cxMREbrvtNsrKyggJCSEwMJAdO3YwYsQIEhISGD9+PBMmTODOO+8EYMSIEQwcOJB+/foRGRnJggULTqg3MDCQpUuXkpuby8UXX8x1113HFVdcQUrKb7uqs91u5/PPPycvL48ePXowZswYhgwZwl/+8pfftF0RERERETk9w6zrOZFrMW3aNF544QU+//xzevXqdbbqavQKCgoIDQ1lx6BuBPvYTr+CRUVPvMTTJcg5yrhyuKdLqOGztE89XYJIozNrw5mdkEdExFlSyZpx75Ofn3/KISdndDjZycyYMYOWLVuybt06evbsiZeXjkkXEREREZH685tDDMAtt9xyNjYjIiIiIiJyWuo2ERERERERS1GIERERERERS1GIERERERERS1GIERERERERS1GIERERERERS1GIERERERERS/nNF7uUX+fYxS5PdyEfEREREZHzRV2/I6snRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELEUhRkRERERELMXb0wWcr0zTBKCgoMDDlYiIiIiInBuOfTc+9l25NgoxHlJYWAhAXFychysRERERETm3FBYWEhoaWutywzxdzJF64XK5OHToEMHBwRiG4elyREREREQ8zjRNCgsLiY2Nxcur9pEvCjEiIiIiImIpGtgvIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKWohAjIiIiIiKW8v8BdgGQ6G/v9fcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "category_names = ['Strongly disagree', 'Disagree',\n", + " 'Neither agree nor disagree', 'Agree', 'Strongly agree']\n", + "results = {\n", + " 'Question 1': [10, 15, 17, 32, 26],\n", + " 'Question 2': [26, 22, 29, 10, 13],\n", + " 'Question 3': [35, 37, 7, 2, 19],\n", + " 'Question 4': [32, 11, 9, 15, 33],\n", + " 'Question 5': [21, 29, 5, 5, 40],\n", + " 'Question 6': [8, 19, 5, 30, 38]\n", + "}\n", + "\n", + "\n", + "def survey(results, category_names):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + " results : dict\n", + " A mapping from question labels to a list of answers per category.\n", + " It is assumed all lists contain the same number of entries and that\n", + " it matches the length of *category_names*.\n", + " category_names : list of str\n", + " The category labels.\n", + " \"\"\"\n", + " labels = list(results.keys())\n", + " data = np.array(list(results.values()))\n", + " data_cum = data.cumsum(axis=1)\n", + " category_colors = plt.colormaps['RdYlGn'](\n", + " np.linspace(0.15, 0.85, data.shape[1]))\n", + "\n", + " fig, ax = plt.subplots(figsize=(9.2, 5))\n", + " ax.invert_yaxis()\n", + " ax.xaxis.set_visible(False)\n", + " ax.set_xlim(0, np.sum(data, axis=1).max())\n", + "\n", + " for i, (colname, color) in enumerate(zip(category_names, category_colors)):\n", + " widths = data[:, i]\n", + " starts = data_cum[:, i] - widths\n", + " rects = ax.barh(labels, widths, left=starts, height=0.5,\n", + " label=colname, color=color)\n", + "\n", + " r, g, b, _ = color\n", + " text_color = 'white' if r * g * b < 0.5 else 'darkgrey'\n", + " ax.bar_label(rects, label_type='center', color=text_color)\n", + " ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),\n", + " loc='lower left', fontsize='small')\n", + "\n", + " return fig, ax\n", + "\n", + "\n", + "survey(results, category_names)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIOCAYAAAD6C3SWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABWH0lEQVR4nO3de3yU1b3v8e8kJBMSkgkhQILcguIGGpGCchG0XrBQqbXq7qlUeyr10GrBo2KPSnsocrRFuj3VekOl3raKWs+u2yqWlouK2CBuEBVBBQRBSLiFXAhkEpI5f4SJuczleWbWzDMz+bxfr7xeZDIzz5pnhlm/Z63f+i2Xz+fzCQAAwKA0pxsAAABSDwEGAAAwjgADAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCum90HrFmzRv/2b/+mDRs2qLy8XK+88oq+//3vt/7d5/Np/vz5WrJkiaqqqjRx4kQtXrxYQ4cObb1PZWWlbrzxRr322mtKS0vTlVdeqT/+8Y/q0aOHpTY0Nzdr3759ys3NlcvlsvsSAAAJyOfzqba2Vv369VNaGte/yc52gFFXV6czzzxTP/3pT3XFFVd0+vvvf/97PfDAA3rmmWdUUlKiefPmacqUKdqyZYuysrIkSVdffbXKy8u1YsUKNTY2asaMGfrZz36mpUuXWmrDvn37NGDAALtNBwAkgT179qh///5ONwNRckWz2ZnL5Wo3guHz+dSvXz/deuut+uUvfylJqq6uVt++ffX000/rqquu0tatWzVixAi9//77OuussyRJy5cv1yWXXKKvvvpK/fr1C3vc6upq5efna8+ePcrLy4u0+QCABFJTU6MBAwaoqqpKHo/H6eYgSrZHMELZuXOnKioqNHny5NbbPB6Pxo0bp7KyMl111VUqKytTfn5+a3AhSZMnT1ZaWpree+89XX755Z2e1+v1yuv1tv5eW1srScrLyyPAAIAUw9R3ajA6yVVRUSFJ6tu3b7vb+/bt2/q3iooK9enTp93fu3XrpoKCgtb7dLRw4UJ5PJ7WH6ZHAABIbEmRRTN37lxVV1e3/uzZs8fpJgEAgBCMTpEUFRVJkvbv36/i4uLW2/fv369Ro0a13ufAgQPtHnfixAlVVla2Pr4jt9stt9ttsqmA4wbfsczS/XbdMy3GLQEA84yOYJSUlKioqEirVq1qva2mpkbvvfeeJkyYIEmaMGGCqqqqtGHDhtb7rF69Ws3NzRo3bpzJ5gAAAIfYHsE4evSotm/f3vr7zp07tWnTJhUUFGjgwIG6+eabdffdd2vo0KGty1T79evXutJk+PDhmjp1qmbOnKlHH31UjY2Nmj17tq666ipLK0gApzg14sBIB4BkZDvA+K//+i9dcMEFrb/PmTNHkvSTn/xETz/9tG677TbV1dXpZz/7maqqqjRp0iQtX768tQaGJD3//POaPXu2LrrootZCWw888ICBlwMAABJBVHUwnFJTUyOPx6Pq6mqWqSJuTI8kWH0+qxjBQLLjuz21JMUqEgAAkFwIMAAAgHEEGAAAwDijdTAAJD5WpQCIBwIMwDDTyZsAkIyYIgEAAMYRYAAAAOMIMAAAgHEEGAAAwDgCDAAAYBwBBgAAMI5lqkCKYHksgETCCAYAADCOAAMAABhHgAEAAIwjwAAAAMaR5AkgIDZFAxANRjAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOMotAUgKhTkAhAIIxgAAMA4AgwAAGAcUyTo8qwO8QMArGMEAwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOOMBxp133imXy9XuZ9iwYa1/r6+v16xZs9SrVy/16NFDV155pfbv32+6GQAAwEExGcH4xje+ofLy8taftWvXtv7tlltu0WuvvaaXX35Zb7/9tvbt26crrrgiFs0AAAAOiUmhrW7duqmoqKjT7dXV1XriiSe0dOlSXXjhhZKkp556SsOHD9e6des0fvz4gM/n9Xrl9Xpbf6+pqYlFswEAgCExCTC2bdumfv36KSsrSxMmTNDChQs1cOBAbdiwQY2NjZo8eXLrfYcNG6aBAweqrKwsaICxcOFCLViwIBZNRQqjQicAOMf4FMm4ceP09NNPa/ny5Vq8eLF27typc889V7W1taqoqFBmZqby8/PbPaZv376qqKgI+pxz585VdXV168+ePXtMNxsAABhkfATjO9/5Tuu/R44cqXHjxmnQoEH685//rO7du0f0nG63W26321QTAQBAjMV8mWp+fr5OP/10bd++XUVFRWpoaFBVVVW7++zfvz9gzgYAAEhOMQ8wjh49qh07dqi4uFhjxoxRRkaGVq1a1fr3zz77TLt379aECRNi3RQAABAnxqdIfvnLX+rSSy/VoEGDtG/fPs2fP1/p6emaPn26PB6PrrvuOs2ZM0cFBQXKy8vTjTfeqAkTJgRN8AQAAMnHeIDx1Vdfafr06Tp8+LB69+6tSZMmad26derdu7ck6b777lNaWpquvPJKeb1eTZkyRY888ojpZgAAAAe5fD6fz+lG2FVTUyOPx6Pq6mrl5eU53RwkKJapJpZd90xzuglIcHy3pxb2IgEAAMYRYAAAAOMIMAAAgHExKRUOAB3ZyYkhXwNIfoxgAAAA4wgwAACAcQQYAADAOAIMAABgHEmeSDoU0Ep9Vt9jkkGBxMUIBgAAMI4AAwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR6lwAEmLkuJA4mIEAwAAGMcIBhIGm5gBQOpgBAMAABhHgAEAAIwjwAAAAMaRg4GYI7cCTmO1CRB/jGAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABjHMlV0wpI+AEC0CDAQMepbAACCcWyK5OGHH9bgwYOVlZWlcePGaf369U41BQAAGObICMZLL72kOXPm6NFHH9W4ceN0//33a8qUKfrss8/Up08fJ5rUJTDiAIRm+v8I04joyhwJMP7whz9o5syZmjFjhiTp0Ucf1bJly/Tkk0/qjjvucKJJRpjOXSAXAgCQrOIeYDQ0NGjDhg2aO3du621paWmaPHmyysrKAj7G6/XK6/W2/l5dXS1JqqmpiW1jbWr2HrN0P6vttvp8A2952dL9AMSX1f+bmxdMsXS/0vl/N/p8VsXruP7vRp/PF9XzIDHEPcA4dOiQmpqa1Ldv33a39+3bV59++mnAxyxcuFALFizodPuAAQNi0sZY89zvdAsAJBLT3wlOfceYOm5tba08Ho+ZJ4NjkmIVydy5czVnzpzW35ubm1VZWalevXrJ5XLF9Ng1NTUaMGCA9uzZo7y8vJgeKxVx/qLD+Yse5zA68Tx/Pp9PtbW16tevX0yPg/iIe4BRWFio9PR07d+/v93t+/fvV1FRUcDHuN1uud3udrfl5+fHqokB5eXl8eUUBc5fdDh/0eMcRide54+Ri9QR92WqmZmZGjNmjFatWtV6W3Nzs1atWqUJEybEuzkAACAGHJkimTNnjn7yk5/orLPO0tixY3X//ferrq6udVUJAABIbo4EGD/84Q918OBB/eY3v1FFRYVGjRql5cuXd0r8TARut1vz58/vNEUDazh/0eH8RY9zGB3OHyLl8rEeCAAAGMZuqgAAwDgCDAAAYBwBBgAAMI4AAwAAGJcUlTw7am5u1r59+5SbmxvzSp4AgPhoW8kzLS309S/9gDPsvEdJGWDs27cvafchAQCEtmfPHvXv3z/kfegHnGXlPUrKACM3N1eS2FsAAFKIf98T/3d8KPQDzrDzHiVlgOEfDmNvAQBIPVamPOgHnGXlPSLJEwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOMcDzDuueceuVwu3XzzzU43BQAAGOJogPH+++/rscce08iRI51sBgAAMMyxAOPo0aO6+uqrtWTJEvXs2dOpZgAAgBhwLMCYNWuWpk2bpsmTJ4e9r9frVU1NTbsfAEDXQT+QfBwJMF588UVt3LhRCxcutHT/hQsXyuPxtP4MGDAgxi0EACQS+oHkE/cAY8+ePbrpppv0/PPPKysry9Jj5s6dq+rq6tafPXv2xLiVAIBEQj+QfLrF+4AbNmzQgQMHNHr06NbbmpqatGbNGj300EPyer1KT09v9xi32y232x3vpgIAEgT9QPKJe4Bx0UUX6eOPP25324wZMzRs2DDdfvvtnYILAACQfOIeYOTm5qq0tLTdbTk5OerVq1en2wEAQHJyvNAWAABIPXEfwQjkrbfecroJAADAIEYwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOMIMAAAgHEEGAAAwDgCDAAAYBwBBgAAMI4AAwAAGEeAAQAAjOvmdAMAOK+p2af1Oyt1oLZefXKzNLakQOlpLqebBSCJEWAAXdzyzeVa8NoWlVfXt95W7MnS/EtHaGppsYMtA5DMmCIBurDlm8t1w3Mb2wUXklRRXa8bntuo5ZvLHWoZgGRHgAF0UU3NPi14bYt8Af7mv23Ba1vU1BzoHgAQGgEG0EWt31nZaeSiLZ+k8up6rd9ZGb9GAUgZBBhAF3WgNnhwEcn9AKAtAgygi+qTm2X0fgDQFgEG0EWNLSlQsSdLwRajutSymmRsSUE8mwUgRRBgAF1UeppL8y8dIUmdggz/7/MvHUE9DAARIcAAkkRTs09lOw7r1U17VbbjsJHVHVNLi7X4mtEq8rSfBinyZGnxNaOpgwEgYhTaQpeRzNUqY1kMa2ppsS4eUZS05wZAYiLAQJeQzNUq/cWwOo5X+IthmRhpSE9zacKpvaJ6DsAJpfP/rt33/cDpZiAApkiQ8pK5WiXFsAAkKwIMpLRk76AphgUgWRFgIKUlewdNMSwAyYoAAykt2TtoimEBSFYEGEhpyd5BUwwLQLIiwEBKS/YOmmJYAJIVAQZSWip00BTDApCMqIOBlOfvoDvWwShKkjoYEsWwACQfAgx0CanQQVMMC0AyIcBAl0EHDaSezQumON0EBEEOBgAAMI4AAwAAGEeAAQAAjCMHA0BCamr2JXVSLtDVEWAASDjLN5d3WlZcnETLigEQYACW+a+oK2rqVXnUq4KcTBV5unNlbdjyzeW64bmNnXbAraiu1w3PbaS4GJAkCDAACwJdUftxZW1OU7NPC17b0im4kFp2vnVJWvDaFl08ooigDkhwJHkCYfivqINt+15+8sp6+eZyI8dravapbMdhvbppr8p2HFZTc6DuNjWt31kZ9DxLLUFGeXW91u+sjF+jAESEEQwghFBX1G35ZObKuqvnHhyoDR5cRHI/AM5hBAMIIdwVdVvRXlkHGympMDxCksj65GaFv5ON+yH1lc7/uwbfsUyD71jmdFPQAQEGEILdK+VIr6zD5R5ILSMkTk6XxGPqZmxJgYo9WZ12vvVzqWVEZ2xJgfFjAzCLKRIgBLtXypFeWdvJPXBiP5V4Td2kp7k0/9IRuuG5jXJJ7QIuf9Ax/9IRJHgCSYARDCCEcFfUbUVzZZ3IuQfxnrqZWlqsxdeMVpGnfbBW5MliiSqQRBjBAEJoe0UdikvRXVknau6BU8tGp5YW6+IRRVTyBJIYIxhAGP4r6mJP4M692MCVdaLmHji5bDQ9zaUJp/bSZaNO0YRTexFcAEmGEQzAgrZX1LGo5JmouQfRTt2wnwjQdRFgABb5r6hjxT9S0jGZssjBOhjRTN109ZoeQFdHgAEkkETLPfBP3VRU1wfMw3CpJQDqOHXDfiIAyMEAEkwi5R74p24kdcoPCTZ1kww1PQDEHgEGgJDsLhtlPxE4xV/Rk6qeiYEpkhgjya29VDgfqfAa7LIzdZPINT0AxA8BRgyR5NZeKpyPVHgNdnUMqL47sl/IgCpRa3oAiC8CjBghya29VDgfTrwGp0dLIgmoIk0MBZBayMGIAZLc2kuF8+HEa1i+uVyTFq3W9CXrdNOLmzR9yTpNWrTaSGluKxuXRVoiPJLEUACphwAjBkhyay8Vzke8X0Ms9/+wErhEG1CxnwgAR6ZIFi5cqL/85S/69NNP1b17d51zzjlatGiR/uVf/sWJ5hhHklt7yXY+Ak1LxPM1mNj/I9jUitVpHhO7u1pNDHV6GghAbDgSYLz99tuaNWuWzj77bJ04cUK/+tWv9O1vf1tbtmxRTk6OE00yiiS39pLpfATLObjq7IGWHm/iNUTbuQd7DfOmDdddy7ZaClxMBVThqp92xaRZoKtwJMBYvnx5u9+ffvpp9enTRxs2bNB5553nRJOMIsmtvWQ5H6Gu7u9f+bnyszNUfawx5q8hms491Gv4xdIPQj5f28AlHkFhKiT+AgguIXIwqqurJUkFBYG/nL1er2pqatr9JDKS3NpLhvNhJefAvwmZnddgJZmyo0g7dyuvwYoDtfUR7e5q57WmQuIv4ivZ+gEkwDLV5uZm3XzzzZo4caJKS0sD3mfhwoVasGBBnFsWnUTcuMpJiX4+rExLHDnWqFsmD9WL7++x9BrsDv/7cxEqqo+rICdTR+oawo6WtM1fOFTrDfkarOqTm2V7d9dQrzVQHobdaSDyNGC3H7BazXPXPdMibRLCcPl8PkcvEW644Qb97W9/09q1a9W/f/+A9/F6vfJ6va2/19TUaMCAAaqurlZeXl68mhoRvhjbc+p8hDvuq5v26qYXN4V9nj9eNUrfHdkv7GsINvzvv1fH4f9AHXQgbR8vydJj7Cj2ZGnt7RdaChz87Q/1Wn2S8rMzVHWssd3jLykt0hPv7grbnj9eNUrubmnkaXQRNTU18ng8Ab/bg/UDA27+s9Lc2REfkwDDnlDvUUeOjmDMnj1br7/+utasWRM0uJAkt9stt9sdx5aZE+stvpONE+fDSidpZ1oi3Gtoavbpzr9+YnkVSLAOOpCik8man1XU6r6V2yy12Y7vnVncLlgKtxLEylRH2+BCasmxsBJcSNKuQ3W6f+U28jSQ1P1AV+VIgOHz+XTjjTfqlVde0VtvvaWSkhInmoEuwGoi4diSAhXlZamiJvBogJ0kzodWb1dFjTfo39sO/48tKQjaQfsV5GRo3ne/oaK8LB2pa9D/eX1L0HZG668fluu2qcPbBRmhAqpwUx2B+F9rmkvy+QLnh/jP9wvrd0e1XBeAcxxJ8pw1a5aee+45LV26VLm5uaqoqFBFRYWOHz/uRHOQouwkEq7YUqH6E00Bn8dOIuryzeW6b+Xnltp3oLbeUgddWdeoorwsVR9v0KylG2MWXEj2i4VFU/ej2Rc6afaqswdaDtQAJB5HRjAWL14sSTr//PPb3f7UU0/p2muvjX+DYoT8C2dZTSR8cNU23b8q+HRDfnaGFl5xhi4eUaSyHYeDvp/+gMaqPrlZljvoiurj+v3fP7O1GiRSdoKGXYeORXWsn04crL9trgiYNOs90WzpORKlQBuA9hybIkl1FBByntWO548hggupJYdgw5dHwr6fdqYLemZntK6msKKyrsH2VMS/jj5F557eW4U5bt368oeWRz6s5qMs31yu+y2O1gRz8Ygi/XraiNZAvDDHLbmkQ0e9OlQbfPSirUQo0Aags4Sog5FqYrmPBKyz2vGEC3d9kpa8szPs+2nnSvrIsUb9btkWNTf7VJQXvN6E1JKDkZ+dafm5/f5j4165u6Vp4tBC3fm9EWHvH6i2RTChpp+saHssf46Hu1uafvn/PtTVf3pPN724SXct26pQA3522gsg/ggwDKOAUOIIVywqWh3fz8Ie9jLcn3h3l65+4j3Vn2gKmIvgV1nXqN++sTWiNvrbNrW0WI9eM1r52RkB7+c/9ryTowmvbPxKT7zzhV75IHDRrHVfHLY8omKlMFmwoDzYf5NEKdDWFURSLA6QEqDQVqoxsUkUzAhVLMqUdomGER6g+uQyTk+HehFtVdY1RNy2O/+6WS6XS4MKslV2x0V6fM0Xeurdnao6/vWxijxZ+t6ZxbprWeC6Gm2ng5ZvLtcd//GxpTZcN3Gw3giSYzG1tFhNzT6t23FYd/zHx7ZOX6IUaEt1TPUiGgQYhiXbzqGpLlgFUdMqauq140BtRI9tLUXu86lndoaOBAkyIvXsut2t//7tG1s189wSbZh3cbsE5CN1Xs1a+kHQTr785HTQz84r0eNrdloOBiaPKNKv2uRYdNzZNdL3Zd40OrhY6yp7xVit+GkFRbvaI8AwLJl2Dk0V4VbrtC0W9e72g3rozR3G23DX65+osi66wODI8ROGWhNcs096bM1OSdLcS1ryMpqafZq0aLXlXBQrwUXbuiGB6mjYKS4W6LnvWrZFU0qpfxEr4aZ6qUECKwgwDEuWnUNThdUhXH8nF6uRo2iDi3hb8s5O3frtYcrslmZr9Yud6fdg+RHRJogyzRh7TPXCBJI8DUuGnUOTVcdkszc+2md7tY7JkaNkfgebfdKzZbskmZ+uy8/OCDl8Hkn1z0DstJtERXuY6oUJjGDEQKLvHBopJwuHBRqpSHMFzqsMNITbulNpTb0KcjJsjTjkZ2foh2f1118/LG93/J45mRElXyaKNdsO6rpzhxifrnt4+mhNHFoY9O+mOiU79TpIVLSHqV6YQIARI+E2iUo2Tn5JB5uvD3UR2nYIt/p4Q1RJnt0z0nXb1OG6berw1vdz16E6Pbl2p+Xn+PUlw1VefVxPWtzkKx7e/vyQlm8u18UjilTsybJ0fkLtHyK1FBA7u6QgZMXTaDslO9OMXSVR0TSmemECUyQx5J/3v2zUKZpwaq+kDi6cKhwW7Xz9ii0VAdtuhz9QaVsQ6v6V21Rdbz0ps0+eW7+59Bt69JrRKsgJXIvCDv8n6ZsDPFE9z9y/tCw3nX/piLBTPi5JM88tCfleHDnWqLG/W6npS9bpphc3afqSdZq0aHW7z4iV+iTZmelB2+Bvb7j/T9SkiRxTvTCBAAMhOf0lHe18/X9u2he0Q3RJ6uEO3JF15B/WjzTg8RfhmlparHVzJ6sgx15lzo5f40WeLD3yo2+qvNpaOe1gjhxr1LovDrdO6xV7Ao8uFHuytPia0bpt6vCgxbr8Am3P3jYQDdd5uST94b+dqUcDtKfoZDtCjTr48y3uW/G55URFdOb/TBRF8B4AElMkCMPpbPJo5utbci2C50j4JB31Bt5BtSP/sH6kAU9z09chSWa3NP3u8lLd8NzG1naE45M0b9pwFea6W6cd/Dkl0SrbcVgTTytsN61XUX1clXUNKujhVlHe19McZTsOBy0GFqrtHXNiguUpFeRk6rJR/eTpnqmxJQW2pxkjqa1BomJwqTbVi/giwEBITmeTRzNf/80B+Vr16cGw98vvnqHq442W5pojfZ3v7Tqsc/+ld+vvkRQA23PkmK47d0jr7yu3VETUls5aXnnbJN4iT3d9b9QpklqCqtc/2qc+uVnaV3U84iN0DETbdl4rt1TolU17dbiuQU++u0tPvrvLdo5PpLU1SFQMLVAdE8AKAgyE5HQ2+diSAturPvysBBeSNGNiie5f+XmncuL+379T2tIJji0p0K5DdbbbIUl7Ko/r1U17210B+jvYO/+6uV21zWCe/ueXGj+kV2u57icMJYxOGFIY8MrfPxXSdsQiNyu6r4x3tx9qdwWcnuZS9fGWoCKaRMxIpq5IVIRpgaqCduXqnuRgIKRwCXmx3tEyPc2ly09eSZvmb/vsC08LONfsOvmin3x3l6YvWacxd6/QfStDb+0ezKsf7guY9Jie5tLoQdbP3YLXtqjhRLMWvLYlonZ0lN+9m97fVanrAyTCVh1r7DQdUmsjsTWQh97c3u71m8rxsTt1RaIiEHsEGAgpHtnk4YogTR5RFPFzB9Ox7VNLi7X29gv1wszxum7iYEmdl8HazT0IpmPSY1Ge9dGf8up6PVu2y9i+Kj5J96+KLGiKVNvXbyfHJxS7U1ckKgKxR4CBsGKZTb58c7kmLVod9bJGuwK1PT3NpbElBXpjs6nchsA6Xpn7X59Vb31ubeonFHe3lrNZHYf9Tzpq+/orqq3ldIQLIOxM0RXkZLJZGhAH5GDAkmDZ5JJCFlUKxWoRpLbbrpswb9pwXTuxpF2FT3/7T5xojumuq34dkx7nXzpC11t8fe9sOxT18bulpckraytoYsH/+q1WQg0XQIwtKVB+iO3u2zpS16BZSzdqcRojGEAsEWDAso7Z5NFU97S7W6PJbdcLc91BtwuP92y8/8p8ammxHpz+Td34wgdxOW5dg3PBRVsFPdxGKkau2FJheQqL3UCB+GCKBBGJtrpnJHPvbfMkLhrWuzUJ067CHHfQ9se7pmPbK3N/Ma5klZ2ZbjtAK8rLijrHxx+s2kGRLSD2GMGAbXZHHwKJtL6GfxRlwqm91HCiWc+W7dKabQe1cXeV5RUOt778oepPNMU9mGgr0JV5vAo+ZWWkqb6x2fjzHjs5KtJxuW8gbV9/epor6OaA86YNl6d7Zqclvm1FU+2VIltA7BBgwDYT1T1N1NfI7Jam684douvOHdKaS7FiS4WefHdXyE4u2uqXOZnpUU0xBLsyj1fBp/rGZqW5Qm8WFwmXJE92hrK6pYc8x4Fef6AcnyN1DbprWfgpuGiCBIpsAbFDgAHbTFT3NL1bY9uRjbElBbrzr5+ooia6fToCyc/OaNlONApFQfJU/OckHkmmsdg6xqeWpbzPXzdaaWmuk7vOHtML63e3CziCvf62OT7LN5dr1lJru6BGEiRQZAuIPQIM2GZi9KHtypBAFTSlyOtrTC0tVm5Whq7+03u2HxtONLUwZl9wmiaeVhh0pY3/nFhdTWJCLEYyDtV59d2R/VrzG/7vD86UXNKho15LK42sFt/yT8GFC1Y7osgW4ilQdc+2UrnSJ0mesM1Udc9Y1tc4dNT86EW0hvbtoQmn9grZqU0tLdYjPxodtzY1+6TLR/Uz+py7DtW1q21y9RPv6Zcvfyh3t7Swr1+yllPRNkEzVDG4QCiyBcQHIxiwzeToQ8e598IebsnXchVctuOwxgzqqQ1fHrFdZyMR59YP1XrV1OwL2/5LRhZryqa++vuW/XFp1yk9uxt7rhx3esBy6hXV9br+uY26ZfJQDS7MCfleWp2CW7Glot3GaYESRYtPJor2zHGzGygQZwQYiEiwL/Rg8+uh+Ofel28u1y9f/rDd83UcwrdaZ8PusHk83LVsq/60dqel9v/3cwbHLcCYMKRQz63brarj0ZdCr/MGTn71vwdtg49g76XV4PDVTfv062mhE0UJJgDnMEWCiLWtS/HHq0bphZnjtfb2CyMaeg5Wl6JjfoDVOht2h83jxWr7xw/p1bqbaSwVe7I0/tReuvacwTE/VkfBzsWYQT2VlRH+q+lwXUOnOhb+YPWyUadYmo4BEDsEGF1AuM3EomHiC93OVtt2dtgMluPhpI7tD/XezDinJObtGTOopyTpbAdWUwR6L5dvLtd5v3/Tcp0O6lgAiYspkhQXTTnveLFbKMlKnQ2/tsPmFTX1mvuXj2JSZMoOf/sfWr1dL76/u9N7870zi/XXD8vjslz19Y/KtXb7IV35zVNifqxA/OfivhWfKSM9Xfev/NzWlFYi5toAaEGAkcKsbibmtEivQq0+zj/KUrbjsOPBRVv3rfy8023l1fV6bM3OuLaj6lijnnh3V1yP2dFDb+6w/Zj87AzqWAAJjCmSFGW1loDV6ZJYTrNEehVq93EMp6eWGeeUkGMBJDBGMFKUiXLefrGeZomkUJLdKoxNzT4dqk282hiITH52hmZfeJrTzQAQAgFGirJbztu/l0dF9XFV1jWooIdbRXlZOlLn1aylH8R0miVUXY2OIqnCGChAQnK754oz4j564f8/whJYmBSu0mcgyVL9kwAjRdkp5x2qA05zBe7wre6aalWwuhod62DYrbMRLA8F9o3sn6evjhxXZV309TIi1TO7m377/TPinjuUDMnSQKIhwEhRVjcTO1LXEHBTKb9QqRb+aZZ1XxzWxNMKo25zoEJJkVbybGr2ad0Xh3XHf3xMcGHIx1/V6MGrRuk3r21RZV2DI204cuyE7lq2VWlprtaOPdYjC8mSLA0kGgKMFGWlnPe8acN11zJr9SdCmfX8Rt1zpZmryrY7avqFyxHpiCmR2PBJ+u3fPtXdl5XqF0vjtyFbR207dkkxHVkIlyxtchQPSDWsIklh4TYT65njNtIJVx1vtFSdMh6CVQSFGeXV9eqZk6kZEwfH9Dj/84JTld89cCVT38mfuX/5WNcHeK/LT+578seVn0e92slOsjSA9hjBSHGh9md4ddNeo8cKdyUXq6Hstgmqdy3bypRIjB2orVf/fHMbpHX08/NKNOG03nogTG2MI8dC54Lct3KbXli/R3d+r2U0I5LPn91kaQBfI8DoAgJNO0hmqyCGW/YaqyQ5pkPir09ulpoN1kHx65WTqbsuK9UlI4uNBb8VNS3TKT87r6RTddSCnAzdfVmpLhkZfLt6O8nSANojwOjC/ImgVjrncMtH/QJdyQVLkvMPZT/yo9G6ZGTkG6QxYhE/xSfrj0Q7JeBPMr73X8/UoTpvpxEF08FvoOqolXWN+sXSD/Tzr6o095IRAR9rNVl6bEkBy1iBDsjB6ML8iaDhvgJdkm66aKil5+zYMVjZyGz2Cxv1xkf7gv49UBVROxukBVKU59bPzytRUR5Xnla59HX9EX/HGynfyeeaOLQw4EZ50T6/HY+t2ak3PgqcPxRqV962NVlWbKnQpEWrNX3JOt304iZNX7JOkxatToi8JMApBBhdnD8RNNiXefHJhNAbLxqqYk9W0GDEpa+vbtuyspFZs0/6xdIPAn4ZL99cHvCL+6HV26OaFqk/0axvDuypd++4ULdMthY8dWX+z8HFI4pUtuOwXv9on/7bWf0jfr787t2Um5URtPR8eppLpafkRdtsy+a9ujloQmi4ZGlJAROLg21HD3QVLp/Pl3QjzDU1NfJ4PKqurlZeXvy+hFJZsEqebYd5/VMSUuBlr4HqAby6aa9uenGTpTYU5GRo3dzJyuyW1u54HT+gVqdrrLhl8ukaXJitXYeO6ZmyXY7Vd0hkPx4/UKMHFWj34Tq9sH63KmrMl1zvmI/zxkflcV8K+8LM8SGXRAeaApGkSYtWBw12/VMoa2+/kOkSC+x8t/vvO+DmPyvNnR2nFnY9HauG2nmPyMGApOCJoG0Fq7YZqrqmnbn0yrpGjV+4Sr+7vFQXjygKu1mbCW13NM11M6AXyLPrduvZdbtjeoy2tS0uHlGk//3q5pgeL5BwK0EC/R8p23HY2J4/QKohwIAtoZa9BmInkVSSKusadMNzG3Xz5NPjvjKk1ps4W7l3NW2LVuW6MxwZSYoksZRlrEBwXLLBNv+VXKDkvLb8Q8qXlBbZPsZT/+yc9Y/U5r/aL/vikO3H9szO0CM/6pxLVOzJUveM8F9zgfKHrGAZKxAcIxiIiWjqU/gkVYUpohROD3e6jnqbonoOOMV+rsKRY41KS5Pe/l8X6NmyXfqy8pgGFWTr9D65+vFT68M+/qqzB0aUI2FnGSvQ1RBgICKh1vybqk/h7uaS90Rkz3LU26SczDTVNTDtkWw83TNUlOe2nUx6x18+Vla3Laqo+TqoDVZuvKPBhZElCVrZ88e/tBfoaggwYFuoqpyhkjP9rK4CiTS48Dvv9N762+b9UT0H4u+3b2xVfra1wKCtllGv9iNfVcetjYRFM4URSfIz0BUQYMCWcFtXW0nO9EnKzeqm2voTEbWhV06mDltIArxm3GCVfVEZ9XQL4q86Tu+ZqSkMu8nPQFdAkicsC7d1tWQ9OfMHYyIr0tQrJ1Nrb7/QUtGv8af20j1XnBHRceCseBbnMTWFYTX5GegqCDBgmZWtq62OFlw8okgXDuttuw2H6xq0aU9V0PLN/nZcdfYASS1Xlo+GqFSKrivNJT38o28yhQHECFMksMzqWv787hmqPt4YMqv+SF2DVn96MKJ2vLv9kE7t00NXjj5FK7YeUHWAefb7Vm7Ti+/vaZ0Dv3hEkf65/ZBmPvtfqm8k8RMtJep75rgD/o2Ny9DVdKzYaQIBBiyzmgg3Y+Jg3b9yW9Cs+nnThuuuZVsibsdDb263dL+21SGlliJOBBfx9Z3SIr23szJhS7AH2/03WBIzox2AdUyRwDL/mv9wuQ+zLxwacnOonjnuuFTp9Ac3d/zl44CbUSH2vv2NIr3/68l6/n+Ms7xkNJ46Bs3+JGY2LgOixwgGLLOz5j9UVv2rm/bGrc0minYhcrf9vw/14e4jGlCQrcu/2U9P/fNLo5vVRSrQ6pFwScz+UuYXjyhiugSwgAAjSSTKnLCdNf/BNlCjbHLX0djk09NlX7a7zeWSYr2Hc352hq6dMFh/XLVNkrUCWFaSmNm4DLCOACMJJNqccLRr/sOVV0Zqa47Dm151rFHjhvTS4uJcywWwrCYxr9xSQYABWECAkeDCFbZafM1oR4IMK9u7h3pssKmWVNfVXm8osT4XB2rrddmoUywHw1ZH1l7ZtFe/mkb5byAckjwTmJXCVgte26KmeFwSGtDU7FPZjsN6ddNeebpn6uEfdU4ETXXJ8U7FR6TnosBiGXF/wGC1ANbYkgIV5GSGfd7Kukat31lpvcFAF8UIRgJLpTnhYNM886YNV88ctw7U1mvXoTrdt3Kbg61MLT2zM/Tb75+hLeU1lpf2JoPMbunKz24pJ25yB9P0NJe+P6qfnnx3V9j7Wp1OAboyRjASmNUvsUT/sgu19G/W0g9UfbxBl406RTdNPl0/P69EjDyb4d/CfOJphU43xaj9NfWqOhlcdPyoRLuD6cUjiizdj0RlIDxGMBKY1S+xRP6ys7P0b8WWCj2+ZifTCAYteG2LVt96vnpmd9ORY5FtLpdo/J+b/OwMubultdvW3coOpqFWZPkTkIONHJraHA1wQiyqdYZCgJHAwq22SIYvO6vTPH/4x2d64f3djgUXuVnpqq1vav09VZIxy6vrNXHRqpQJLvx8ahmhef5/jFOay2V5NVO4FVltE5D9x/GLZHQkUZaXA04gwEhgdgpbJSqr0zcPv7Ujxi0JziW1Cy5y3OlSs1TX2BT8QUmksi62hcbSXVKTjWjMZPB26KhXl406xdJ9ra7IslPrJdzxEml5ORBvBBgJztSXnVMSefrGr2OHU+dNjcAiWmkuazUr2gYXPdzdtPCKM/TFwTo9tmaHjjV0PpcmR4asfr7sVumMttZLoi4vB+KJACMJRPtl5ySKaiWvSFY/H/We0I0vfKBHfvRN5WV1CxhgmFJsY3owkhVZkdZ6oeQ40IJVJEnC6lr+ROOf5pE6Z/wjdc3584ftki9jwc70YDxXZNkJZoBU5liA8fDDD2vw4MHKysrSuHHjtH79eqeaghjzT/N0taJaXVn9ieaYPv/McwfbmmKI54qsVFleDkTLkQDjpZde0pw5czR//nxt3LhRZ555pqZMmaIDBw440RzEwdTSYs2bNsJSpUQgnD+9s8vW1un+qbpg4x0u2ZtyCSUVlpcDJjgSYPzhD3/QzJkzNWPGDI0YMUKPPvqosrOz9eSTTzrRHMTB8s3lmrV0oyrrGpxuChKASy27qkbKJ+lXr3ysVz7Yq7Idh8OWyw81VWd6RVY8gxkgkcU9wGhoaNCGDRs0efLkrxuRlqbJkyerrKws4GO8Xq9qamra/SB5hEp6Q9fj73h/dm5JVHk5lXWNuuWlTZq+ZJ0mLVoddkQj2FRdkSfL6KqOeAYzXQn9QPKJ+yqSQ4cOqampSX379m13e9++ffXpp58GfMzChQu1YMGCeDQPMRAu6Q1dS9sl1mf2z9fsFz6Iegv38pPLP2+efLoGF2YHXWkVrxVZyb68PBHRD0Rv8B3Lgv4tFlU+k2KZ6ty5czVnzpzW32tqajRgwAAHWwQ7Ik1m8xdkys5Mj+lyR8SXz/d1NNEzxx11cNH6vJLuW/l56+/BilpFuvzUrmReXp6I6AeST9wDjMLCQqWnp2v//v3tbt+/f7+KigJvNOR2u+V2u+PRPMRApMlsRSd3W/0/r28lwEghFTVeXf/cRj16zWh5Y7jaJBGKWsUrmOkK6AeST9xzMDIzMzVmzBitWrWq9bbm5matWrVKEyZMiHdzEAfhkt46ys/O0PPXjdPa2y9Uzxy3KmqYXklFd/zlYxX2iF2H4R8YWfDalrBJoADMc2QVyZw5c7RkyRI988wz2rp1q2644QbV1dVpxowZTjQHNjU1+1S247Be3RR9Bn9brpM/91xxhiYOLVR6motaASms6lij1u+stBV82kVRK8A5juRg/PCHP9TBgwf1m9/8RhUVFRo1apSWL1/eKfETsWd3t8dIN3AKlvTWVqAEOGoFpLYl73yhe//1TM1a2nlDP5MIVIH4cyzJc/bs2Zo9e7ZTh4fsBwvRbuDUMemtsIdb8kmH6rxBgxv2MkltxxqatO3A0YDBZ352hqqOmdkJlkAViL+kWEUC8+wGC6Y2cLKb9BZqy3pE77KR/VTSO0f3r9rmWBue+udObfjfF+tbp/fR797Yol2Hj2lwr2xN/pe++skz70f9/L1yMilqBTiAAKMLiiRYWLfjsO3dKE0JNr3SMztD3hPNrDCJwqsf7VOxJ0vXTRqsJ9/dJZ8DEVzVsUbd9MIGLft4f+tn8p1t0vPv7VZ2ZrqONzRFFVheemZxu6DX7rQggMgQYHRBdreuXr65XHf8x8eWnjtWc93BagpI0v/9x6d65K0vYnLcrqC8ul5PrN3laBte/3h/p9uafWoNHqMZvfrrh+UaP6SXppYWR5xDBMA+AowuyM5uj8GmUoKJ5Vx3sOmVc4f2IcBIcb17ZOjA0cjyMY7UNeiG5zbqZ+eV6PE1OyPOIfJjBASpKBZVPgkwuiCrQUBhjlu//H8fWgouXGpZBeLEXPfYkgIV5blVUeON+7ERH8dP+PTdkcV6/SPrO6j6+T+/S97pHFz4/241h4gREMA6R+pgwFlWd3uUS7b2EAm1gZPd2hl2pKe5dOf3vmHs+WCdJ6ub8rMzYn6c2voTEQUXbYX6yFmpl+Efzev4f8I/AmJn+3igKyDA6IKs7vZ46Ki1EYH87hkhh5eXby7XpEWrNX3JOt30ovXdL+2YWlqsR68ZHZfODl8757RCzTinxOlmGBNs+jBcYrRExVCgIwKMLsrK1tVWp1Ievjp0cBGvq76ppcVa/6vJ+vUlw3Tx8D7KSGdePNb+trlC9638XPnZGSkR3AX7zNtJjAbQghyMLizcbo/hilz58y7GDwm8LNVU7QyrAs2PIz6qjzXKJ+m7I4v1zucHVV1/wukmdZLmkny+wKtRwuUQ2UmMBtCCEYwuzr8y47JRp2jCqb3adfRWp1KCBQdWr/qefndn1EPLwUZKurJ4juD4373XPyp3JLhwqaUuiv/fHf/mkjTz3JKgf5dCf5atjuZRMRT4GgEGQrIylRKM1au5u5Zt7ZSTYScpNNRISVd0+ah+evanY3XDeUOcbkpcLbziDD0a4rM695IREX+WrSZGUzEU+BpTJAgr3FRKMHau5trWIpBkeSlgU7NPT7+7k5GLk/Kyuimvezfd9NImVdY1ON2cuPB076afTiyR90Sz+uRm6e3/dYE2fHkk4Gf14hFFynVnqOyLQ5JaRu/GD+kV9rMcqmS9lREQoCty+XxOFAeOTk1NjTwej6qrq5WXl+d0c+IiGYv7NDX7NGnRassblbnUssHVkQAbXPlfadsrTXIuIEkFOZntgqlgwaiJGhbUwYgtO9/t/vsOuPnPSnNnx6mFXVPbQlt23iNGMJJAsn6p2d2ozCcFDC78f5OkX73ysY43Nmv34WO6f+XnTIukOCufm44jNYEqc0a7E7BfpKN5QFdEDkaCS/biPsFyOCJVWdeoW17apPsILroE/3tsp/vuWJfCdA2LUInRAL5GgJHAUqW4z9TSYq29/ULNmzbc6aYgCV00rHenALUgJ3TNjbZ1KahhATiDKZIEZnfX00SWnubStRNL9Ke1Oy3nZACS9MGeKq2bO7ld4uY/PqnQU//cFfaxf9tcrrwsa19z1LAAzCLASGCpVtzHSia+JzujtWgTILVMi2348khrEN3U7NOspRssPfbfy760fBxqWABmMUWSwFKxuE+4uhr3XHGGQy2DE3Iy0y3dr20QvX5npSrrItu6PRBqWACxwQhGArNaqjvZvhjDZeL/7LwSLXlnZ8jdL4Pxj4R0S3epsYlxkERUkJOh6WcPlCRVHW/Q8+/tCfuYtkG0yRE7algAsUOAkcBSubiPPxO/o+Wby/X4mp0RT5EUebL03ZHFWvLOzugaCOP8n+GGEz49/NYOy4/Lz85oF0SbHLErSoLl3kCyIsBIcP4phY51MOx8MSZLkS67Jb/9HdYtk4dqcGGO+uRmacygnhr1f/5u6fHubi55TzDKES/Z7nTVeZt01Gtvr5KqY41asaWi9bMebmQvnNkXnKahfXsk9P8FIBUQYCSBaIr7JFORrnCrZjoq8mRp3rQR6pmT2TpsfstLH+hYQ7Olx/sSfHlvqqnzNkX0uI677tot4NbRxNMKE37VFZAKCDCSRLAphVBMVS+MF6tz6+cOLdT5p/dW31y37loWealwi3EIHBZoOXawkb1QkjVnCbCibTnvREGAkaLCFenqeFWYCKzOrb+z7ZDe2XYoxq1pL5IrZZjVMQD1j+yt23FYs5ZuVNXx8CtL/DlLyTJt2FGythtdEwFGikrGIl3Rzq3HUs8OG2oh/vwBaMdOVpKl4OLmyadramlxUk0btpWs7UbXRYCRopKxSFe0c+uxdGZ/j9787KDTzUg43TNcykhPV029vcRNO9pObQTqZPO7hy4b7je4MDvppg39krXd6NootJWiYlmkq6nZp7Idh/Xqpr0q23HY6F4opjdHM4XgIrDjjT4tvnqMbpl8ekyev+1y7BVbKgJu/Gdl9EKSCnPcIacNfWrZrbfhRGIl56TKnkToehjBSFGxKtIVj2HatqtmHn17h97+3NnOPdFGUxLNgaNe3TR5qI41NEZcIC0Y/3Lsi0cUadKi1RG9D/7PulwKmxBaWdeo8QtX6XeXlybMiEAyTncCEiMYKcs/3SB13uo60iJd8dw6Pj3NpbElBfp4b7Wx57TLf2bsdmo93F3rv1XlUW9rgTSTwcW8acO19vYLNbW02PYSZr+2n/XVW/dbekxlXYOtz3MsR/Sk5JzuBCQCjJQWbt8PO1doTgzTtuw54VxiZZEnS9dNHGz7cecO7SOXOgd2qSq/e4atAmlWFea6WwPgSDvPvnluLb5mtCTpiXd32Xqslc/z8s3lmrRotaYvWaebXtyk6UvWadKi1UaD7VTckwhdA1MkKS6aIl1tOTFMG+8rMpekgpxM/e9pw1Xk6a6xJQVav7PSdsd0au8c2zUaklnV8caYvM62HWbknadLzc3SXcu22HqUlc9zvBIvU3VPIqQ+RjC6AH+RrstGnaIJp/aKaN28E8O08b4i80k6XNegHQePtt7m/3K3Y8KQQl08okg/PGuAMtNT+79YfvduKujhNv68RXnudh2m/32w+8ndX1OvXyztPK1nVbDPczxH9GIx3QnEAyMYsMSJYVqn6mI89OYOPfTmjtbkVf/SWSttyMlMV/XxBo25e4WqjpnbUty0rG5pqjewWqK6/oR2HToa/o5BBEugrT/R3G7/kbZLmO2I9nMT7PMc7xE9E3sSwXmJWG0zllL78grGhLuCdKllNYnJYdpQV27x4B/q/mD3EXmyrdVakKRfLP0goYMLSUaCC0ny+aQ/rtqufBvnx+9fR/cPel6rjzV2SrT0d7JW615EK9Tn2YkRvamlxVp7+4V6YeZ4/fGqUXph5vjWJFggERFgwBKnhmlN1sW4ZvxAFeRkWg5W/LURHluz03LAUNcQ2YZeya46goBqwpACZXVLD/i3YNMMU0uL9fCPRkfSRNtCfZ6dSrw0Md0JxAsBBiyzsyrF5NK9jlduz/50rApyMm0/z7Qz+ul3l5dS0yIGIjmnL/3XHlXUWJtmaGv8qb0iyseQrI2E5Wdn6NEwCZpOjOgByYYcDNhiZVVKqGJcka5o6bib7O8uL22djw/XubXNsl+xpcLW640ll6tlisG0gpwMVdYl9hSNJK3fdcTS/TpOM9gtKe9//+dNG667lm0NmjuRn52hGeeUaPaFp4X9TIZqA4mXQAsCDNgWauv4UEv3rn9uo/KzM9pNN0RaBdTqdt1tv+ylliH3RGEyuPjx+IEaPbCnijzdNWZQT33r395MmSWygaYZInn/p5YWa8rJol0HautVmOOWXNKho96Ilm+TeAmERoABY6ws3euYyxCsZoCVbak7jqbsOlSnF9bvVkWNt/U+npNXpf77pUqn29Gz63Zr5dYDmn/pCGV2S9P8S0foepsrLhJRr5xMjRqQr7Idhzt9Fjq//8dOvv/BO/tQwXEkTNWZAVKRy+eLxSBtbNXU1Mjj8ai6ulp5eXlONwcnle04rOlL1tl+nH8Ie+3tFyo9zRXVfidNzT49tHqbnnp3V7tNsIo9WbqktMh20Sw7umek6Xijcxtl+bs0f7D2xkflmv3CRqPlu52Q5lK71xDqs2AlMEXisvPd7r/vgJv/rDR3dpxaGJ1UWKZq5z0iyRPGRLokr20yX7T7nazYUqH7V27rtMNmRXV9TIMLSY4GF9LXq14WvLZFDSea1TMnU/99wqCYHjMefXfHACnUZ4FVFkDiIMCAMdEuyauoqY+qOqKVKZqu0N+UV9dr7G//oelL1unpf34pqfPqib65mZowpGfEx/jvEwbp+evGafYFp4W9r0vSlaNPifhYHbFFOZAcyMGAMdFW3qw86o2qOqKVHIt49UexWiFiVdXx9vU4/E25buJg5XXP1Avrd6vsC2urOAI5WOvVjS9utLRa5eEffVNTSou16tMDxgqQsUU5ktHgO5a1/jsVpkvCYQQDxkRaedNfM8BqbYtgUzFWp2h+OnFwRJUn7UjUzKZ/L/tS9638PGT9CSv+trkibHBR7MnSo9eM1iUj+0V1rNDtKI/JFukAoscIBowKtnTPvzw1VM0AT3drAUawqRirUzSe7pkRVZ5MBY1x6Ig93bvpkR+N0fg2ORDrd1bGpHz6v5d9qX8v+zLi5c4AYocAA8YFW7q3YktFyJoBTc2+qLaltrKtdd88t15YvzuiKZwcd7oWXX6GfvPaFlXWNQS8j0tSzyQpdBUr1cdP6L++PKKJQwtbbzO5J0cgprdIBxA9AgzERKB6A+FqBkRbHdHK46ePHaj7Vm6L6DX9tzED9N1Rp6hbt7SAVUT9x7j7stKQFSO7gvtWfq5/KerR2tmb3pOjI59azv+C17bo4hFFrB4BEgA5GIircMsI7ex3Eki4xw8uzIm47a9+uFdNzb7WDbd6dsgZ8R/jkpH99L0zuYpuu8oj3N4dJgTbuwSAMxjBQMKJtjpiqMeX7Tgccbsq6xq1fmelqo836K5l7adJCnIyNG/a8Napnr9+GLpeR1fQdpWH3f1D2npw+jdV2MOtv20u17+XfRn2/rGejgFgDQEGElK0JZ2DPT7apbR//6Rcz/zzy06PPVLXqFlLP9DiNJc83TO79PRIW207+2AJwD2zM+Q90axjHba675mdoYVXnNFu1MpKgOGfjqGqJ+AsAgwkNbudSDRX0pL0TFnn4EJqnwNw29RhNp/VefndMzpVPzWhY+5FsNElSVq347DKvjgkqSU4HD+k/RSalSRefxJwNOXmAZhBgIGkFem28MGupDvueRFIqPoW/hyAyqPe4HdKQLdMHqqzBhXo6ifeM/q8xUFW/AQbXZo4tLDdypNAj7OSBLxiS0XQHX1ZaQLEDwEGklK028IHupI+UufVrKUfRDR10lZBTmZU0zCm5Wdn6CcTBuml9/e022m2uMMS4aI8d7u/hzNmUL42fFkV9O/fO7PY+JREuC3SLx5RpEmLVocdZWKlCazqChU3Y4UAA7Ykwry2qW3hA11JL05z6VevfBxVHYsdB+t01dkDdf/KzyOahjHF/67cczKP4X9edHrIJcJ3fu8blrZ4L/Zkad604bpr2daQ9/vrh+W6berwmAQZoZJ4oyk3D8AcAgxYlijz2lb2HOnI6tXr1NJiHW9s1i0vbYq4fQ+9uV2SWsuRx6KCpRVFHd6bcImzU0uL9fPzSvT4Ozs7TQVldUvTj8YN1MUjijS2pMDSexDLjjzYa7G6goSVJkDsUQcDlkS7jbpJJraFD6Uoz0xRqKpjjao61qgz+uUaeT6r8rtn6Pn/MU5rb7/QVuC3fHO5Hl/TObiQJO+JZp01qCWf4vWP9und7YcsPWe8O3KrBb1iXfgLACMYsCDclES857Wj7RxCdXpNzT41N/uMrqr4eF+t5fv+ZMIg/eWDr1Rb3xT+zkFUHW9Umstl670I9R5LLe/z7Bc22t6N9lCtV03NvrhNo9lZaQIgthjBQFjhhsPjXUEx2qqQwQKU5ZvLNWnRal39xHsxWbJpxV8/3KdFV4yMuuKl3ZGDWG11f9eyrZq0aHXUI1xNzT6V7TisVzftDbl7aqgdfa2UmwdgDgEGwkq0ee1ot4UPdPUabAoo0HPE0pFjjdp24KgWXzNaxZ7IR2q27T9qaxvzWL530U6j+QO/6UvW6aYXN2n6knUhg5Zoy80DMIMpEoSViPPaoapCHgmzLXzHq9dw0wNSS17DrAtO02/fCL1ywoSn3t2lDfMu1oXD+urZsl36svKYBvTM1p/e+UL7a60tI33oze166M3tlpJwm5p9OmTxeSMRzTRaqOXIoWpaRFtuHkD0CDAQVqLOa0e6LXxHVqYHqo43qvp44C3aTas63qiHVm/Ti+/vadcu/6oUO8J1xIFWBkVi4qm99G6IfV4iWR4abe5PtOXmAUSHAANhRbuNeqzbZndb+I6sTw/E7/UF2lI+kuWuoTriYKMDkQgVXLRlZyrGTu4PgQSQeAgwYEm4CoqJNq9t5+rV6tTOhFN76T82fpUwFTqt8nfE63YcVlqaSwdq61XYw607//pJ3F+HnWm0RMv9QWqhQmfsEWDAslSd17ayw2pBTobOHlwQ1UZpTpu1dKNjq2MimUZLxNwfANaxigS2+EcGLht1iiac2ivpgwvJ2qqUyrpGfevf3pSkgCsUOp6GRDwtTgYXkjRv2nCt31kZdqmpX7jlyKFWBQFwHiMYgIJPAbXVNmFy7e0XthvJGTOopzZ8eaTd78+W7Qq7X0cyKfZk6aqzB2pwYba27a/VQ2/usPS4Ik+Wvndmse5attVWmflEzv0BEB4jGMBJU0uL9fb/ukAFOZkB/+7v4Ba8tkWSQo7kpKe5VJjrtnTc808vVE5mesTtjpd504brpslDddmoUzTxtN6WHzNv2gg9vmZnRGXm7dS0sFqMC0B8MIIBtLHhyyOqrAu+HDXQyoVgm8BddfYAS8d863Nr+3pEwlTJc5daqnJOKW3Zgt3q0uUfTxisb/3bm1GVmbeS+5MoG/EB+FpcA4xdu3bprrvu0urVq1VRUaF+/frpmmuu0a9//WtlZga+agTiyeqKhHe3H9SB2nrtOlQXcElpRXW97lu5TfnZGao+1hi0E3a5IivB3Zanezf9dGKJBhfmqLCHW/JJh+q86pObpWafT1f/6b3oDqDOgZXV6YsNXx4xstQ01KqgSItxAYituAYYn376qZqbm/XYY4/ptNNO0+bNmzVz5kzV1dXp3nvvjWdTgICsrkgIl3/g7+xONLX8K9CqE58UcOdSux750RhNHFoY8G9NzT5LIw2Xf/MUPfJW+JyKtgGYlaXLr27aa+k12F1q2tTs0/qdlaqoPq67lm0NOUJy518/UW5Whg4d9abMyicgGcQ1wJg6daqmTp3a+vuQIUP02WefafHixQQYSAhWlqzacdR7Qj3c6eqWnhZRoaxQ/MHB+DBX/lZGGjzdMy0FGB0DsHDTF7FYamqn+qhPUkWNt90oDlMnQHw4nuRZXV2tgoLQy8y8Xq9qamra/QCxEOlGaqEc9TbFJLiQrK2isJIoGc2S0FBLl00vNbW6KV0o0W6+BmfQDyQfR5M8t2/frgcffDDs6MXChQu1YMGCOLUKXZ2VJatOs1tBNdxIQ6yWhJp8Xiub0lkRzeZrcE40/QBVO53h8vminwW+4447tGjRopD32bp1q4YNG9b6+969e/Wtb31L559/vv70pz+FfKzX65XX+/VujzU1NRowYICqq6uVl5cXXeOBIPzz/Adq67Vt/1E99OZ2p5uk/OwMPTx9tMbHqMhZrFZjmHjesh2HNX3JuojbEMgLM8ezj0kCqampkcfjCfjdHqwfGHDzn5Xmzg75vAQY5oR6jzoyMoJx66236tprrw15nyFDhrT+e9++fbrgggt0zjnn6PHHHw/7/G63W263tZoCgCltVy6U7TicEAFG1bFGpaW5YnbVHaty8CaeNxZ7jrCPSfKgH0g+RgKM3r17q3dva4V39u7dqwsuuEBjxozRU089pbQ0x9NAgLBMJ39GI9adooltztuO/rQNJqJ53ljsOcI+JkDsxDUHY+/evTr//PM1aNAg3XvvvTp48GDr34qKiuLZFMCWULkE8ZbonWKsplmsbko377vfUJ8ebt368ofaXxN6eS77mACxE9fhgxUrVmj79u1atWqV+vfvr+Li4tYfINEFW40RjqnJjETa3CtYWe5gqzxMrNwItcLHdfLnd5efocu/eYomDi3Und8Lfl+JfUyAWItrgHHttdfK5/MF/AGSwdTSYq29/ULNmzbc8mOKPFl69JrR+vl5JRHvsppIneLyzeWatGi1pi9Zp5te3KTpS9Zp0qLVeuOjfUFXebTdxyWaPULs7E1i574AzDOyiiTe7GSxArHQ1OzTpEWrQw7XB1rx0XCiWXe9/omeXbfb1vHiXRwqWA5FsLLcdqaNTKzcCNa+aO8LZ9n5bvffl1Uk8RX3VSRAV2OlvsM9V5zRqYR3Zrc03fm9Uq3ceiBs+e57//XM1j1FTHeKoTrdYDkU86YND1mW2yoTSap2EkZNJK0CsI8AA4iQlb04ArFafCrY/iLRCpWEKSnoxmG/WPqBkeObTlJlhAJITAQYiKtU6wwire8QaXASrVA7j17/3EblZ2dEPUIRTCxWbrBNOwJhSiQxEGAgbuLRGTgRwEQ6BB+rolbBhCq17b/N1J4pJsuNB8M27UBiI8BAXMSjM0jGq9l45ges31kZ071V/CMU86aN0F3LYjsyEy5YYq8RwHkEGIi5eHQGXM2GZ7ICaKgRiqmlxZpSGtuRmXDBkk9SeXW91u+sJMETcAh1uhFzdjqDSFgZ+o+2/kIqiDa50l/o65Efha8tEWoLdxOsBkvsNQI4hxEMxFysOwOuZq0JV2rbJcmTnaHqk3kYTo5QhGM1WEr0supAKmMEAzEX686Aq1lrwpXallpqd1ipfhnrEYpw/MFSsKMmUll1oKtiBAMxZ+XKOZrli1zNWmd1eWw8V7dEwmotkURqM9DVEGAg5mLdGcQ6gEk1VpbHJkP1S6dqiQCwhgADcRHLzoCrWfuSIYCwIt61RABYR4CBuIllZ5CIV7OpVrU0Xuyet1QJlhA5KncmJgIMxFUsO4NEuppNxqJfiYDzBqQOVpEgpTi9ukH6uuhXx6Wz/qJfyzeXx71NyYDzBqQWAgzAIIp+RYbzBqQeAgzAoFhXLU1VnDcg9RBgAAZR9CsynDcg9RBgAAZR9CsynDcg9RBgAAZRwjoynDcg9RBgAAZZ2e+Dol+dcd6A1EOAARjmL/oVbsMwtMd5A1KLy+fzJd26r5qaGnk8HlVXVysvL8/p5gABUckzMpy3rsvOdzv9gDPsnHcqeQIxQgnryHDegNTAFAkAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOMIMAAAgHEEGAAAwDgCDAAAYBwBBgAAMI4AAwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOMIMAAAgHEEGAAAwDgCDAAAYBwBBgAAMI4AAwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR4ABAACMI8AAAADGORZgeL1ejRo1Si6XS5s2bXKqGQAAIAYcCzBuu+029evXz6nDAwCAGHIkwPjb3/6mf/zjH7r33nudODwAAIixbvE+4P79+zVz5kz953/+p7Kzsy09xuv1yuv1tv5eU1MTq+YBABIQ/UDyiesIhs/n07XXXqvrr79eZ511luXHLVy4UB6Pp/VnwIABMWwlACDR0A8kHyMBxh133CGXyxXy59NPP9WDDz6o2tpazZ0719bzz507V9XV1a0/e/bsMdFsAECSoB9IPkamSG699VZde+21Ie8zZMgQrV69WmVlZXK73e3+dtZZZ+nqq6/WM888E/Cxbre702MAAF0H/UDyMRJg9O7dW7179w57vwceeEB333136+/79u3TlClT9NJLL2ncuHEmmgIAABJAXJM8Bw4c2O73Hj16SJJOPfVU9e/fP55NAQAAMUQlTwAAYFzcl6m2NXjwYPl8PiebAAAAYoARDAAAYBwBBgAAMI4AAwAAGEeAAQAAjCPAAAAAxhFgAAAA4wgwAACAcQQYAADAOAIMAABgHAEGAAAwjgADAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABjXzekGRMLn80mSampqHG4JAMAU/3e6/zs+FPoBZ9h5j5IywKitrZUkDRgwwOGWAABMq62tlcfjCXmfw4cPS6IfcIqV98jlsxKGJJjm5mbt27dPubm5crlcMT1WTU2NBgwYoD179igvLy+mx0pFnL/ocP6ixzmMTjzPn8/nU21trfr166e0tNAz+FVVVerZs6d2794dtqNLNMn8mbTzHiXlCEZaWpr69+8f12Pm5eUl3QchkXD+osP5ix7nMDrxOn9WgwV/5+bxeJL2fU3Wz6Tl9yjG7QAAAF0QAQYAADCOACMMt9ut+fPny+12O92UpMT5iw7nL3qcw+gk6vlL1HZZkcxttyMpkzwBAEBiYwQDAAAYR4ABAACMI8AAAADGEWAAAADjCDAAAIBxBBgR8Hq9GjVqlFwulzZt2uR0c5LGrl27dN1116mkpETdu3fXqaeeqvnz56uhocHppiWshx9+WIMHD1ZWVpbGjRun9evXO92kpLBw4UKdffbZys3NVZ8+ffT9739fn332mdPNSlr33HOPXC6Xbr75Zqeb0ioZ/m/ceeedcrlc7X6GDRvW+vf6+nrNmjVLvXr1Uo8ePXTllVdq//79DrbYLAKMCNx2223q16+f081IOp9++qmam5v12GOP6ZNPPtF9992nRx99VL/61a+cblpCeumllzRnzhzNnz9fGzdu1JlnnqkpU6bowIEDTjct4b399tuaNWuW1q1bpxUrVqixsVHf/va3VVdX53TTks7777+vxx57TCNHjnS6Ka2S6f/GN77xDZWXl7f+rF27tvVvt9xyi1577TW9/PLLevvtt7Vv3z5dccUVDrbWMB9seeONN3zDhg3zffLJJz5Jvg8++MDpJiW13//+976SkhKnm5GQxo4d65s1a1br701NTb5+/fr5Fi5c6GCrktOBAwd8knxvv/22001JKrW1tb6hQ4f6VqxY4fvWt77lu+mmm5xuks/nS57/G/Pnz/edeeaZAf9WVVXly8jI8L388sutt23dutUnyVdWVhanFsYWIxg27N+/XzNnztSzzz6r7Oxsp5uTEqqrq1VQUOB0MxJOQ0ODNmzYoMmTJ7felpaWpsmTJ6usrMzBliWn6upqSeKzZtOsWbM0bdq0dp9DpyXb/41t27apX79+GjJkiK6++mrt3r1bkrRhwwY1Nja2ex3Dhg3TwIEDE/J1RIIAwyKfz6drr71W119/vc466yynm5MStm/frgcffFA///nPnW5Kwjl06JCamprUt2/fdrf37dtXFRUVDrUqOTU3N+vmm2/WxIkTVVpa6nRzksaLL76ojRs3auHChU43pZ1k+r8xbtw4Pf3001q+fLkWL16snTt36txzz1Vtba0qKiqUmZmp/Pz8do9JxNcRqS4fYNxxxx2dknA6/nz66ad68MEHVVtbq7lz5zrd5IRj9Ry2tXfvXk2dOlU/+MEPNHPmTIdajq5g1qxZ2rx5s1588UWnm5I09uzZo5tuuknPP/+8srKynG5O0vrOd76jH/zgBxo5cqSmTJmiN954Q1VVVfrzn//sdNPiopvTDXDarbfeqmuvvTbkfYYMGaLVq1errKys0+Y0Z511lq6++mo988wzMWxlYrN6Dv327dunCy64QOecc44ef/zxGLcuORUWFio9Pb1TRvn+/ftVVFTkUKuSz+zZs/X6669rzZo16t+/v9PNSRobNmzQgQMHNHr06NbbmpqatGbNGj300EPyer1KT093pG3J/H8jPz9fp59+urZv366LL75YDQ0NqqqqajeKkQyvw6ouH2D07t1bvXv3Dnu/Bx54QHfffXfr7/v27dOUKVP00ksvady4cbFsYsKzeg6llpGLCy64QGPGjNFTTz2ltLQuP4gWUGZmpsaMGaNVq1bp+9//vqSWof5Vq1Zp9uzZzjYuCfh8Pt1444165ZVX9NZbb6mkpMTpJiWViy66SB9//HG722bMmKFhw4bp9ttvdyy4kJL7/8bRo0e1Y8cO/fjHP9aYMWOUkZGhVatW6corr5QkffbZZ9q9e7cmTJjgcEvN6PIBhlUDBw5s93uPHj0kSaeeeipXRhbt3btX559/vgYNGqR7771XBw8ebP1bqkTsJs2ZM0c/+clPdNZZZ2ns2LG6//77VVdXpxkzZjjdtIQ3a9YsLV26VK+++qpyc3Nb57Q9Ho+6d+/ucOsSX25ubqd8lZycHPXq1Ssh8liS5f/GL3/5S1166aUaNGiQ9u3bp/nz5ys9PV3Tp0+Xx+PRddddpzlz5qigoEB5eXm68cYbNWHCBI0fP97pphtBgIG4WbFihbZv367t27d3Csp8Pp9DrUpcP/zhD3Xw4EH95je/UUVFhUaNGqXly5d3Sm5DZ4sXL5YknX/++e1uf+qpp8JO5yHxJcv/ja+++krTp0/X4cOH1bt3b02aNEnr1q1rHfG97777lJaWpiuvvFJer1dTpkzRI4884nCrzXH5+GYHAACGMQEOAACMI8AAAADGEWAAAADjCDAAAIBxBBgAAMA4AgwAAGAcAQYAADCOAAMAABhHgAEAAIwjwAAAAMYRYAAAAOP+P7hnDA70J73zAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Fixing random state for reproducibility\n", + "np.random.seed(19680801)\n", + "\n", + "# some random data\n", + "x = np.random.randn(1000)\n", + "y = np.random.randn(1000)\n", + "\n", + "\n", + "def scatter_hist(x, y, ax, ax_histx, ax_histy):\n", + " # no labels\n", + " ax_histx.tick_params(axis=\"x\", labelbottom=False)\n", + " ax_histy.tick_params(axis=\"y\", labelleft=False)\n", + "\n", + " # the scatter plot:\n", + " ax.scatter(x, y)\n", + "\n", + " # now determine nice limits by hand:\n", + " binwidth = 0.25\n", + " xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))\n", + " lim = (int(xymax/binwidth) + 1) * binwidth\n", + "\n", + " bins = np.arange(-lim, lim + binwidth, binwidth)\n", + " ax_histx.hist(x, bins=bins)\n", + " ax_histy.hist(y, bins=bins, orientation='horizontal')\n", + "\n", + "# Start with a square Figure.\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Add a gridspec with two rows and two columns and a ratio of 1 to 4 between\n", + "# the size of the marginal axes and the main axes in both directions.\n", + "# Also adjust the subplot parameters for a square plot.\n", + "gs = fig.add_gridspec(2, 2, width_ratios=(4, 1), height_ratios=(1, 4),\n", + " left=0.1, right=0.9, bottom=0.1, top=0.9,\n", + " wspace=0.05, hspace=0.05)\n", + "# Create the Axes.\n", + "ax = fig.add_subplot(gs[1, 0])\n", + "ax_histx = fig.add_subplot(gs[0, 0], sharex=ax)\n", + "ax_histy = fig.add_subplot(gs[1, 1], sharey=ax)\n", + "# Draw the scatter plot and marginals.\n", + "scatter_hist(x, y, ax, ax_histx, ax_histy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting seaborn\n", + " Downloading seaborn-0.12.2-py3-none-any.whl (293 kB)\n", + "\u001b[K |████████████████████████████████| 293 kB 3.0 MB/s eta 0:00:01\n", + "\u001b[?25hRequirement already satisfied: numpy!=1.24.0,>=1.17 in /home/lyubolp/.local/lib/python3.8/site-packages (from seaborn) (1.24.1)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from seaborn) (3.6.3)\n", + "Requirement already satisfied: pandas>=0.25 in /home/lyubolp/.local/lib/python3.8/site-packages (from seaborn) (1.5.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.7)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.38.0)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)\n", + "Requirement already satisfied: packaging>=20.0 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (22.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /home/lyubolp/.local/lib/python3.8/site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0)\n", + "Requirement already satisfied: pytz>=2020.1 in /home/lyubolp/.local/lib/python3.8/site-packages (from pandas>=0.25->seaborn) (2022.7.1)\n", + "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.14.0)\n", + "Installing collected packages: seaborn\n", + "Successfully installed seaborn-0.12.2\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAI8CAYAAABWJxdcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd2Ac1bn4/e/M9r6r3rssS25y7zaYbkxLIAESQgIhpJJySW7KTX7Jm5sb0kjPhXCdQBJ6gNCrbWxw71W21Xvf3ndn5v1jZdmyJDeMbcJ8/rG1OzN7dmRrH53znOcRFEVRUKlUKpVKpVKdM+L5HoBKpVKpVCrVh40agKlUKpVKpVKdY2oAplKpVCqVSnWOqQGYSqVSqVQq1TmmBmAqlUqlUqlU55gagKlUKpVKpVKdY2oAplKpVCqVSnWOqQGYSqVSqVQq1TmmBmAqlUqlUqlU55gagF0gYrEY27dvJxaLne+hfOio9/78Ue/9+aPe+/NLvf/nz4Vy79UA7AIhSdKIP1Xnjnrvzx/13p8/6r0/v9T7f/5cKPdeDcBUKpVKpVKpzjE1AFOpVCqVSqU6x9QATKVSqVQqleocUwMwlUqlUqlUqnNMDcBUKpVKpVKpzjE1AFOpVCqVSqU6x9QATKVSqVQqleocUwMwlUqlUqlUqnNMDcBUKpVKpVKpzjE1AFOpVCqVSqU6x9QATKVSqVQqleocUwMwlUqlUqlUqnNMDcBUKpVKpVKpzjE1AFOpVCqVSqU6x9QATKVSqVQqleocUwMwlUqlUqlUqnNMDcBUKpVKpVKpzjE1AFOpVCqVSqU6x9QATKVSqVQqleocUwMwleoDLhCL0+zxEYzH3/O1JEmmvd9LPCmdhZGdWCgS47sPvMIfXjpAXUsvAJ5AmN5BPx5/iMde3MDbm+vGPDcai1Pf2kPyNMa5t7mb/3jwZX719DqSknxW3sO5FonGaesePN/DUKlUZ4H2fA9ApVK9N3t7B1CA7kCIBUV5o54PRGL8Y91eYkmJWxZNJtthGfdav3t+Aw2dg+Sm2/ivW5e9j6OGJ9/aSZ87CMCfn9+M/NxGQpE4iqIQ8QeIR2MAaHUaFs2YMHyeLCvce99jNHX0M7+2gu9/6YZTer2n1uwhGk/S1OPhYGsvk8tyz/p76nT72d3Sy5SiLAozHMOPt3UN0NXnZfbUMjTimf3eGwrH+PL/9wi9gz6uu2Qmd9/8/n5/VCrV+0udAVOpPsAURSE+NJsTH2dWp65zgC5PkMFAhF3NPeNeKyFJNPd4AOgeDNDY6zlr4/zX23v4z9//i7U76ocfMxh0w3+PJJKEIqkZPEEQQBCGn3vw2fUEI7Hhr6PxBE0d/QAcbOqie8DHlv0tw7NhsqIgyaPvhUkjIksyiVgC8zGvDfCHf7zBdV+4n2ff2Pqe3uej6/ax8XAn/1i3d/ixnn4v9/z33/n//vgcf31m7Rlfu7PPQ++gD4AdB1re0ziPCEcT1DV2nZVrqVSq06POgKlU50hPMESbL0CG2USZy3HyE0gFE82DPnQakSKXfdTzh9r7ae3xku4w4/aFobRg1DEV2WlYjXoSSYnqgoxxX+v1/S1k5TjxuoPYnWbeOthKebbr1N/gOKKxBE+9tQOAx17bxtIZlQDMmVjI6h31KArEhgIsWZIQBAGD2YTZZiaZkBC1WmRZGb6e2ajncx9fxpvr91JSkMn3/vQi0XgSq17DV269mNcPtBOJJ7n9oqkUHTML9fkbFvD82r0U56RRlj/yPqzauJ9EUmL1pgN85PLZw4/HE0meeHsPoWicWy6ehtNqoq1rgD88+iaZLhtfvf1K9LqjP0bNBh2BaBzTMQGePxghnkgC0O8ODD8eCEV5+Nm1GA16br9h8YjrjKW8KIuL5lSzv6GTW69ZcGo3/wTC0Rg//9u7SLLCjJoS/vvrN73na55LTd1uHnhpEya9jq9+ZCFpNvP5HpJKdVrUAEylOke6AiESkkx3IESJ0454zCzPeBoHvOzsTM326DQacu0jlw8fW7ObhChgMhnIdY69tJhmM/HN6+ajKMoJl79iiSR2hxm7I/VBlm4xnepbOyGDXktFYSYN7f1MKj+67BdLJIkEo0BqJg/AYDGiEQWcaXai8STxSJw8h4mfP/ImeZkOmrvdLJxaxhWLpvDoC+tp6RrEkZkOgNsf5pnVu5DsVgAaejwjArBIXCIoyfjjiVFjvP2GxazauJ9brp4/4vHtDV1sPtgOwKqdjXx08WQef2kj+w53ADBrShkXz60ZPv7TF0+jodtNec7RwHVCaS6fv/kSWjr7uXXF0cDpyVc28uq6PQBkpzu49pIZJ7yPGlHkW3etOOExp6PfHUAaCmwb23rP2nXPlW2HOwhFE4SiCQ609rFocsn5HpJKdVrUAEylOkdyLGZah2bATiX4AkYcpznunIY+D4JWxO8J4jIZ+NTSqSe+zklec3FlAWsPtWE16CnOcFB5Fma/ILWk+IM7r6TPEyQn/egsXlVRFia9Bn8gTDKRID0vE4PJSNAbJBiMYjRokZA52NyDVqejqSuVfP7UWzu4eEYFsUQSRZaxiBCOJ4gEgkwuzkK2WQnHEswsyxkxjle3HuJgez8H2/uZNaGAgsyjwdn1l87i+ktnjTg+nkiyua4dAVCAkqGgakJpLmu3HsSg11JakDniHKtRT23pyNcFxgyu0hzWo38fJ3h+PxXnZTCxJIOugSBf+uRl5/z136tZEwrYdrgDk15HTXHW+R6OSnXa1ABMpTqOrCgIDOUinUV5dit5duvJDzxGWboDvUaDTiOSddwSy8bGTtKyHVidFu5eVothnCWshCTxyvYGoskk18ycMCr/6YiXt9fjicfRajU0DfhwGfTkpo9e9jwTWq2GvMyRy64b97YgaTRodRqS8TiRQJh4LIEoCBgNOpoPNCElk5gdNtDpQFFAEJhZXYjDbuaHX/kIO/Y3c+XiaaQ5LHgDYfKyxg8aM9JS995qNmCzGMY8pqFzkMbuQeZXF9HQOUB95wCQ+rCfWZkPwA2XzWLyhALsVhPZ6ae2lDyWGy6bRYbLhsmoZ/aUsjO+znvh9kfwB6P0Dfqpa+ykd8DP4tlVZ7xR4Fwqy03j53ctP9/DUKnOmBqAqVTH6AuGqXd7sei0TMnOOO8fRIIgUOiyjflcSYYTT7iXDJeFw24fM/MMYwaNdR0DbGvqBiDHYWXppOIxrydJCpA6P5ZI8vvnN/A/d1w57tgSksRrWw6j1YpcMXMConh6AavVYiAZTwVYZoeNkDdANBRh+fxqivMz+fXew+h1WpKJJMmYn0Q8gaIoZM+fyBd/+jhXzq/mszddPHw9s8lAPCnx2OpdhKJxbl1Wi8t6dBm1ujwHq8uEXqflYFMXf3tmHYtnVXHz0LJjrzvAb59bj6wo/HPVDnpauqiYUomswOyqkbl1lcWjZ7lOlyAILJk98T1f50xJkozXn1oCrm/t4a/PrkOSZAa9AT56xZzzNi7Vhc0fDPPdnzxMT7+Hb3/lY8yaVnm+h/SBpQZgKtUxBsIRAEKJJJGkhFV/4c4ELK4sQNABgkBckpAVZdQyJUCuy4ZBpyEpyRRljD+j9bEFNWxu6GTjoXa8nhAaUrlZ480Ert/XymvbDgOQYbeMClJO5kBLL4qiEAvHUGSZoNuHgkJ7r5ePXDGXixfVcqCpi2hSIRIMocgxZk4u5eX1BxBEkcff3InGZGDJ1DLc3hCd/V72NHSyt9MNwNrdTVy/cNLw65W67Og0Iladjq/8diWBUJTmjn6uWTYDg07LfX97C1mT+n4nkzJSUiLY088fvv+pcWcXx7NuZwNbD7Ry5byaEXlvRzS29fLD3z+LIAj8+Ks3Upw//uaI94tGI3L7ilrCSR3zait5d3vqe3m2Z35V/15WrdvFrv1NADzy1FtqAPYeqAGYSnWMfLuVaFLCqtdhOc0P3TMRSSQJxOOkm4xnNNs2KTuD3mCYDItp3PMz7WbuWT6HZFI64U6xqCQh6DUsqSmioWOQGeW57GvppaogY3iHXteAD28oSk1xNhkOy/BSbbr99HegDfrDKLKCqBXRGnSYbBbC/iD7mnu575E3ae/1EPT4EDUiUjKJ1eXkiqW1ND61DgBFlnhly2G2He6iqbGLcDhCLBQmr7IIjUZDRd6R5PwQeq0Wq9lAjtWMXqNBq9EMj0MjCoRjCfrcfvLLcpEkGV9XLwa9jpuXz8Og0+ILRZFlBZft6IzagCfAoy9uoKo0lysXH82/C0ZiPPjsehRFoblzkD9862Oj3vuqjfsZ9KZqoK3ZfIBPf2TJad+/s6Eox0F1dTVms5lffOsW+gb9LJpZdV7GovpgmFhZgE6rIZGUmFw19my66tSoAZhKdQyH0cCMvHOT0CsrCnt6B0jKMm6zkYkZaad9DZfJiMtkHP76+S2HONQ1yJXTy5lanA1AjzvAr/75DomkxBevnceE4xLHj1hzuA1BI6IoCmGtwJr6Dpoaephcks0XrpnH4c4BfvvsegDmTyrmk8tq+c4tF6ERRXLSxl4mPSFJwmQ1odFp0Ol1REIRjFYLCtA+VIPMYDERDYbRGw1odFoe+Oc7KIKAlEjizHQCEE4kkGQZURSREkna65ox2yz4/WF2HurgV4+uwqDTcu9nr8CdiKMTRb77het46pVNLJ5VhdGgx2iAT189l22H2pkxuYxln74M3VCQ1usJcN8Ta5Fkma9/dBGlOanv02MvbuD1d/bw+jt7mDW5lIyhpWKDTovLZsLtD5M9zn2ZM7WcV9buRhBg1uTzk/91vIlleUwsG13IV6U6VnVlEX/7w724PQGmTbow/u1+UKkBmEp1Hh0pvyArykmOPLlIPDGc67W5vnM4AKvvGiQcS5VeONDaN24AFozEsVmNw216hKGcrkF/ePg6R7T0epAVhaZuN1rNmQVgyXiCSDCCwWwg7A8RcPvQG/RkZLoIx5Jo9VpMNhPJWAxZVgh6fJisZrR6PekuGy6bCdGo56alU1DiSd7YcohAOMrBhk50ej193iCSJCPLCpFYAncoAnoNCVmmPxjBHZNpGzhal+uyuRO5bO5E4okkP/rdszR39PG1T1+FzWkbbs3k9kc4ssmxqjSX197ZQ16WC5vlaBCs02r48RdW0NDeT01pLr//+xscbunmro9dzNSqIgBqq4v5+y++gCgIWMxjbwhQqS5UhXmZFOaN/XNEdeou3AQXlerfnCgITM5Op8RppzLN+Z6vZ9LrmF6SjVmvZXb50ZmM6eW5VOZn4LQakWUFaZyK+b7BEI2tA7S1p3Ko4rEETqeF2y6dDsCyqWXkZNixWgzcsHASGw+08cTbe/jHql3sOkE19aQk097rGfW6olZLLBwh6A2QjCdJy8mksCiHNKuekM+Pt2eAvpZOtDodoiggJRJkmPV88cbF/PjzK8grzkIw6Gju82E2G2j1BHHHkjgynJisJhSNyKWzq6guSQWi/3p1O1atFisCT7++nUFfiLe2HGJgaCnwiMPNPew40ILHH+blt3cxsTCTW5fVctOSKUyvTN3Xnn4v7+6sp6Qkl0lTKujocY+4hstmZnZNMZ09g7y6bjeNbX3844X1I46xWYxq8KVSfYipM2Aq1TgiiSQ9wRAukxGn8f35oLTq9Vj1+rNyLUVRyMtxIlh02O1Hc5WsJgOzJ+Tz2JrdrNrVSJfbzxdWzEOjGfn7VyIao9cbQgTmTJzMoR43F00upXioHpjJoOP7txzddbj9cOfw340nyJf7zeNr2HGwnXmTS7jn5ouGH79ifjVbD7QRDYXRaETSsp3EwlFCEYlELI5WpyU9LxslFsft9mE06PjSbZfz5Cub+b+n11A4pQKApl4Pi6oK0Gs1xJMSBlPqe/XahgO8unYvU4eCps5eL2++sYPV6/eSluECjZaSvHScx+XFlRVlUVaQSVv3IBfNqQZg4XE7Rx99cQPb96YSkWMaLes37+f33/0EuUPLokfkZrnITLPT7/ZTO1HNl1GpVEepAZhKNY7Dgx6C8QQ9wVTl+jSTCYNWc/ITz5NoUqLNm1pSaxjwUnZMjapjW+PUtfWz5VA782tGBgSZOU5CkkRWhp2LJxZxSfWJA4aZE/Ix6rXotOK4y5oAbd2p2aHW42aJakpzmVyWTYc/TFp2GoIg0D7ow+K0k19ZhLdvkEgwTCIWQ4onELQa/vfpd2hqbAPA3NFHzaRSLppUTGf3ICVWPW9vO4QsSUyuKaV5aOk0N8NB7YQC0h1m6g62AOAe8PCzb95CdVku2uMCUbNRzx/+36eRJHlUkHpEZXEOqzbuR9SIiKJANBLja794moUzKvnKx5cO7yS0WYw88KPP4PGHTlij7HyQZZkfPrQGSVrN1KpC7rv35vM9JJXqQ0UNwFSqceg1GiCBokCTx09XIMTMvOzzPaxxGbUaChxWuvwhLDotSUkeDi5mVObT0e/j9e31CALYxlj6khSYXFNINBrn9T2NtHmDzCjOprYgi1AsgfOYPKcjJpWc/H588aYlvLOzgYtmjd6uHg5FGOzx0N3ShSgIRIIRrIEwcjJJIhonp6IIQRTQJRN86so5PPbGDnRGA4lojJocJ1++ajbt3YN84ddPjegXWZ7lxGo2IQip3K6PLkuN/Se+IKZeD0aLiZxsF9oTBNTjBV+Qqmw/bWIR//PQS3Q2dSJLEggCm/a18Olr5mE/5l6ZjHpMxrMzy3k2/eqvrw/VfoM9h9rP82hUqg8fNQBTqcYxId2JNxqj0e0lISvDffMuJK2DfvZ39VOZlUZltovavEx2t/bSNeAnEI5x5TE77K5dUEOaw8Jruxp5fns92Wk2Mo/pLRn2hGjvciNIMp5cJ4IgsKO1l/X72xgMRLh4UjHLppSe9hgnlmQzcYxAbV9DJ92hGJFACCmZRKvTYXHaCfmCCIKALEkYTXqsDguiKNLjDSJFwsyfPoGPXTFruKF2UpKHNzNodDomVRYwb/ZEZFlh8nFtgWKKQM5Qw/JYPHna7+VYxfkZfPzK2fzm4dcQ9TpErYZ5U0rGDG4vRJMr8ti8p+l8D0Ol+tBSk/BVqnEkZZlQIkmJ00GB3UpNVvrwc6F4gr5g+KzsXnwvXtvXREOfl9f3NxNPSsQlicRQsnsoNrrpdDiZRNCIRBMS7QP+Ec9F40kGBwP4gxHKh3KZClw2BgOp4rQbDrbzP4+voXWoRMR7tf1AK1JSZsLMKpzZ6VicNkRRwGS1oB3Kixvs7EORFeRIlL88voqGlh7WbdzLr//6Cqs27gegtCCTqy+agcFswuK009Lj5o8vbOJ/X9rM5rq2Ea+Zfkwdr163nz8/t57dQ421T0RRFDbXtbHl4MiZomXzJlFVmksynsDXN8Cnr577gSlketXSaSycVkhupoMHf3zn+R6OSvWho86AqVTjODzoxR+LoxEE5hTkDDfGTsoye3oHkBWFUCJBqevM+wG+V3aTnv5ABK1GpH7Qw6TsDC6rKaF7aPkwEk8QS0jDy4dzKvLpHAxg1GuZVDgyb6vfFwIgIclcNaUMWUkVKY1FEjT2uOns8ZCIJ3l7dxO3Xz7zPY99xdKpvLZ+Hz0tSUSNBoPNgICAu2cAnUGH3qgl6A+xa+2OUec2tvby5ydXc8n8VKX7udPKWL25jmgghCAcDYrD8aNBqMcfoqW+HV8oSiIa5/dPvE08IbFxTzN/+cEnThg4ba/v5G9v7QRAqxGZMdQXcs2mAzS29WE1G7n+0pnYj2l99EFw5fzK4UKsKpXq3FIDMJVqHEcCLlEQOP6j+UKZ47hh+gTW1LdhMuoIJ1NLatW56VTnpuMJRvj1S5uJxpNcP6eKGWW5OC1GPrOsdsxrHVmSU5TUst6R9jvXzZ6AOxjhgRc30+8NMm2M1jpnYn9TD4JOjyRJxIIhzDYTUlImqyAbh1lP3O3l4FBds2OJooAsK0wozeXVDfspy03jh79/9miZCwGKnRYmVxWwet1uXnxtCzVlOby28SDxWIzkUFAmanUIokimy3rSWSvtMV0Gjk3af+aNLUTjCYgnmFdbcRbuikqler9Jssyhph7SMnIpLT5/v3yoAZhKNY6qDBfucBS7UT/iA1orikzNziCUSJBuPr8zHkadlnmlefSFwmRbRv4g6fIEiQwFVY29HmaUnThwMhm0hKKp4ORIvls8KfHgm9vp84W5pLaMRROLRu0aPJk+X4i9bX1MLc4m85iWRfXt/QDo9HrMdjO+AQ+iqEGn09F+qJnqslyuv2oOazYewDdUq0uj0/Kzb9yE1WLke//7Mo2vbEWLPBx86Qx6zA47WS4rr721jYbmVAB3sLETs82K2W4jGoqgN6SCL4Al08u575E3uGR2FbNrxt75WVuRx+dXpJYXJx+Tz9bec3Q5dl99O8+8voVFs6qYX6v2x1OpLlT3P/Av3ly3i4f/uYGHf/sN8nLST37S+0DNAVOpxqEVRbKsZoza0b+nmPU6Mi3m4Vmy03G288Zsej12TaqeWI83yOb6TiLxBBNy06gpyCDPZWXRxMKTXue6BZNIt5u5bEYF5qGyFQOBMH2+VDmHg52Dpx18ATyxfj9v72/l6Y0HRjw+taoArU6DJEsoMriyM4hH4gR9QQRBZH99J6+v2zMcfAHoRIHSgiy0Ws1wxf5oPFWl3mI1U1CQzczqIvLSrDS19w2fJwhg0kCmw8y9d1yF2XI0cH789e3sqe/igWfeBWD9vhZ+/vhq/vDYKrz+0PBxU0pzRgRfwIhdlE++upU1m+v46YMvEk+8twR/lUr1/jnYkMr7DEditLT3nrdxqDNgKtU4krLMYDiC3WDAdJYac+/p6udgn4dil525xTknP+EUPPL2blr6fRRnOujxBoklJBp7PNy6eDI3zJ1ILJHEYR5dQuJ4CycVM60sB/NQyYSmXg97WnqpykunxxtkcXXRGY3PYTbQ7w/jOG53oEkQMJgNgACKQjwaQ28yEPIGkJJJDHotWTlptDZ2odVr+dS1C5k3rQKTUY9WIyJFIiRkBSWZmrW7ZF41M2srmV1VyDvbDiEnJQSNBq1G4LZrFrJ86TT0Oi1arQar2cATr29n3pQSNu5tob3XQ1GOix53gMfW7AYg7A+x46eP8stv30qawzpi7G5/CKNex3996Qb+9MRqqivy6erow+MNkOaw8NaG/by95QA3L5/HjEmnv3NUpVK9fz5z86X88S8vUj2hmNm1E87bONQATKUaR/2gF3ckil4jMjv/7ARLbZ5UodR2r/+sBGCyotA24Etdu9+HXnd0RsYTjPDAG9uJHJMDdiJPrd3D2j3NVBVk8Nnls/nrUCCiEQVysx3o9GdWhPaWRZPpcgfITx/ZL3Lt7kY6D7dSUFmERqdFkgTMdgu+gVTB1vT8bKZOr8CR7mTZ1DKam7vp7vdSkJOGVqtBbzFDPEFpZQE3XzKdh97Ywd43drC7vovPrpiLrFwDisLSOdWs2XyAj33192Sm2fnN9z5JXySGLtOBW1b4/p1X0trjprwgY3jHJ0AykWBwwMc/X9vC1RdNJ3+oI8C6HQ08+Ny7WIwGfvz5q3no/90OQCgcY2ddCzUV+dz1vf8jEkvwt8R6NQBTqS4wi+bUkG4TqK6uRneWfrk+E+oSpEo1jiOri6NT8M9cTU46NoOOSTkZZ+V6oiBw5fQKsh0Wls+o4LOXTGfFzEpumFtFlydIOJ5EIZUDBqlyCtsPd3KgtW/UtXY3pvKlDnUMEIjEhx+XZIVYUmJf58AZjVGv1VCS5USnGRnAtfX7sGek4fcEiARCRAIh4rE406dUsGDuJGRRZN/hbvyRBA8+/hbPr9rOj//4HIFQhLgkM3VGOXkFmRSWZvPg02uHr9ve5wVg6eyJLB1qJbRxZwOyotA76KOhtZe9ban8s+Y+L4oADoeF9Yc60GpEyoqy0Bu0aGIxTAYdL63Zxee+/3+s3XoQgF31HSgKBCOx4Tw2AIvZwKKZVaQ5rFw0txqNRmTp7IlndM9UKtW/P3UGTKUaR0Wak3RTFLvh7BXWLEt3jGgRdDbMn1DA/AkFw19n2S3EkxKVuWlU52fgDUdZOJQDtm5vM0+t3QvAPdcvoGqoFMWGA61EE0n0Og2LJpWQ7bSybHIJ+9v7sdsMRCSZyflnJ2g8otBlpX8ov0yr16LRaAj6gjT3eDHoNDhsZtxuH57eQZJDOVWykgqIRUAnikybXsaOTQdoa+uhoFSDxWqmpiCTZFIakZ91/aUzae7ooyAnjSlVhUhGPav3tjAxPwOzQcdvX9lCLCFxsHOQr66YSySewGYy8Ma7e/nNI68BcKipi6WzJ3LVghpautykOyzMGCe37iu3XcFXbrvitO/J9n3N/N8/32ZyZQFfvPXSD0xNMZVKdfrUAEylGodWFMm0fLDqI0myzP+9tZMOd4AVMyu5dfHkEc/Hk9Lw3yOJJLKiIAoCb2yrJzq0Y3Ltnia2N3Vz3YIavnzV7FN+7V5vkJe215OXZuPK2vKTBg/TqwtZvekABosZnVFPMp4kGU+g1euIxpMUWY3UH2pBliQ0Oi02lwNZkonEEuxv6GTr1noUWcE/mFqynFqcyYa6Tp7v8yIrMrdcMWv4tWoq8nnovz87/PWcinzmVKRqecmyglYUiSGh14poNSK2oYbeS2ZPZPfBVgKhKDdclrpeZWEW93/9I+O+r92HO9iwp5mLZ00YswPAiTz20gZaOwdo7RxgxUXTKT7LQa9KpbpwqAGYSvVv4K09zexq6WFORR4d7qGG3D1u5g4VDD1i2bRyNKJIEoWQVmF7Vx/TcjKoLc/lzR0NiIKAJCv4/GHerWsbdf6JrD/UQUu/j5Z+HzPLcslyWE54/MOvbkOj16HRadBoRULeCDrj0dnGWCyB0Wom7AuQnZ1GXAJ/IMSXfvQwwXAUZ1YGyUQCQRAoLclhwcyJbKjrBMAfio77ugdbenluzW4mV+RyzeIpiKLAXZdOp7HXQ81xTcWNBh3f/OyKk773AXcAh92MTqvht0+8TTSeZH9TN3/41sdOeu6xZk0uo66xi8LcdLIz7Kd1rkql+mC5oAKw1tZWVq5cye7du6mvr6esrIyXXnpp+PmOjg4uueSSMc/V6/Xs3bv3hMdNmzaNp556asRjO3bs4Gc/+xl1dXWkp6dzyy23cNddd4347V1RFB566CEee+wx3G431dXVfOc736G2tvYsvGvVh10gFicYT5BpMY0o+HkqQrEEr+xpYE9jaiv15vourqgto6nXy7LJJaOO12hEltWWc2jAzUA4SlySCMQSXL9wEvNrinnota10D/gxmQ2nFXwBTMxPZ09rL9kOC64xGncfq63PSyyRRG80kkxIyLJCMp4gGgwxZ1Y1BVkulkwv56X1ByjOcVHX42HTOzuRkhJHstNMGgHRZECr1zGhonBE82zdcU22B70h/v7KZjy+IJ5gjAFfiL2NXXjdfm67biHpNjPptjOb7Vz59Ns888ZWSgsyuf87nyA73U5rt5uc9NMPoG5ZMZ/LF03BbjGe1+RglUr1/rug/ofX19ezdu1apk2bhiwfbbB7RFZWFk8++eSIxxRF4bOf/Szz5s0bdb1vfOMbzJ07d/hri2Xkb+Stra3ceeedLFy4kK997WscOnSIX/7yl2g0Gu6882hvtIceeojf/e533HvvvVRVVfHoo49yxx138Pzzz1NYePL6SirVeOKSxL6+AWQFfNEYEzPTTuv81/Y10e0PYzTqiEYTCAIsmljEooknLhmRa7MQjCcwarU4h8pOPL5mFxFFIS3TgQDMLMulrc9LQYYDUTx5LlJNQSbfv3ExmlMIIh0WI1a7Be+AL3VtRUZvMpCV5SIpwjMvr+eVVVv5xHWLmDulhL5wDGd2Ot4+N9JQPlgiEuW+ez9OfXs/sycV8+cn1yAACgw36j7i6VU72HIg1RcyEYuhMxiQJYnHX97AdZfMGG4hJMsKT286QPuAn2tmVlI1zhJgIBTFoNei12nZtLsBgOaOfnoH/Xz/zitp7BigsihzzHNPJt1pPflBKpXqA++CCsCWLVvGpZdeCsC3v/1t9u3bN+J5vV4/atZp8+bNBINBVqwYvUxQXFx8wlmqlStX4nK5uP/++9Hr9cyfPx+3280DDzzAbbfdhl6vJxaL8eCDD3LHHXfw6U9/GoCZM2dy5ZVXsnLlSn74wx++l7esuoDEJZnOQS9mnZZ8+7n7EDzye4asKCiKQovXT1ySKHM5Ru0cPJ5+aKbHajWgKPIpFUrt9AR4aU8jJr2W66dXDgdMPe4gSQGMZgOCIPDjx1bjC0aZV13EbZdOP6X3cirBF6QCsE9eUsv9D7+GoNWi0WjR6vS40h20tKVm8yLROI+9upV/vbOfiy6dyszacgbbbfT0eujsdVNSkEFBtouCbBdb9zbx1vq9CKLIzEmlXDRzZCX6/KxUCQlFlokGQ1TmpbO7roXi3AwsJgPJpMSAJ4Cg07JvaIfkpvrOMQOwtVvq+MXKl3FYTdz/3U+SmW6ns9eDViPS0T1IUW46UyryTuk+qFSqD68LKgATT3P5BeCll17CarWybNmy0z533bp1XHbZZej1+uHHli9fzoMPPsjOnTuZO3cuO3bsIBgMctVVVw0fo9frueyyy3jzzTdP+zVVF66ucARPLFXU06bXYTeevd2P49FrNNRkpROIxcm2mgnEE3QFUtXXLXo9BccEgtFEkl1tfaRZjUzITs2UXTm5lDf2NLO/tY9sm4Wrjwk8Nh9sp2vAh9aoJ56UuLK2HItRz+FeN7GkRCwpsb6pk2UTijFoNQQjMRRAo9Wg02vxBVN5VO393tN6Tx2Dftbsa6Es2zW8+/JY/b4Q3YN+Dne5ycjNoL2+HdNQIn5eThqiSU8kECYeS6IzGEhKMvG4RF5JFp9bPpfv3/80nb2p2SpIzYJv3FmPKAjIskzVGInv1yyeTFG2kzc3HaB2wnyWzZlIS2c/eVlORFHg3p89Tl1jF5csmExJUQ7tg36mFo+dQL9pVwOyrODxh6lr6KJn6P4kJZmfPfQSz/3x66c0Y6hSqT7cLqgA7HQlEgneeOMNLrvsMgxjlAr44Q9/yNe//nWcTieXXHIJ9957L06nE4BwOEx3dzdlZWUjzikrK0MQBJqampg7dy5NTU3Djx+rvLycRx55hGg0itF48irjqgufYegXAFHgpDNPwXicUDxJhtmE5gw+bMPxBP2hCDk2C06jAedQsCcKAmadlrgkDz92xDv1HdR1DwLgNBvJspnRaTSkWYyYDDqmFGWR50oVO+0a9PO3N3eg02uxDSXDW416rqgtZ2JOOod6PWg0AmaTnlA8gUGrITvNRo87QCKRxGzSs2hqKcFQlEumn16T6Vd3NtA24Odwt5utuxqZN7mEeUP5aL5QlPsef5toIkmWzYzJZsGeZicaiZGW7qBnwIccSzChvAASCaIyzJhSijPHRbbNjEmnxR9Mla7wDgWqh1t6eO2dPQBoNRqefHUz5UXZo5pjH+p20+yL0L6jAUmSeOb1LWRlufjEigXUNXYBsGHHYZ75zFUoijLuLs4Vy6ZzoLGLrDQbs6aUsmVPIz39qWK4BTlpavClUqlOyQc6AFu3bh1er3fU8qNer+eWW25h0aJF2O12du/ezQMPPMC+fft4+umn0el0BAKpnWJ2u33UuSaTCZ8v9QPV7/ej1+tHBXh2ux1FUfD5fGccgMViMSQpVRYgEomM+FN17hy55w5BwWK3oNeIKIk44UR8zOPjkswBjx8FcIfCFJ9m8raiKKxq7iGalHAYdCw+bqal6kjbm2SC8FCbHQBBSfU+FIBkPEY4DImkxKs7GlCAV3c2MiXfhSAI+AJBdBoRSZIRhVT9rDSzjnA4jEMvcuP0MtqCEQyiiF6RCIfD6IxabE4LWo3IVy6vxajXDb92OBw+5feXbTfRNuBHTkpsPdTB9gOtVBWkYdBrGfAEiA7lcEmyRF9nP9Y0BxYFUBQkSaJzqJDq9Usns353M13dbj6yqAZIfa88Q/0Zvb4w4XCYh55cjZDqZkRy6P/TO1vrmDph5DKgP5T6PkuSzOOvbKKvz0NH9yB+BDJyM/F5fBSW5o16r+FonEde2UZSkvnUVTMpzUvjB1+4BrPZgIjMoeau4WO/dOuy07pX55P6M+f8Uu//+XMu7r3ZfPLPhQ90APbiiy+SkZHB/PnzRzyelZU1Ijdrzpw5VFZWcvfdd/Pmm2+yfPnyczzSsR2f4wbQ0tJy7geiAlKbMk6FLGpQ0jJBEPD6fYQ7Tu28IxQgKlpBEAhGY9TV1Z3SeQ4FKkypptLdLU10A3sCoNVpSCQk0owi+w/U8fqBAWI6A2aHhRyTwIw8CwlZwdvXw7t93aSbtMSSMgfdcSw6kagrtQQfiCbQ6bQoisLeAwexGlJ/X3VokB5fjIXlLkozTv5DJU9UuKjIzFvb21EUBYtJR0P94eGZoTklDvoCcaqyTOzfFyYeDuPMSkev12PTSJiNWox6LW9uqiMUk+j3hnj2jQ1UF6byuHIzrDS2u8lJN/PGmk0cGJq9EkQBvdGIqEhU5ltG3deJaQJS1IY/CfvcXgAMJiNajcgNiytodUeozrGOOm9bfT/bD/YA8KSQwChIvLDuEAa9hmk1RXijqaCvojCNkLePOn8/JxKOJkgmZezW93+J+1SoP3POL/X+nz/v572fOXPmSY/5wAZgoVCINWvWcNNNN6E5yXIRwNKlSzGbzezfv5/ly5djs6WWao7MhB0Rj8eJRCI4HKlq5Xa7nXg8TiwWGzEL5vf7EQRh+LgzMXny5BEzYC0tLZSUlGAymc74mqrTdyb33htLEE4myUyzo8s/cY/FsaQHI3QFIhQ5LKSbz+yDWFEUNmw+iMNhQpJkbp1ThS8YpX9rN440IxoEnC4nrXGBgUCUgaE+hzfMqqCj10uzLzWTNKmihE5PkERiEFGSyXdamV07BUj1k2zbmKqt1R0WWF5dfcrjm1EzkYOtfZTmpWG3GPGForT1+5lek02vJ4Q7EMZgNqM36kkkkoSDUUzZDnIrUlX9o30eQn2pmehZU2soynEC4NgzQIHZjj3bRWFxCaK4A1lWMNksZBfnsbCmkMvnj90CaMZU+OvafRRVFZNVkM2CifnMKMsh85iaZUlJJppIYh3aHSqY0nlnfy+KojBzciXvbDkAQCwusa95AIPZhNFs4ntfuBbbScpvtHYN8pO/PkM8keSbd1zF7Cnnr0+k+jPn/FLv//lzodz7D2wA9uabbxKNRrnmmmvO6Hyz2Uxubu5wjtcRzc3NKIoynPN15M/m5mYmTjz6Q72pqYm8vLz3lP81Vt6ayWQ6palL1dl3Ovd+vMNiyST1g140okhlunPcul6lZjOlWWc60qOWVBayp6Ofqpw0Ml0OXHYblXnptA76mVCYSbbLxrsH20ecE0kqOCypHzoC8Pr2RkKyjGEo4NAIwvB9aOr1k5tmIxJLsHByKX9+bSfuQJg7rphFSY7rhGMzm2G+085bOxrYsL8FXzhGNJ4cLhWRbTPhSLcRCUWREhJanZYYAkf+R12yeApE45QXZFI51DJJVhQisSQ6g55wLMEfnt2A2eUk5vODolCeYeMji6di1I//o23FrCre3t9CebaLRdUjy3XEEkn+vGY7g4EIV0wrY1F1ETNqSvjFV9OQZJmCLCcFWU76BgO097iJBkIossLyxVOQFIF/rd7FnCnlVIyTwN/a3UB0aKPHoZZels6ddMJ7eC6oP3POr1O9/zv3NWI06KiuPHGJGdWpO9//9j+wAdhLL71EUVER06ZNO6Xj16xZQzgcZsqUKcOPLVmyhFWrVvHNb34TnS6V7/LKK69gt9uZPj217X7GjBlYrVZeffXV4QDsSPL/kiVLzvK7Un3Q9QTD+GKp3LGBcIQc64mrwb9X0wqz8EVibGvpIZpIsmRCIV+5fgGQajX0zLaDw8fqtCKlOS5mV+ShEQVynFZW7ainsXMQk9mAyWIkEU+yv7+XYCQGCPz5lS1IskJlfgZ6nZb6oYbcGw60njQAg1RrpH9t2M+xJf2O/NVmNdHc1ociCmi0Wtx9A0QCAcxWE0a9jjkV+aTZRv52KgoCn79mLtvrO+nv99He2otWq2X+4lo+ful08rJGjqm7z8OvH3kNu8XEf9yxHJNRT3Gmg9svOvpzo7PXzRvr97HiolqSgsDg0Ezhoa7B4QAt95iq9KUFWfzme7exasM+/vTYWxRn2rjlytl87X/+QUePm+fe2MZj939pVDFYgCWzqtiyu5FgJMq1y2ac9P6pVJCqi/frB58D4L7vfYZFF0DgrnrvLqgALBKJsHbtWgA6OzsJBoO89lqqEe6cOXNIS0ttvXe73WzcuJG77rprzOvcd999CIJAbW0tdrudPXv28OCDDzJ58uThOmMAd955Jy+++CL/8R//wS233MLhw4dZuXIlX//614dLUxgMBu6++25+//vfk5aWxoQJE3j88cfxer0jirWqVAAOg55OUoGC/ZjyJu+Xg72D7GrvA2B3ex+LKwuQZAWtRiSSSFKY7aDfGyIaS1Kc76Ii3YlOIyIIAtNKsuns89LYOYiclAgHo0QjMXR6LQqg04gY9VpC0QQWo46yHBe5Qzsld9W1sXRyCflZTiA1c7SlpQeX2TiiabdGFKnMz+BwxwCFmQ6KspxkOq34Q1EW1BRzsLETvcWELMnISSfTJxeSleWgtdPDqk37caU7yU2zoRXAaTfT2uulMj+Dy6ZX8JVfPA2AyajjCx9dzOpth3l100FuXFaLY6iw6vOrd7DvcAcAc7cf5rKFI3tjAnzpR48QTyR55e1dPPnbrzCrLJe2QT8XTSphT2sv/kiMuZX5o3bGXrJgMpcsOHq9I4WjFRQ4roj0EWaTgR98+YYz+E6rPswaW7qH/97Q0q0GYP8mLqgAbHBwkK9+9asjHjvy9d/+9rfhqvavvvoqyWRy3OXH8vJyHn/8cZ566imi0SjZ2dnceOON3HPPPWi1R99ycXExK1eu5L777uNzn/scaWlp3HPPPdxxxx0jrnfXXXehKAp/+ctfhlsRrVy5Uq2CrxrFaTIyOz8bQRBOu63QWBr6PIiCQFmmc8znGwf9GPVaovEk6WYj3/3L6/jDMa5fWMOl0ysodNrJmmUhFIjy/JbD1DX2oUVgRlkqb235nCpmVORhNur425rdtA/4cJgNGLRa9DoN9960hJZeD9PKcjHotCypKeKBZ97FDbyx+SCfuSbVgWJHWy87hwqo5jutI1oRffna+Qz4Q2Q4LCMKta4/0IrZaaXtUDuCIJCW5SQj20UiKXO4vpvBXi9RTSr/zDfgw5FmA1HEbjZgkxMkEwm0Oh2RUITd9Z3849WtQKo+2F3XL6DfE+RASyo4NRl0VJXmANDv9vPquj1MnlDAjJoSEkMNymPxBKIgcN2cKiBVz+zht1MJ+ZKksHRS8Zjfg70NXTz55g7mzqzGrBWYNaVsRBuhaCzBnkNtxBNJ5k2rQDvGzJhKdSKf+OjFtHf1YzLouf6q+Sc/QfWBcEEFYAUFBRw6dOikx33iE5/gE5/4xLjP33TTTdx0002n9JozZswY1R/yeIIgcPfdd3P33Xef0jVVH16RRJKtbT1oRZE5RTmnVJl+PAd7BnljfwsAK6aWjxmEaRSwmQ0IwPptDcOPbz3YwYTCTDz+CCU5Tp49cDQPLCHJw3/f19zDE2v3UJLtQjZoyC9IR1EUfvLsO/zo4xexq6WXus4B0h1WynNcTCjKwmoyEInFmXpMr8hMmxkBMBt0mI/Lv9JoRLKH6pMdS05IaHU6SmtK6O3oJxaXeP3NXYQDYRRZpqIkm27f0ZIOkqygEVO1xHbvrQdA1IiIWi1vbKrDoNcSiyfJdFqIxBKs3VHPQDCGPSONT141h6K8DLYfbOcnf3qOaCSG9jWRv953N9/4zFW8tGYnN105Z8T4jDptqriromAx6hjPo69upa3XQ1PnAH/81seob+/n/kdXc+mcKmpKc/jC//sLvYN+AK5YPJWvfuqKca91xO6DrTzx8iYWz6xi+UW1Jz1e9e8tPyed3//kC+d7GKqz7IIKwFSqD7oWt5+eQCpoKPCHKBoj8DhVRyq9Qyr5fCyHe9zDx2o0ApKkoBFF5lQX8pfVu5AVmF2Vj91uJFd2kG01Mav86K7N1bsa8QQieAIRqqryQCOQTMrICvR7g7wzlMD/xDt7+d5NS8hJt/O7b95IMiljPWb3ZkWWi88snIJeqxluj3QyEwoy6fznOpLxBMlYAkEUyMh2EA2G0Jv1XD5/Ijv3t/H2pv3YzCaunj2BuAL/WrVz+BoGixm90UhBtou7P7KIw219PPSvDTy9aifXLZmCKAho9TrqPQGe2nCAA/taSCaHAlBBQBDgkvmTuGT+6CWdnkE/7kE/oihwoKmHWeWj2ws9+comDjd2YLRaKMpxYbMY+dM/1xFPSDR09POLr1xPv+foTuvOXve496O7z8Pfnl9PVWkOf/vXu0RjCXYfbGNubYXaH1Kl+jekBmAqFaAIAp2hCFZJIdd25onz2TYzB3tFtBqB9JOUJDiZ6tx0IJVPVpE1dsJ7PJ5Er9ciCDBzUjGTctOpKcrimfX7GY7fJIWiDBu5dguzi3JGLAPOnFDA4c4BCjIcFFrM7OroR5JTBVEfeWM7iXgSnV7LsfN4Rr0OxkhvO1K24XjuQISDXQNU52fgsh5Nqm9s7yWZiGNLSxU1DnkDdLX0UFZdTCKe4N1397HnUDu+QR++QR9V+elMKM1lzeY6pOx0pEiU//rcCrR6HVXFWYiiyLOrdw4vKb6x8QDunj6KJhbjjsRxt/VRmp/OwWY7Jq3APbdcTJpj/MCmtc+byk2TUp0FxrJtbxPRUJhYJErEJPLCqu0UZbto6Bhg0O3n1Xd28927r+OJlzdiNOj43MfGb5n2t3+9y9qtB1m7pQ697mgQq1bWV6n+PakBmEoFJM02+iIx+iIxTDrtcBugaDKJXqNBHKctzfHSzEaum1KOAOO2sjlVgiBQkze6GfSxor4IPlkiGk0wYDZSkuuisdfNpgNt6PRactPtXDGtjLqOAdbsbmLj3lY+fdE0sodmVBZOKmZOVQFajcg3H3qVSOxo5f2oVsMdV86irr2PZdPKz/h9/G3dHgYDEXY09fDlq2YPP97Y3ks0GCERiSOIAlqtBleanfq9qdIwLbRjMKcCNq1OR13HAL98dBUdrd0ggIjA/voObl5xNCcm025GkRUQwKpPBTEhX5DM/Cz0Wg3XLZnCzIo8nn19C6u3HyYj00Vh5uhafuFonBml2RzuGMAXjnL75WMXVbz1mgU89NQauvq81Lf0Ut/Sy+/+61N8/WePISWSvLJ2F3/5n8+xYEblmOcfq7Ikh7VbD5KZZuNT1y3mqVc3sXh2FS77+7uTVqVSnR9qAKZScbTND4BuaIaoye2jOxjCptcxNSfzlK91qsHa2fCdjy3hgde30+MLoddr2N3eTyKWwGLUE4rGmV6STfugn2c2Hy1HUdc5OByAdXmDvFPfTrbdgsNpJtLrQ2/QkYgnuHVZLVubumkb9FOQ5SbDcWaBwJFA9PiZHEUQSSYSoIDeaCAaiRH0jiyMrMgyzuxMdHot79a109neM/QEyCj844X13LxiPtvr2mjt8bB45gTqGjsIBKN87dNXMugJsrG+g7ZAFEmSEASB/3tqNY1tqeT8FneIX3zhmhF1w9zeIPf8999w+0J85iNL+PpHF435vg40dfPEql1MnlyB4XArh5q7sVmMZGc4uGLBJNZuOcjVS2v56YMv0NDay10fu3hUf8pjfeTy2cyZWk6aw4LZZOCSBepON5Xq35kagKlUgCYcpDAnB7vFhGWoB6IvFgMgEE8MJYBfeEtBh7vdGHQaLptSwv4+NwlZISkrpNlM3HvTYrKcVna39A4fb9JrmVx4NJjc0txNrz9Mrz9MSUEGVqeFUDBKX4+X7Yfb6Qyl7sFbu5tYMPHMdv3evnQq9d1uqvLSRzx+y1VzeHPzQWKxBLFIBLvLirvnaI6UIzMNg9mIeWgGyGbQYnXZCQz6ho+xWYx09nu5/9HVKMATr2zi3tsuZc7U1IxdQ4+Hg90ezFYTkgJ7G7sQGAoINSIIwnD5iCMa2/twD3UJeOLljUyvKRmzsOpzb++hvddLe6+X/7j1Yvz+EBPLcrFZjHz5k5fz5U9ezo4DLaz8Z6q0zt+ff/eEARikmnmfK+t3NvDWu/u4Kz2HihK1EKtKda69933yKtW/AQFwGnRYj6ndVeq04zDoKXM5LsjgC+DFbYdpHfDz9oE2rp5STjIUo7N9gGnluWQNzXJNKcrisqmlLKkp4t5r55NhP/phW5yeKjCaTMrUtw8w0B/A5wtjsZvZ29JHJBxDSko4x8nvOhXuYIS2AR/u4MjGtzqNhjSjFlEEe4aDcCiKPcOJLd2JxenA4rQhajT4B7z0tXbT2dBONBhBq9dSVJbPpUum8X8/+SxajQZh6PsjSTLvbDu6kzoYjRONxAkFIiQSSf781Bp0Wg2iVoM1zc4Xr5uPyZAKuDfvbuRPj72Fy26hvCjVpiASS/DUq5vHfF/WoRw/nVaD0aClrXuQAU9wxDFFuenD7YkmVRagKAqSLI+61rnW2evh1w+/zt6GPr5z/zPnezgq1YeSOgOmUo3DaTLiNL23RPr33VDgodFp+PObOwj7QkhJmYFjyjeIosCSmrFrWE0vyqaj38eW+i5EQUDUiBgMOoJD1eAjoSjXz5lGWe6Zz8w8teEAoViC5j4v9147soZRbkEWTZsPIHsDWF1OrC4bkUCESCyEr9+DIIikmbQsmVNFQU4a//vYW0iyQk9nPzdcNguL2Yggitx17Tz+tXonfiXJ8qVHq9xPK83m7Z2NJEVIxuL4PQEunlaG1WJkztQyqodmtgKhKD/533+RlGQONnXx/770Eb7840fwByPUVo9u/bJ662H2t/djT7cjiiL/++Qampq7ee7NbTz6yy9iGdohmuGy8cD/dwe9Az4yXTbu/O5DePxhvv+l65lRU3LG9/S9ig51awCGNy2oVKpzSw3AVKoPsNqyHOq6B0kkJEKhGLFE6sN0d1M3tzH9lK5xzcwJzC7Po7Xfx7sH25lalMWBxi4au93UluexamcDj68JsWLuRK4aKlJ6OrIcFpr7vGQdl0Pm8Yc51NaHxWFHEEXM9lRj7lgkhtluRVAgL9vJxy+fyYyhmmMvrt5Ja9cAkiyzfn8rC6qL+NKPHmbAE+Djy+dx+w2LR7zGm5sO0d7WRzwSJR4KkZVm5xPXLsJ03IyeTitiNhnwByM4bGYy0mys/MldBCNRstNHJ+lv3t9CNBzFYreQbjPh8aeWRTUacXg27giX3YLLbmHtljp6BlLHvbvt0HkNwMqLsrnh0hls2HGIO2+6+LyNQ6X6MFMDMJXqfRSIxWnx+rHqdZS6Rn+Qn0inL4iiKBQ4x68ldllNCbOKc9ja0MnuuEQkGCEeT5KXdnr1x3KcVnKcVpBl1uxqYnJpNjMq87GbjWyvT1WjP9QxcEYB2G1LptDjC5F7XC2rfY3dhIMRDEY9QX8QOZkgqjcgakXs6Xa6GtrpM2pZ+epW1mzYyzc+dQU/+NL1PPziRrwJmctmVtLc0cfAUJ2ttzbs4+L5k/EFI+g1AvFEksqiTN7YXIfVbuFH936M4tw0ZFmmrrmH/Cwn9qHlQaNBz6+/8wkONHYxv7aCUDhKnzvAX59Zy6A3yL13Lqe0ILUsGYzEMJgMiIqCFI7SOOBDrxG5dcUC5tVWYB5nuXbGpBImlObi9ga5fOGUMY85lz5xzXxmVDiprh57dlSlUr2/1ABMpXoftfsC+GNx/LE4mRbTiByzE57nDbBxqP/b7EKZ0jFmYQD+tnYPDT0ejHotVruR2okF5NsszBtj2azfH+Yf6/agEUU+tXQqzmPqlK3b28wLGw4QS0rIskJ7n3fEuXqthmvnV5/iux5Jp9VQmG4f9fiUilwcDis9nX0IoojJbkCj1WA0Geht6SIRjaLRalAUhbWb60jGE6y4aDoGAW5eMpnpNSX0Dhwdp91m5nt/eoFoNEbIk5pp+s+7VvCrr30Eg16Ly5bKffvzcxtYt7MBl83ML792AyaDDkVReH1XE3uaulm1r5W9Ow4hJZPD135+1Q6+dvuVALy1o4HGPi+WNDtGSSIYjhGXZObNnEBFwfi7ZW0WE7/57ifP6B6qVKp/P2oAplK9j+wGPZ5oDL1Gg1F76v/dkse0C0qeIGm7occDQDSexAp4EwnaGruwWY3MnVAw4tgD7f24g1EADnUNMveYVkJv724iEk+i0YiAgqgRkY8ZQyIpvac8sLE4bWasGU6mluaiKAr+wQCNew4PPz9pTjWRUIyOxnaSiSRrtxxkz6F2PL4Q63cc5pGffx6Xw8rtNyymvXuQaTWl/PXlLSjHjHvAE2DpccFf29BOS08gTCAUxWTQ4QtF2Xoo1bTb6wkMB19ajYisKMyaXDp8fsFQ3TCTXsvHl9Tyr9W7qSrJPmHwpVKpVMdTAzCV6n1U4LCRbjah04in1Zy7OM1OQpaRFYXyDOe4x+W7rHR6guj1GgRBIBZLEJdk3tzdNCoAqy7IYGtjFxpRZMJxwdS86iJe2HAAo15LTJJxmQ1U5KWz6UAbCpB5zPJhx6CfSDxBZe7IshKnS1YUvG4fipCqnRZPJrE6bWi0GspqSsjMcSGKAr1tvcSJoTcZYKjJdSSW4Hv3P4XeZqOz30dVYQYLppURiCao7+gn6A9Qd6iNF1fvZF5tJfnZRzsJfPqaeTy7ZheTy/PIGlqqffiZtUSDYYxWMzlZLoIePxpJ4uu3X8HEsjzsx1TwR5IJDPrBbGDjtkPs3HWIQ4daeH1THbNrivnqzRe95yK8KpXq358agKlU7zOT7vT/m4mCwITMsdsPHevuy2fymze3AhCNxvAMhhA04pg5YFkOy6hdiJIsc6hrkBmV+Vw6vQJZUegc8JGbbh9adpzI4Y5BZg7NlrUN+Pi/VTtRFLh6RgXzjgvyTscbWw8T8ASRkqmm3GF/GLMjNVuVbdQzryKfJ1/ZgtZkoqIsH6vTikYU2L9hL9FYnN5BP2I0Ndu1v6mbB59YTVqWi6BOS08wSjgSJxyJ8862g9x89dH3PaEoi2/ffvnw14FQhDfe3Quk6ooFHA60+tQuxh313cM1xY7YU99JMinh8YfZF0jln4UjMURTgi37W/GHojiODdhUKpVqDGoAplJ9gCmKQjwuYzBoURQBUavlzounUnJMQc9IIklSkrGNkRz+yo4GtjR0oddq+PqKubQN+Nhc30ltSQ6TizL53xc309bno2vQz7XzawhE4hypW+oLx97T2LftayYzP5P+9l4URcGW7iAWiiEIAt3RBP94YRNGTaqSvnfAB7LEHdfM54Zppby9uY7LFk5hZ0MXr7yzl2gwRDAcY8s7e6icXoUz00V3cxeyJJMY2hkajMbHbBZuNRuZPaWMrXub0Oj1I5Z/48fkgR1pjn7Vgho6+rxkOq3MmVjAI/96B6PRQJcvwqya4uHEfpVKpToRNQBTqT7AFABJZnAwVQBUFAV6YzHKBIFNdW10ewLIFj2SorCgJHfUjspANFUPKp6U+N+XNhOSZCRFobnPS57DQltfKpl9d1MP186vobogg0unlBKKJVg6Tm2xU5VpN7PnYCvOrDQQIOQNEQ4EyS7IRKvTEoklcBVmEDrQQiKRZKCzF+2Vs5k8qZQZk1I5WVOqClk8rZSG1j4mVeZzz3//naa9DcypreTAUO5cV7+XTYc6eHlnAya9lq9cNRubyTA8DkEQ+NE9HyUUjvGVXz5NNJ4k02VlTk0x1yxJ7VZs7ujjO796CoCf3XszP/jsVcPnzzwmP0ylUqlOlRqAqVQXqGAszrvNqQKpi0rzMA+1SDrW0xvrEHUiYkxAlhVMBh2heJLmHjd/f2snTqeZaVNSgdLBfg/pFtOIJdGrZ1TgNBvY39xDS5cbq92M3qAjHomT5bKyoKaYuvY+rpw1AUgtjc4syyGRkEb0TzwTRfkZyJKMb8CDNc1ONBRCFEWMNgvuPi9SIonNYWbRrAms2XiAdKeVqrK8UdcpLciitCCL59/aRiQaIxyJ8eZbW4dn6tZuqSNiNoFGQySeZHdzD4vGCB4tZgPf/cwV1LX0cPGsCViHgjRZUXj0lS34hyr5/9/Ta1g0s4orFk99T+//fJNkmb8/t5GuB17n7tuXc8mi2vM9JJXqQ0UNwFQfeoqioJz8sHOu3RvEPzRD1eUPUTFGMn6vN4g/EEWrFTGb9GS5LMwuyiYUiiEKAl5vmEQojjPNgkGv4dF1u2lpH+RrNywkw2HBYTayfEYlTqOetm4PPneAWDhKcZYTQRD4xCW1I16vq9/HDx58iWg8yVdvvojZ72EWrM8XQqvXE3B70Rl0WF12ov4QPfXthMNRbA4zF5fl4k+3s6+1H2uGiz+9sImvfmTh8DVi8QSD3iDJpMSDT64ZfvzIciGkZgXNGhFvUkKSZDJs4+dnVRRmUlE4cjfjroYu2vwRdAY9Bq3I9v0tbN/fQn52GpPfQw7c+ba3roVte1oA+N+HX1YDMJXqHFMDMNWHWiAWZ7/bh5SWRUySuJBaEuc5LDQMeBAQyLGNPbLr51Txf6t2kUzKBJMxwpFUwJaXbudrH1lIny9EbXkuDR4fnmCE+pZ+guEY+1t7WTq1bPg6C2qK2dXeT9dgACmR4D9vvmjM12vpGiQcTQBQ19zzngKw8hwnjiwnerOBoCeAFI+TOKZFjnfQz+Cgnz89+hYZxamZr8OdA9z8jT/yhZuXMa+2gnv++++0dw9y+aIp6HUa4gkJrUZEq9VQO7EYg17LzVfPQ2vQ88ibO8hKtzOxMOu0xplmM2MwGSioKsHd3gOhKDqtBqf9xP9aZFnh8fX7aOr1cvWMCmaU5Z7+TXofFeRmYDLoiMQSVFeeWaN1lUp15tQATPWh5o3GkBRAoyGYkBhr32EsKeGOREkzGTEcl8D9fnIYDVwzqfyEx0TiSawGHeFEEq1GJM1pZmtbL5dOKKI8L53yvFSpiCnZGfQZgryt1+EwGZg6RjBw47xqtjV2MzE/HZNh7IKxM6uLmD+lFH8oypXza97T+9u4p4mOQ82AgCLJCKKIIIooisyRKUnXUPsid88Arqw0Qv4g/kCYv/xzHVnpdtq7BwF4e9th5i2YwmW1Feh1WoLhKPNqK4bLQfz19e10DvjpHPBzuKOfCadRs6skx8V/3bqMf762hZeH6pR97Kq5FOSksWHHYX7zyGtMnVjEd+++DvGYNkTeUJSDnanxbW3suuACsIw0O//5havQm5wsmD3pfA9HpfrQOfXCRCrVv6EsiwmLVoMYj+IYJ6fp0ICbJo+PgwPuczy6k3ti/X6CsQQCkJluxW4zYRnnfWQ5rdy6rJZblk3DNUaZhCyHBSmW4LfPvMvja3aPeQ2DXsusmiJmVReRdpIZoJMRNRo0Gg2KrGDLcGK2W7A4rBy7Hvyrv6/iro9dTCwUobupA/+AF1EUSOh1/OB3z6LV6dCbDLhyM2gdDLJhbzP/+csn+PGf/sVzb24bvs6RfDUBsBgNnK5sl5UrF04i3WklL8vFpQsnA7B68wGC4RgbdtTT0TPIM69vobvfC4DTYqQqLx2dRmRW+ejctQuBy2Fh1rQKtOfwFwuVSpWizoCpPtQMWi0TnDbqujvQ5uWMeYw4NIsiXmDFNRVFQR7KNJdkhZ4+PxfPKKMkzYGsKMPjjUsSm1q6aelys3lXMwBfvm4+1UWjl+LW7W0mKcms39fCwpoidjZ2c3FtOXZzKmjZur+V3z+5FoDuAR+fvmbeGY8/x2HBnu5C1Ij4BzxYnHZ8/UeDXIPZhKDV8vbOBnRGPfFIqkRFUXUZiCJt/R5kWaasqgJZEIiGonT1eYbP73P7h/8ei6eWTRXg7y+8y8yqIi4bCqIeee4d3li/l+sumcnHrpo77njLi7L5+y++MOKx6y+ZRU+/j2kTi/iP+x4jFInxyHPv8NRvv4LRoOeTS8bu+dg21FD8SH9JlUr14aMGYCrVSUzMTMMXjeE4g5mT91t2hp2e/lSgodGK9ATC9AYjlKbZmV2UCijbPAF6AmEG/OHh855Ys5sMhwVFgcIsB9cvqEEQBJZMLWXVzkZmT8jn50+tQwHe3dfCLz63HICmroHha7QMLf+dqYtmT+SZN7dhsJpx5aSj0WiIhkzEQhGMVjMmuxUBgfaOXhyZLhKxBAazkavnVbOnuZeLb7qYeDjCFYunsrexm5ZuNysWTeLFVTvod/vZe7Cde/77b3z/i9fjPDLjpyhs3FHPuo37mVSZT3aGg6de3YSiwJMvb+SKJdPoGvDxzKqdtHa7uefjFzGlYvzZq5qKfO68cSlFeRnDM25JScbjD5ObOfYy7u6DbXzv/qdQUPje569jwYwJ7+k+qlSqDyY1AFOpAFmrI5ocOwlfK4qkm09e2TySSLK5tRtBEJiUnc7+nkHMei0zC7Pfl9kzQRC4ac5Ent5URzSZJDvjaI2vYCwx/HeNRkAUBPJynTgNOtq6PPT7QsMB2aGOfmrLc8l0WslKt/O9T1zMmq2HkRUFQRAIH3OtS+dMZNXWw0RjCW5cVjtqTA0d/aQ7LMONr09k6+EOCqpKQJEZ6PYASaSkhCzLhP1BIsEwBp0GjcmEp2cQs82CWU5yxawJXD1vZGPwi2fZ2N/ay/62fj553UJeXL2DtVsPAvCrv7zCnGnl3HXVbN58Zw/NsThmk57t+5qZObmUhTMm8O72wyyYMYGfPvE2bm+QoCdVV+3x17cxpeLacd/DI8+t4+nXtuCym1m+dBprNh+gtrqE3EznuOd09AwOz1w+8fIm5tVWIJ5GmyqVSvXvQQ3AVB96A9EYcVcGB70BphqNWMeot3Uqmt0++oZqRcWTEp5IqlJ8nsNKvsN6olPPWJbNTDKexBuIEAxGsVqMlOa6mFmYPXxMOBDFbtCi1erpj0pEhj78dVoNiaSEw2Ig02Hh8Xf30Tbgx6jTsH9nIyarCZ1BRzKeZO2eJpZOLSPdYeGBb9+MrChoNSODhmdX7+Kfq3dhNur5xT3X4zpJjph3qHyE0aTHkWEnEowSDR4NVDVaDUvmT2JLXSdZ6Q5uXz6b6vK8MfOVmnvc/OmFTQB0uwMsmFzGP1/fSjgSY8+hdvYcaufOG5dy142LWTKjgidf2cz/Pr4Ku9XEw/d9jq/dfiXBWIIf/X3ViD6O/mCYH/7+Gb5793Xox8it8wZSQWwwHOMzH1nKlz95tMVRT7+XQy09zJlShumYLgSXzJ/MP1/fSu+Aj4a2Xn658hW+ddeKE94r1dnX0t6L2xtgxpSK8z0U1YeUGoCpPvRiQ61nFCCWTJ5xAJZlNaMR3AgCZNvMeCIxtKKIfYwWQGfLmn3NhKIJDDoNsYSE1x/hYCzJsolHy0N0egI8v24/AmB3WdAbdDjT7dy6eBJZdgtWox6TQYc0VDtLVhSKc1y09niQkkmy8jNZu6d5uGyFKAqIjJ7Ra+1J5V+Fo3EGfMFxAzBFUXh9dxPueILe1m70Bj3hQAhBENBotYgakaziPHz9Ht5auzvVtLsXfvj7dnIyHNz/3U/gsJoJhmPYhtr+tHUfzR1raOvlloun8egvv8gvV77M21vqAFj5z7X87fn1CIqCOBQ8hiIxEkkJm8WE2WTghoWTONwxgMukY3ddK3v3N9Mky9z89d/z5x9/lozjemx+9qaLyctyUVOej8V8dIk6HI3ztf/5B/5ghNlTyvjRPR8dfs5o0JGb6aR3INVlIBx5by2dVKevobmLz/7Hb0kmJb74mRXcesNF53tIqg8hNQBTfehlmwwMut1kpqWRZjrzPn5WvQ6LqEEQYGJWGsWuVEPrM2nGfarW7GsdVUTWZjXw3PZDzMjLZFpZLnMqC9jV2kssLuH1BFFIMHdiIZOOq4d1yeQS3trdxIyyXIKVcf717j4sdjPRcIx5U0pOOpabL58BKBRmu6g8Qa2t9kE/6w+2k4wnSIQjJGMJBFFAZzBgMOoxWoxEAiEigdDwOYIgoCgKPQM+/uOnj1GUl87m3Y189PLZ3HjlHP748CsIRiM6g45cXaoPpigKfP0zV2GzGnlnRz1eb5BEYqi3Y1Ji0cwJXDyvBpvl6PKy2aDDbNSxZHol3gEPe4baGUXjSZ5+bTNfuPXSkffaYuTjy0dvRIjFEwRDUQD6j9kMcMR3P38tP/rDswiCwLc+e/VJ763q7OrudZNMpnqEtnf2n+fRqD6s1ABM9aHnjyeRRc17roa/r3OAw0O78LIdVmpPs+DnmRBEAeWYqu+FuU6cDjOdXW5W9TYyrSwXp9nI5y+bxfaGLp57dx8CAjWFGaOu9cTq3fR4Ahxq6cHmSi2ZBrwh8jPsLJ1WNur44+VmOPj6rctOepzLYsSs1xIGyiaXEwxFiYZSs0BGUaGrI/WBaNDrWDpnIr5AmM27G4fP7x3w0TeYmj16e9tBaieVEAzHIBzDbjVx+3XX0tXn4Vs/fxyAn3/rFopLcln51Bp0Wi3RcITMnDTmL5vO3GMKkA74Qjy6ehcA/d4Q37zlUg40dNLY1gdA6WnUDnPZLdx759Vs39/M9ZfOHPW81WzkF9+69ZSvpzq7Fs6p4ZMfXUb/oJc7b7n85CeoVO8DNQBTfah1B0K0BsNgMNIbieGKRE8p4X4smTYTAiAIkDFGna33Q2a6lQF3EElSsNuM2KxGdu9tw+sNUZDjomPQj8mg46ltB/EHozhcqSW0uDQ63HQP5TMlkjK5LhuyrBCPxukc8PPX17fz+RXjl2g4HTaTga8sn8OL7+zln1vqSM/PwOq04h/00Tfgw2I2EArHiMUTLJ09kadf2wykanjlZDrpd/uZWlXEofY+NDYbq3Y3cfnCybR0DvD5my+hMDedH/3hWdy+1AzaX59Zy5c/eTmdHf3EBBFTjhOb1Uh/OEo4nsBq0CMrCk+u3TM8xrShdkW///7ttHUPEonGqSo9vUKqF82t5qK51Sc/8Dzq6PPT0r+HK5dMH7GE+u9OFEU+f/vy8z0M1YecGoCpPtRiQ8sQRxi0Z/5fojjdwW3zJyEIAg7Tufkw6+7yoDfqyHCZycqw4Q1EEHVaXBl2wpLM2/tbmTMhn4QkYzTqyLKayXdZmVaSPepa5Xlp1LX147IauXNZLbuauvnbGzsA8A5tLjhbrEY9DU1d6IwG+lp6kJKppUEpmWT+zEkcqGsFoM8T4Iu3XsY/X9tCbXUx/3hhPUlJprmzn+ppExj0h9lX38nc8hx+873bAOjyBGg/puSGPxLnz0+uYc3mA+SWF1KiKJSXZpFlNQ83OPcGIxxoTc106USBT102Y/j8otz0cd9HXWMn2ekOjEY9W/c2UV2WR1a6/azeq/eLLxBm5fM7SEoyh1p6+e7nrzvfQ/rQSEoSzW29JI77+aP6cFEDMNWHWoHDSjQRx+P1MiEn64wT8I9wms88hwwgKctsb+8lmpSYWZCFdZyWQEeEI3G83hChUIx+d4h4LIFOp0FRUrsIK3JclGc5merLJJ6UWDKhEOM4OWmfu3ouuxu7KMxwsH5PM0+/sZ2IJJOZbueTl0x/T+9rLAUZdva39KLRiiQTMsWVBej0WirKc9ld145oMPDwK9u452MmvvbpK4fPe/bNrVy9tJaZU8r42s+fwDPgJVqQjiTJ/PqRVxmIJskpzUfQaAgHI7QNhtAOlXnw9Xvo0GlpPtzBfV+4Zrg8iJyUCHoDmO0WIv4wulOoDP/Yixv4xwvrsVtNlBdmsbOulTSHhb/ed/cpnX++ybKCMrQj9kIKBP7+9CrWbd7HdVfMZ8Vlc873cN4X3//Z33ln0z4Kcl089Kv31tJL9cGlBmCqD7WkLKd2QQoiugugFlOHN0irJwDAwT4PswpHz1Qdz+owk4gnqa7MHaovpbBjZws2i5F5EwoAuKiq6KTX+c7K14jGk/gH/UjHfCALiSQFmY4ze0Mn0OMNE4tEiUdiZBfnYXLaCHlD/PUfb2G229CTSr7vHjiaxH7R3Gq6A1Fe3dNCUIH/7wvXsr+hgzlTK3jm9S2s3ngAUaNh+rxJTK4pZdv2ekDixqvmsnB6BS+/vZvmg6luANHo0cbfGS4bM4sz2bKnkWULJvPgM++Q7rRy9aLJmAxjB+W7D7YB4A9GGPSm6oYFQlEkSfpABGAuh4VPXT2NiGTg2ktG56mdD22d/Tz491cBONzQyaVLajGe5JeQD6KdexsA6Oj2EApHsVnfnzI1qgubGoCpPtS6AiGCiSQYjLhjcexn6edgUpap7/di1esodI0sXRBJJIebex+/Q9Jh1CMKArKi4DqFnJy8DDttPR5KCtOxWAzE4kk6uz2YzAYqCk89abyhz0M0fmQZ8GjwddGMSi6fN/GUr3M65kwtZefhDsw2C9FwlJY6H/FwaqkzEgyiKAo2s56qY1omSZLMOwdaEQSBVTub+OiSqWSm2fn8D/6Cx5/K+ZIlCUMkwlevuYKDU0rR6zSU5WcwvaqQqVVFPPXqZmrK8yjKG7kR4Z5PXUG/J8jX7/8nR/Y1hKJxbr967Nw3aWiHJMDHls+lvqWX2VNKP1ABQ1l+GtXV1ZjN762v59lis6bKgYQjMdJcNnTvISXgQvaF21fwxL/epqYiB7v1wrj3qnPv3/Nft0p1imx6Hd0AioL5LP6w398zyKGhHZFmvZb0Y0od7O8bJCZJdAdCzMofOcPlMhu5qrqEhCTjPIU8MqNeh8NpwesLo9d7iQVjdHR70GhF+gf9KIrC+sZOQrEE88vyEIBNhzsx6rUsnFg4vAS3vqETnU5DIiFhdVohmUSv1dDQ0c8sfxEleePnQZ2pjs4BHBlOkrEIgiCCIhMNhbE4LIR8IWLhMJFAkG//8kluu34R82srKMxNH25VFA2FkWWF3z7y2nDwBZCVbueWFfP5yo8fAeC/vnj98HMFOWl84zNXjRhHNJ7AOLT0LApCahfF0NKc5QQ13C5bMJmDjV0U5qYzb1oFy+ZNOlu35kPL5bDyp/u+xI49DSyaOwmN5vzPSr8frrtyHpctmUpdXd35HorqPFIDMNWHWqbFjChJNDU2Ys10DT/eFwrT4vXjMhqpSHOMqI5+Ko7kHAmAZujv/licTn+Q5NDMSUKWWXuojSkFWaRZjuaOWU4jD603EEYQRWQFDjf2UpjrRFEUkgmJYCTO3s4BdrT2ArCzoQu3O4hhKLBzWoxMGZpdKnDZ8FXmEo3EaG3uwzO0pOYGHnz2XapLc7hxWS0F2al7FE8kefLNHciKws2XzcQwRpX4k9l5uJ2ell7SctMRBYHymkIMxnL6evxEwlH623uIR2JIsszDz67jb/96l7/8z118dvkcXly3hztuWEBTex8bdtan7vVQrbC+QT9PvbJ5uHzE2i0HuXhuNSajHutxOXr/968NrN52mEXTyvjiTUtId1r43HXz+d2jq4jH43R19o47/isWT2XpnGr0Oi1uXxCdTvuBWHq80FWU5lFROn7/TZXq34UagKk+9ExaDaI8Mgm5OxAiIcn0hcIUO23oNSf+YJVkmR0dfcgKzCjIojo7DZtBh1mnG57Javb4CMZTfRXzbRbermvDH4nTH4xw48yqMxq7IisImqFEcknGF0kcrQ2mFYkP7S6EVKX/ZFLCQCowtB0zuzM5J43HntuAwWICYWR9sUA4xpb9rSSSEt+8LVWIdM22el7dcACADKeVqxee/uzPtJoSmtv78Q/60Oq0bH+7C51RTzKeQKPRYrJb0YgaotEoiiQjyzJPrt5JZUEmcQl2HeygIMuFyWQgEomhNehJRFP1xLQaEcsxM4if/vaD2Cwmfv/9T5GZdnSX4sa9qXywjfta+OJNSwAQUQgHUgFoY9vIIp11jZ3otBo8/jDpTitlhVk88PgqXli9g6LcdO7/7icxv4+dD1Qq1b8PNQBTqcaQZTETivtwmgynlJzf6QvSPFTxPN1ipCLDSZFrZDkCu0FPMJ7AYdBT4nJg0mnxR+IjZr9OlxyN448mkBUZk8VAPJbAlW5HSkpkZdho6xhEIyvYLAbi3jA5dgsXzaggy2GhJMsJwL/W7+fNHQ1Eo3ESCQm9SY8tzUaGxcStl9by0HMb6HUHKD+mEGlOuo0jk4I5Z1h2wWLQY7Jb0KCg1QiY7Tlo9ToGO/uQJZmwL4CgEVONqgURs91Cb1Jm0ytbUBTo6PMgiiJ6mw29xQKiSEFxNtkuK9deMoPWrgEEBDq6B1GUVLJ8e497RAD2kYun8frGOi6eNWH4sblTy1k8q4q2rkE+89Elw4+/tWEf9//11eGvRVHg/u98kne2pZp+t3UP0tY5wMRydfZGpVKdnBqAqVTHkBWFgVAEm0HHgqJT/yB1mY3oNCJJSabV7afQacNw3HJUqctBns2Kfiiv5SMzqvCEomTaTly0NRRPoBGEMctHZKTbCXUPohU0xGMJivLSuWJGBfU9bgocFh55PVXHa+7EQu796GKaej38Y91e9FoNd106nXSbmYPtqVkee7qdRCyBwaDjtstnUluei1Gv46dfvhaPP0xuxtGdkNMmFPCTL16DokDpGeaHBaNxpISE3+NDq9ej0WuwWM3EIzFMdit6g4FEPEE0EMThslI6rZJoKEIsEkVvNJKIxdEbDQiCQDyRpLIgnZ/c8xFEUeTJVzbRNPS+jl0WPD6n6OpFk7l60eQRj+l0Wr5z97WjxtvWNTjia1lW6B3wseLiGfzjhXepKc+nrOj9736gUqn+PagBmEp1jBaPn+5gCFGAmXnZJ116PMJm0FOZ4eRAr5vBcJQWt4+qrLRRxx0blOk0IlnjNKw+oi8YZm1DBxpR4PKq4lF1wWRBGKpurxANx9Aq8Pa+Vvp8IbRlOWhEAUlWyB5qLVTf7SYhySQkmdZ+H+k2M9fMq+b5DQfwByN4ZQVEkTW7GplXnSpdYdTrRgRfR5ScoEDpqXBZjVgdVgwmI/Z0GyjQsq8Bi9OGzpCaFZSSSWRZJugP0Xuwhf4BD/G4hEUDrrx0TA4rQV+QtoP9NCXjqdkyYOakUv752haAVAPt5m4AotHEGY/3o1fMpt8TQJZlJEkmO8PBgumVaDQiH7tq7r9twrhKpXp/qAGYSjUkIctISipBXlGGN8KdsiybmYN9HgQgw3J2WhEFY4lU7pasEEkkRwVgtSVZrNrdRCQcI5mQaIoO4khLlb3Y1d7PxXMm0NXlodcTJBiJMas8l6ZeD0a9luqCVBmGSSXZTCrJ5p5fPI0sCmjQEB+jMOe7dW30+UJcOrUM+wlKZPT0e3lh9Q4mTyhkwfTKcY8ryc8kGd2FyW4m5AviG/AharU4MlyIoohJr8FLkozyHAb7vXR2DQyfe9kVc6jv95PnsPLKrsMAuNJSQWJHjxtZlnnsV1+ku9/Lrx9+jdxMJ1ctmcbcaeWnduPH4LCZ+c+7Voz5nBp8qVSq06UGYCoVIBmM7HP70QoCBXYrDqNh1BLiyWRZzayoKUUQhBOeqygKcUlGrxFPuruyJM1OLCmh14hkHlcvSFEU1h5oQ6vToihDyec6DYKQCgjMZj0tngANQ7sB02wmVsyr5gtXzBrztWZOLuHtHQ1kOix86dr5AHj8YVq63WSk2Xh9d1PqNTQi184ef9PAr/76KvvrO3hh1Q7+8tPPjduap6Y0B3uanWAoQiKWSM12SRJdDW3ces0Cli2dxtrDbfT1ejl8oBVRIyJLMpMmFHKoL5Vv54/GmVBZRHuvh+sunUljWy9f/59/kJRkvnnn1TS293JoaPYr3aUWu1SpVBcONQBTqQBJn1rySipKauei8cx6ORp1WqLJJLGkNG4QtrmthzZPgCKnjXklJ27wLAoC1dmjlzIhla+mKAqiKGJzmFPthzQidpMBg0WPAvi8R+tjFWe7xrzOEQe7BjHbzXgjcUwGHbF4ku/96UW8wQgLppVhNeoIRhPkpdlOeJ0juwB1Og063fiB6N76TrpauwEBRZKREsnhace2Ph/bdjXRsK+RrQdaMdltKMkk0yvzCOmNRMIxTCY9SyYVM/OaeWzf30z/oJ/OXg9JKTWL+eo7u8lw2dBqNZiNeiaWqcnxKpXqwqEGYCoVoI2EwGzBpNPiGqcAaiwpEYjFcZoMw3W+jjcYjnBwwIMowOSsDGxjVEXv8qVKHHT6g+9pzBpRRCOKxOMJZFlBSkpYbCa0Ji0KkO+w4JBAlymzdGopU0pzhs/t9QQx6rU4jtmBOXNCPmt2NVFdlInZoCMQjuELRQFwe0N86eaLcAfDVJ4k9+ubn72atzfXUVWWSyia4I3NO5gzqXhUsv6G3U0osoLeoEUw6ojHosPP7TjYxr6WPmZU5JBmM9E36AXg3e2HqZ4+kagko5dl5lbmc6Cpmx//8TlkWeHKxVO5/frF7KxrZc+hVKugOz66lGuWTcfwHvt8qlQq1dmkBmAqFSAmE1Sn2cdtyaIoCnt6+4lLMg6jnslZGWMe54+l+gvKCgTjiTEDsCm5GTQO+CgbI7H9tAmpml6RUBSrzYRerx1ORDfotCyeU8VPH3+bf6zaxc6GLjLsFoqznfztrZ0YdBr+8+NLyR5qlXTj4ilcPXciRp0WQRCwW4x85WNL2NvQxcWzJ/DQWzsIxRJcO2sCsyvGn02ymo2suDjVvPsbv36WnkE/a7Yd5oHv3DziOJ8vgMlmIRqKoMQTODJcZJj19AUiiNrUfXtnez1m/dFZNK1BT2d7H1q9Dr3TSiSe4MGXNyEP1Szrc/v5ym2Xk5/jGg7A+tw+dh5oZWJZLqFIjJff3kV1eT6LZ51+7bV4IskLq3dgt5q4fOGU0z7/dHn8IRxWM6J4eoWAVSrVhU8NwFSqIcoJsu5lBRJDS1txSR73uFybheBQ2YjMYxLxFUUhnEhi1GqozHRRmTl6OXAgFCEQjVPksg1Xzz+ZZDyJVq/DaFHQajUYjVq0ooDVoKW328ugyz6cUL+/NZULltVuASCWkOgaDAwHYIP+MNvrO5lYmEnRUI0wg16LQa8llpQJxVI7CLu9pz5zd6SR9VgNrQfcfqLBEHqjIbWUKslIVislhTm0N3QRj8aQE3Fmzp7Cxl0NaHQ6NIJAyB9AbzJSPLmUZFJGFjVkl+YT8vjZsb+Fp1/bwseumsu9dy7nqde28tKaXby0ZheQKkmRSEo8v2o7E0o+R/ZpBsFPvbKJx17aCIDDah6R1L+rrpVX1u5i4cwqls5+7/0z//jom7z89i7mTavgB1++4T1fT6VSXVjUAEylAiSdnt2DPgy+IFOzM9AdV35CIwpUZ6bhjkTJsVrGvY5Rq2VK9ujZseah8hYmrZba3MzhHoxHBGJx1tS3p/K2ojFq80+tntTEnDS21XciakQy021kOK3kZdjYf7ATvSIwsTCT6xbUsPFAK31D+WAum5lslw2HxcjUY5Yl//jCRno9QV7TafjJZ64A4P7H1iBJMl0DPq6aV02fL8TFk4pPaWwAE/PTaGntoiqvaNRzU6sKqW/pRmc0YHXaiAQjhINR7Gl2CspyiYYiuPsMzJ9WzsLplVQUZrB9TxN/fmYdRrMRfyyOzWzgCyvmsX5vM8+/9C4AOw61M6kinz89tXa4qfYRiaFg1GjQYxwjKDwZ3TG12PTH5bfd9+cX8QcjbNhZz6xJpVhOoZn6iezY3wLA9v3N7+k6p0KWFf7+/Lv0Dvj49EeWjLtxQqVSnT1qAKZSAZLBhAJEkxKBeII00+jkcZfJiMt0ZlXrA/HU0mQkmUSSZcTjAjxZVjgSK0jHRw0nYLIYKShMJ81lQVGg3xOktX2ASDjGpJoCNjd3cdmMCi6eVsYDL22mc8CH2aDjk5fUDjeg9oejvLuvlWAkNcaEJJOU5VQ+nNXEgC9EptPKgqrC037fz725lWgswQurtnPXTReNKNfQ2jGA1WknLTcDjUZDNBwjEgzTvL+ZrIIM7GkOPAMB/vj0OzhtJn725eu4csk0iopz2HKog0WTSgCoKc7CbNDx7s56ErE4NTWl7DncTjyWwOywIYoCF8+s5K31+4gNtYJypTt5ft1ePnX13DHHLcsKL20/zEAgwjWzKsm0p4LuG6+Yg9NmxmEzM72mhA27m3jk5c1MKMoiw2XDH4zgtJlHBWdn4rMfu4h/vbmdZfNq3vO1TmbzngaefGUTkOpF/s3Pjl1uQ6VSnT1qAKZSQSqR6ojTrP91KkpdDjp8AVwm46jZNQCHycCi0jx80TgVGc5Tvu7hbjeReAK3J4zTZUavT+VvTZ9WgiAI7GnvJxiMsbi6iMr8DA6297OzoYtMp4V2b4g0qwmfN8i+ll5EQaAiL535NUXYhjYi/OCuq6hr7qEvGOW3z63nI4smU5h56st2i2ZW8daGfcyrrRhVK8sXjhL0+NEZ9egNQx0qFUAQCHjDiJEo0VAYncGANxDh7p8+gRSNEvAFWDZ/EhWXzxy+VprVyI3LpiMLApfNqGDVjnr0Bh3JWIy0DBcfvWIOE0tz+c0jr6HX6wjFJV7bWMeKxZNJs4+e0Wzt97K1MVW+4t26dm6Ym1pS1GhErlg8dfi4l9fvIxCOsf1gO9/+1KUMuH1MriwcMVN2pubXVjK/dvw6amdTpsuOKArIskJW+lnITVSpVCelBmCqDz1FUVCEo8HB2U54bnH72N7eR6bVxMTMsUtKJCSZA71ufNEYdqOefMep1axKSBJGow7RpCMcjNIxGERRFAw6DekZdvoGg7S2DfDiu/tZODRjBNDpCdLrD9PrC6EdWpZTFIWGrkE6+n3MmlCAKMAv/7GKzgE/9qElqZc3H+TzK8aeNTre6xvraOoPcMPy+Xz2+oWjnp87rYK2Hg9yIonBYSUcCCNqNanWQrEEbf0BEvE4Rp2WJAKCKBIY2jm6etN+/uMzVyEIAm5fkC/98GF8wQjpTis1+WlUFGSSXZqPoigEvUF2He7gyvmTWDp7Im9sPsg/Xt1KdUk2TuvYBXNdZgOKJIEoYhznn8Or63ZTd6gdo81CQZaTCSXZTJ1QwPodh1n5z7e5YtEUZkwqPaV7db5VFGfzm+/eRr/Hz9ypFed7OB8KBxs6eOSZ9Xzioybmznz/ZzlVFx61fLPqQ683EkMxjL+06I/GqB/04IvGTnqtdm+ADm9gxGPNbj+SotATCBOOj90KxxuJ4Q5HkWSFVo//lMcei8QQAKvVRFFhOmWVOVisBgYHA+QajeTZLfh84VSPyn4vjjQbzjQb6Q4LKAqyJNPnDbJkasnwJoRIPMEvnlzLM+v3pwIkSeZITFqeN3YAOZZn1uzC7Q+zZnsDgfDoe+ePJdDo9IQDEbpbutFotcOFaUUBYrE4siRzy5WzsA7lUxnNJkSNiCsrHYXUrsSuXi++YASAQW+Q+x95jUOH2/n0pbUI0QTpNhMzJ6aWT7VaDcsXTuLh//dJvv/Zq4Z3jB7P4wuyc90u9ryzi87W7jGPeWvDPqLhMN6+AW66aCpGvY5oLMHP/vwi72w7xE8eeOGU79WFoKI4m/m1leqOy3PkGz9cyY59bXzrxw+f76GozpMLagastbWVlStXsnv3burr6ykrK+Oll14accxtt93Gli1bRp37yiuvUF5+dEdSIBDgpz/9KW+99RaJRILFixfzX//1X2RljUxu3rFjBz/72c+oq6sjPT2dW265hbvuumtEhXJFUXjooYd47LHHcLvdVFdX853vfIfa2tqzewNU50VCHrmrUX/cUtnhQS8xScIbjTE7P4fxtHkCbBr6sF5YKgzPYlVmOAnG4mRazVjGqUWVZjaQYzPji8YpT3cCEI6n2hCNdU5/KEKL10e200J92wA2uwmjUYckyRQUZSLLMtXFWbgcQTzeIKFInMqCDLa39AJQlu1i+6EOQkN1vhw2C2UZDg52DiAlJdqBDrefzLx05FiCL18zD5fDQpYz9Z56B/38/O9vISsK3/zkpeSNsSw5o6qQdTsbmFCUhdU0uhxHZoYdnUGHIEAiGkGjAZ1BTzQc56LaMl54y43FZuHRN7bh6XWj1enQGXSUTijmjmsX8P3fPM3OA61ce/F0dAYdiaFdmoG4xJ+fXM2tK+bzx2/dNOb91p9kibA4L5PLF06mrWuAKxdPG/OYKxZN5XBLD8W56bicFlb+822m15TgsJkZ9AbJcKqV91Xjk4d+7siKjKIoJ+2Kofr3c0EFYPX19axdu5Zp06Yhy/K4ZQFmzJjBf/7nf454rKCgYMTXX/va12hoaOCHP/whBoOB3/zmN9x1110888wzaLWpt93a2sqdd97JwoUL+drXvsahQ4f45S9/iUaj4c477xy+1kMPPcTvfvc77r33Xqqqqnj00Ue54447eP755yksPP3EZNWFJcdsxOPxYnU4KHE5MOtGBjxmnZaYJI16/HjH/vw89kdpgdNGgfPE1eM1osiS8qP/hgdDEdY0dKAoCkvLC8iyjaxP1hMMEZdkZtWWEBMFwqEoMmAw6ZEkmXAwykt7GgFwZtjISsqUZrvY3tKLAGQ7LXxk0SSe23AAm8nAJVNLmZifzosb6/AGo/R4Auh0WmwOCxU5LqqKs4df+5lNdeyua6N7IDVTt2FPEzdeMn3Ue7r7Iwu56ZLpOG2mMWearplXzZrt9SQSScIBHTqjnmgojtmkx5jmICM3A2u6g67GDgCSiQQZLguzJ5eCJLHzQCsAr6/fiywrVM2qRhRFulu6gFPfzPDqut28tGYnN14xh4uHEt5FUeCrn7rihOddvmgKl8yfhEYj8o2f/oODTd28tGYnf/jB7dQ1djHjmCVflep4//XVj/P3f77Fx6+/SA2+PqQuqABs2bJlXHrppQB8+9vfZt++fWMeZ7fbTzj7tHPnTt59911WrlzJokWLACgtLWX58uW88cYbLF++HICVK1ficrm4//770ev1zJ8/H7fbzQMPPMBtt92GXq8nFovx4IMPcscdd/DpT38agJkzZ3LllVeycuVKfvjDH5619686P7yxBJLRhH9oxul4EzPTCMUT485eHVHotCGWCAgC5J1iDtd4fNE48tAvIN5obFQAlmM1E0kmaexwo9FqSMuwE43ECQajhHwRVsypYnt3qnl154CP3m4vRr2Oz106HVEUyU+zsa+ph2AgghxPEozEWfnWTtCIyIJCXm4akUSSNKuJjy+cNPy6b+5pYldLLzFSy3l6rciMiWP/EiIIAunO0Qnu0XiS3z23nobWXvzeAIlIBK1eRyKZaquEKLDtUAc+bxC/N0BaTgZOawgNCrLNxuZDHexrProsqNdpcBgNHN5xkILKQuZNLSfNqONjy+ed8B7vbe5h9a5GNq7biT8Y4anXNg8HYKfqyMYC+1CfTovJQE6Gk/xx2kepVEcsmltDul2gurr6fA9FdZ5cUDlg4+VjnK5169Zht9tZuPBo4m9ZWRnV1dWsW7duxHGXXHIJev3R5ZHly5fj9/vZuXMnkFqiDAaDXHXVVcPH6PV6LrvsshHXUn1w9UViIAgoQFdgdJFRURCwGfSjancdT1YUch2W4eArlpTY2z1wwpyuvR39vLSnkW7fyNctdtmoyHBSlu6gNG308l6mxcyc/By27mwiHk/i9YQQNQJWmwmz3cxAPM4108qZlJPGQH/q9bOdVgozHOQP9XJs6h4EIBxL0DXoHw74BEHk5kWTWFpTzB3LpmE8ZrnuSH9Lg8lA9aRiMpxWVm05RCyePOG9OVZbn5fWPi/RaAxR1KA3mRBEDYlYDAGFnJIctHoNrux0JEmmv7MfdHqCkfjwMmNehpOL5lRjNOi4ZcVC5s6bzIyLZ5FVkE1HKMaTr24+af2sx9fs4nDHAFqrhXSnleVLx15qPF4yKfHcm9vYuKt++LH/vGsF3/7cNfz6u58ctdvzbHpj/V5+ufJl2oe+dyqV6oPrgpoBO1VbtmyhtrYWSZKYNm0aX/3qV5k9e/bw801NTZSWlo6a1i0rK6OpqQmAcDhMd3c3ZWVlo44RBIGmpibmzp07fPzxx5WXl/PII48QjUYxGs+sNpTqwpBm0NETjoIgkGMduxXRyfijMdbUdyArCksrCkgzG9nbPUDToA8Ah9GA87gek+FYgjVD7XIC0Ti3zDn6m7BGFJlRcPJirAlJpqfTjcVqJBpLotVqsFj09PlClNZWUprhpNBh49HVO1m1s4GK/HTyhnY0Xj13IuFogtx0O9v3t9DR3EN6poPls6t4futhPKEorf0+Pnvp0eXFJTXFhKJxDrb3s3XrYQDaejyUFWRwyexTa+1TlOWkONtJsywz2DWAKIqIGi2OdDPRUJTetl4y8zOIBsOpJtyykkriF3XU5jiYOqmMi2dNGM7jau7o5++/epLqOZMQBAG/J4AkyWzf13zCMg6FmU58oV6qq4v5zi0Xjxtgb9/XTDASY/HMKkRR4IlXNvHYixsQBHj4vrvJTLNjMupZchaq35/IoDfIbx95DUUBty/E/3zjY+/r66lUqvfXBy4Amz17Ntdddx0lJSX09fWxcuVKPvOZz/D3v/+d6dNTHxR+vx+bbXTOjcPhGF7WDARSO9Xs9pEVn/V6PSaTCZ/PN3wtvV6PwTDyw9Nut6MoCj6f74wDsFgshiSlSgBEIpERf6rOHacI7oEeSoqK0Mky4XD4tK/R7gkSG/petg96MWJHVFJJtgKws72HbKuJkmMSs5OSjNWgIxhL4DTqxnzdgXAUURBIG6dBuN1pwesO4veFEQQwW4xoRWgaDPDb4GaumFJM54CfAV/q2r/65zvYTQbuunIG2XYjX74m9YvL/zz8FolYgt6OASbfuJB1DZ0A9PtDI8bVPhhg4+FO/J6jM3aiIJDlMJ3Wffvyitms3dvCY68G0Gg0BH0BAoNujAYdIUUCUSAUCCFLMo50F8mkBBr46BWzyEm3k0zESSZShWPNBg1GUeDwzkMsmj2RcCJGYU4al8yrJhwOI8ky67fXk+a0Mrkyf3gMn7hoMh0DReS4rETH+X+3ZU8TP1/5KgAty3vJSrPz2IsbAHDaLYjCmf17OROCIuGyW3D7QuRm2t/z66o/c84v9f6fP+fi3o/XV/hYH7gA7J577hnx9UUXXcSKFSv405/+xEMPPXSeRnVmxspxa2lpOfcDUSECbW1tZ3x+EgGjmKqmH+nroq6vEwXIRotP1NIfhv5wjGB3B5pjMs1qDBDWgT3uo67ON+KaQbT0alJ1qnKlMGakUa9r0ooYcpyEIzEcTgu93V7CoSgmi5GBQIS3dtUzOV2PRa8hmpCIxpNE40lWb91Ldc7RYHBupQvkBKU5dnYerKfACHE0lLl01NXVDR+3ti2EAthcVpKShLvHw6yKdOKBfurq+k/rnsVCMdJz0xj8/9k77zi56nL/v0+ZXrf3nt1seoN0AiSEplQRiYgoRbxXRFS8evXqxcu9CnZE/YEIKCAoCEgNLQkJNb233WR7L9P7nPL7YyaTLLtpECDIvF8vXmRmvuec7zmzc+Yzz/d5Pk+fh2QylX9nz3fj7ffgG/RlxoX9QfLznYwrceEd6MY70D1qX//2mVkEwwkKc20sqE1FEiP+AXb7B1ixvoXXNrYhANddPIvK4pFLuq2ew89x557OzL/3t3bR1n4wSrZoWjltLfuP65zfL1+5eAZDvggVxa4R78t7YcX6Fna3DnL23GEaKvNO0AyzHC/Ze/5Hxwd57WfNmnXUMR87AfZurFYrp59+Oi+99FLmOafTSV9f36ixfr8flyt18z0QITsQCTtAIpEgGo1mxjmdThKJBPF4fEQULBAIIAhCZtx7YfLkySMiYG1tbVRXV2OxjG0OmeWD4URce0XTaAQMY+Qx7vcE2T3kx2E0MLFqfGapS9d1ND3VZ3Is2nwh+gd8ABSWllHhGp3Q/sA7r1JVU4jZakIQwOGyUehMncNgIEp9ZTF5uQ5+NH0yg74w97+yBVkSWXzqFJw2E8OxBGZJZMIEAxMagzy9rYVwXCKsy4R7vVyzdMnB8xjw4W1uyjxORBMIwOzpjUyoLz3ua7ZnzXaiwQiuPCdKLEk46We4Z4jSujI8fR6ikRhqIkksHOGG68+lsXpsC5CnXtnIntY+ln1qDtVl+aiaxiubWkgoKufOGsebO1PCUAcKikqYMOHYe1nW1tWjCCbCkThXX7wARVVJaKtx2C1cfsEZmIwfz1toUlH54d0rAdi4d4CLzln4Ec/ok0f2nv/RcbJc+4/n3eMo1NbW8vbbb4/yVmltbaWhoQFICbeSkpJMjtehY3Rdz+R8Hfh/a2srjY0HczxaWlooLS19X/lf717WBLBYLMcUusxy4nmv1z6STLKrbyiVhG+z8srONoySxGdmjcdhNjLFaqWuMBeTLCGlBZqu6+wa9OCLxSl12KjJGS3krdFk2sBUx2Exjzm3siI3/X0+XC4roVCMHIeVi2c3UpbnpNcX5MlNzewdDuCJFrBtd8rOYWJVIUV5btr8AfrCqRD8jJJCHnh1C+7C1JK8yWJk/3BwxDHdDgWBlJCpL3Rx/RlT0XSd6pL3Fj0pLc4j+OZuIh39CAJMn1jNhq376djTjjM/F7vbhK5roKr8/fl13HbzZZm8r2g8yaadrby2bjdvbkyJwn5PkF/955Xs7hpmxdZUAn6+28E1l52B3WohP8fBwlMm0D0UYPn6vUysKuTU8eWZ1lCPrNzC9tY+Lpg3gfkTUyLNaoVvXH3eiHn/37c+957O92TjzNmNvL1lH0vmTcrecz5CTsQ9X1VVksmxTZ6zjOZAwZ8oisdd/GcwGJDGaCf3XvjYC7BIJMJrr73GlClTMs8tWrSIP/zhD7z99tvMnz8fSAmoXbt2cd11140Yt2LFCr7zne9gSHs8vfDCCzidzkw+2cyZM7Hb7SxfvjwjwJLJJC+//DKLFi36sE4zy0lMKJFETVcQ9gYiqaW+pEqnJ8DE0nwArO+ysFA0HV/aWX8oEh1TgIXjScLpBtmh+Ng319raQnrebsKjaCQTSb5yzilU5LvSxzjY1rJj0M+ezlQk6LWtrZQXuCksOjT/UUfVdAK+MKIQIeSPsOzsWby6bg+zJ1XjtJmpyHNy1qQq/vrSBvbvaKPAbOK8+e+9hcrCyTU8+8ZOQm47kUCEpm4PssmIJEmZZuWCIBH0Btju8dPSOUBjbSn3LV/P+j2ddO5uQdd1JFFE1TQGA1H+/Oxazj9tMqIgoOs6Xm+Afe39XHPZ6ZnjPvXmTnZ3DLB5Xw9/XbGF6XUlXHHmNN7cmfIVW7F5f0aAHS89A17e2bKP2VPrKC8+ua0ovnblEhbPLGXChGMrnshy8qHrOn19ffh8vo96Kh8rNE1DlmV6enrek/uC2+2muLj4ffu3nVQCLBqNsnr1agC6u7sJhUK8+OKLAMyePZuWlhb+9Kc/sXTpUsrKyhgYGOCBBx5gcHCQO++8M7OfGTNmsHDhQr7//e/z3e9+F5PJxK9//WvGjx/P2WefnRl37bXX8uyzz/Ltb3+bZcuW0dTUxH333cc3v/nNjDWFyWTihhtu4K677iI3N5eGhgYeffRRfD7fCLPWLJ9c8iwW/LY4iqaTbzbT0u/FKEtU5DjY2jlArs1MRe7IYg+DJFJstzIciVHuHNukdUJxHpFEEkkQqC/MGXNMZ5cHUUz1TgR4en0T37og5X9VledkUUMFgWicUruVdVtb0dLmpJ5AhNnjyzGIIjajAavBgNVuJhCKYbObufEzC/nJvcsJRxO8tbWVH12figJZJJGgLwzA69ta6PGHWXbmNKzm0U73R6Ozz0Nf3xCqmkrkR9dR4gkU0jdIg4GJtcVsHhiiqiyftbs6SKg6W/b3IogCoiSiKirlpbl4IiqSQUYUoLYkly+fM4sNO1p44G8rAPjfmy9j5qQaegd9DPankr4kUUDVUvu7eulMJlcXsbOtnznv8jXrH/ITiyepKss/4vnous53f/43hn0h/vHiOq7/3GLWbd3H5efPoeYYKlqzZDleDoivwsJCrFZr1tD1GFFVNZNWdDzRLF3XiUQiDAwMAFBSUvK+5nFSCbDh4WG+8Y1vjHjuwOMHH3yQ4uJikskkv/71r/H5fFgsFmbMmMGPf/xjpk6dOmK73/zmN/z0pz/lRz/6EYqisHDhQv7rv/4r44IPUFVVxX333cftt9/OV77yFXJzc7npppu45pprRuzr+uuvR9d17r///kwrovvuuy/rgp8FSH2R1+cdFEhfmJsyLn1tbwfbugYRgCvnTiTXNjLXoC7XTd0RgiSiKHBq9ZE/4K3tqaiWIAg43LZ0JChMgTOVLza94uAX/0XzJvLUmzsBKHTbGQhH6QyEMEoSTpOJ0jwXSR0QBFbubieRTHl7ReKJzD5OmVDJleeewo7WPto9ITbt66GyyM3SmYe3ezgcG3a2EgmEsNptaLpGyB9AMhgQJRF0DaNJ4tSZDZhEgZ5AjJfe2cOK9U1ces4sNjR1kzOtgdbWHrp6hhFkA7VVxcydVElz9xD3v7gB35A3c6wDkcS7H13B+u0tyAaZ88+ezc7OIepKcjEaZP7tgrlomj6iF2Jzex/fvv0RFEXlO9d9ijPnHD7i99jytQz7UtWh0XiCX93/PKqmEwzH+N9vjt0SKUuW94qqqhnxlZeXLaI4Hg7kXpvN5uNeTjyQMzYwMEBhYeH7Wo48qQRYeXk5e/fuPeKY++6775j25XA4+MlPfsJPfvKTI46bOXMmjz322BHHCILADTfcwA033HBMx87yr8n+YR9dvhDjC3Iodo5OiH83h3bSWtvSS12hm4YPwCFdEMBsNWExywSiCf7y2ja+cf5sDPLIG8Pi6XUYDRKyJHJKQxl70wIloapEFYWrTp/Cvau3ktQ0ErrOLV84iy1NXSw+teGQYwl8auFkGmtL+O1Tb6GjU3WY6NzROH/hVP6+fC3hQAiDxYSrIJdENInNYaW8vgyDJPLmut1s39mKPceFbDRiNEicM6uBBROr+MYv/oEuSqmWQ4kE+/Z38l+/7mD2nEnogDPPzZTqYibXFLFwVuocitPLs7Ig8No7uxFlmcBwAC47DQCPP0R79xDTGiuRZYn27qGUBQawv6N/hADz+EO88NoWqsoKqCrL57EX3sm89sOvXcI/XlzLlt0dTBmf/aGW5cRzIOcrm7/34XPgmieTyX8dAZYly0dNOJGk3RfAZjRQ5T64bKhoGps6B9BJ5WadP7HmqPtaWF+G22qiqd9D84CXfQNeyt0OrKbRLY280RihRJJiuw3DcTqpC4KALIsMDQZw5TjwR+I8sXYPn5s/kdd2tuMNx1g6tQaHxcSiKQfnXe5ykNQ0rAYZh9HAnrY+fD0eqmqKOH1SNZW5TqaMG7u6sa40jx9ffRY6kGM/tiqiWDxJnydAZVEOoihit5n5yU2X8sP/9zyarhEY8qMmk4R9fuwWmVK3nQJn6kYXD4exux2Mqy7CbJSJJ1JfPqIk4cx1M6u+hFVrU7YMe/b3kFdaQHmeg29dcUYmyR7gK1csZnxNKXc++CKJeAKzLDO5LhVlDEfifP22B/EHIyyZN4lvX3M+i05tZOe+boLhKJcuPXXE+dzxx+fY3pSyqSjOdxFNLwOfvXAKMydWM62xklA4hsuR/YLM8sGRXXb88DlR1zwrwLJkOYR2XwBvLI43FifPasaezgWUBAGLQSaSVEYl1B8OgyQxo7KIYCxBfyCC1WTAII8UV5qm8+KuVpwOE4IgEE4macw/viiZpukE00ar8Vgck9nEUCBCS7+PlTva0nMRueCUg5Gsfd3D/PnljeS7bHz103MQBIHb//IqSUVlV1M3V7yrJ6Ku6yQVNVOFCOA+RuEFB2wPnqN70M+CabWoqkZ7n4cpVXmEfH5kowFdP+hzNtDvpaWpk+9e/2n8gTADCQ3ZYqZzOEg0oWC3mvnqpQu465GVxMIRovEk4+sr6eobwn0gIhdPjBBfAE+/upE/Pf4asiQSC4VR4zFuvuILAATDUfzB1HXs6kvliRkN8mGbcgfDB00c5XS00W41ccPnFgOpbgZZ8ZUlS5bDkRVgWbIcgt1kxBuLYxBFTId8eSuaTiSdExWMxfFGYuRYj82C5LT6cuoK3OTYzKMEgScSo8MTYLKjAACB4/9lVVLopLwsl5iisbepF/QEQQFybGaMskhC0Sh8l4fYGzvb8IaieENR9vUMM7m6aEQj8oSiYkiLraSicusfX6C9z8PXPruIeVNqCIRj3PvPN9F1uP7i+biOIsZCkTjdgymj2Q272oknU2JryBtENhoQJQlBELG7zGiajqwqTB1fyYp3drJxZxt2t4Oc4ny0RIIHn3uHNZv3U1WcQ4HdRJs/QI7Lzp7ebiSTGX/PIAaDxKXXfWrUPLbuSZntKqrGvy1bwsJTxmfOs7jAzb99fgnb9nTyuaM08ga4+UvncfejK+jqG6a+qogLF89kSkMFlvdQkJAly8eBtWvX8sUvfpEHH3yQOXPmnLD9fu9732PdunWsXLnyhO3z40BWgGX5RKNqOvs8AfyCAV3XKXXYUFQVh8k4QixJooDDZCAYT5JQNV5p6qCxMIeppQVHPYYgCJTljF3p6LaYyLGYaO72MKk8n7oxGm8fjYHhEOG4QjSaIJlQSMSTiKpGrsPC/JpiBjwhplUVjvDFm1VfxuZ9PeQ5rFQXpSJGX7tiEf9cvZ25U2oxyBIdfR7KCtz4glFae1LNn7c2dTNvSg0r1u1l4+7U8tsra/dw2ZIZY08ujcEgsXDGOFq7BtnX0oXZbkcQBDRNx+pyYjKbyC/NYah7EFVRcVrsGI0yhenG4Xo8zsyKfPq8YdZsTrnPt/d5sRglHvjpV3DYLXTd+wJ9w0FuuvpsZjWOzrvqHfCio1NWlMNZ8yZzweKZo8ZccOZMLjhz9PNjIQoC+zv6SSoqq9bu5rPnzTlqpWSWLFmOTjQa5U9/+hOzZ88+oULvZCMrwLJ8otk/5GPPUABEM32hGGo0wWAkSm8ogt1oxJKOjoiCwJL6SgZCEd5q6wXAF42/7+PLksjlpzSiajryceZ+HUCQRAL+kX0Bcxxm9rT1c99Tqb6Fq7fsx+Gy8dnTp1JR6KKhPJ9zTmmgKMeO3ZKK2EyrK8Nus1KaY+fWP75AW6+H6Q3l/McXz+Lys2bQ3DnIRaen/PaqS/PSYk6nuvToFVi/fvJN+jxBGsoL6OnoIeD1M7mxingsTo8vQjQUYbhPRzabKMh3M9jZR9v2HpxuJxecOYNLzzmV/7v/ZYb8YfR0dYMgCERjSfZ0DDBncjV3fP3iUVWMh3L331ayYXvKoHVaY+V7utaHcs/fV5JMJ+iLgkCee2yRnSVLliNz2223ZT7XkBJgv/vd77jxxhuzAixLln9VzIZ0lEvXMckiB7J6BFLVhYdilCVyrWbq8lwkVJVJxSOFR0xR2D2Yyh3SEipWo5EJJXm0DflZ09xJeY6DM8dXjkrgFAQBWTr80uNAIMKLO1qwmgx8emod5kPzsGxmwkkFh8sGuk4wEEEQBRxOG/v7DjY5TCRVIvEkf399O1a7hVKHhR0tqXZdBS4blYVuHl69nfYhP8lYgo7e1LY79vegaBoXnzFtxJxmjC/nZ1+/CB0oL3Qf4QqnSDn6p67Rf1z/aTbvamfpwql8+xePEQ6GEUSReCxKUXkRAY+fod4hAHRRYvkbO/jsuXOoKM5hyJ/yIEtEY+i6jtls5J4n32RnSx9nzqilZ8DLkDdEOBLnik/PG+FPVpiXKqowGmTczoO5WZquE4omcFiMx5VcW1Gcy87mLmRJ5Kffvpy9rb08u3ITi05tZMm8Sce8nyxZPqlEIhGsVmvGCP2TRlaAZflEU5njRFBVOtrbyLWYMJrN2AwGbEYDZnnkx0PRNF5t6iCmqJS77DjNI1tJDYajmTyxziE/A74IVqOBje19+CJxfJE4s6qKcVlGt6A6Etu7B/FF4/iicdqG/DSOaP2jk0wo6BooioLJbMBkMdHrD1NT6MLutqOpGmZbKsnfaEoJkv19KQsKURQyS63DoVQUTTYZQEgJlYb6Uv6wajPz68o45V29GMvSwiuuqLy0eR9vrW+irjSPay6Yi/SuaN7XLpzL1pZeJlUUcMtP/0o8kWTj3i6Sqoama4iajppQSfoCDPtCGC1mDEYjmqYiifCjh15lYlUh//mls/n+r/6O0WQiGYvjcNlJKhr+YITv/OzRjNEspAT0lz+TcsDvGvBx+flzmTGhivLiXIoL3Jlxf3tzJ7u7hphRXcSlcycc8/vytSuXMntqHWVFOVSU5HHlLX/A6w+zcWcrC2c1YDrGYo0sWU4m+vv7ufPOO1mzZk3GZ+y0007jBz/4wZjjN2zYwIMPPsi2bdsYGhoiLy+Pc845h29961sjWvV973vf46WXXuLpp5/mtttuY8OGDcybN48//OEPI3LAurq6WLIk1YP2d7/7Hb/73e8AuPHGGyktLeX73/8+Tz31FBMnjiwUuvvuu7nzzjt57bXXKCoq+oCuzoklK8CyfOLJs5oYQANAFkVKnfYxx2maTuJA8/S00DqUXIuZnmAIRdUJhBPp/Qk0FOXS7QtR4rJhNx1/gnZtgZvdvcOYDRKl7pFz84VTkaVIMEw4EKG6sQIpXZHXH4hy8RlT2ds5yL6uIURJzIT5zVYTeTYzu5u6+NXDr/LjGz7FpXMm8PCKzfT1ezGajMw5tYGknIoIrW/tHSXADrC2pYdX3t7F8ICfjp5hZjVWMPNdOVhVRTlUFeXg8YUyJojJRALZaMCQNKIkEpjsFi65YAEvr99Dy44WTALUj6ugNxJHEEV2dw6xbMl0zBYLsWgU2WQkFghx9WdOJ99p4fW3to04pgZ8586niCUVhtPu/SV5Dm69YWRy/gExur/fy/EgSSJzp487eI6leXj9YTRN5+5HV/CNq8895n21dQ/yx7+voqI4l69csTjTMzRLlg+T/v5+LrvsMoLBIJdffjm1tbX09/fz0ksvEYvFxtzmxRdfJBaLsWzZMtxuN9u2bePhhx+mr6+P3/72tyPGKorCtddey6xZs/jud787Zi/l3Nxcbr31Vm699VaWLl3K0qVLARg/fjzl5eX8z//8D88+++woAfbss88ye/bsj434gqwAy5LlmDHKEvOrS+kLhhmXP9p81CRL5JhNoMPCcWXYTEbKchyYDDK1+S4qcp1Ih8lPOhI1+S6+smgakigc9ovZYDaSbzMTiyZwOC1oOhS7bexu6SMYjae203Vi0RhgQlM1OruHUBIK3YN+2ns9NFYXIUTjhPxhXC4b1W4b24f8GI1SpmpxLEyyhN1pZXjAjyDAP1/byqTaEkzG0beXXLedH9/0Gfa09KIJOk+t2orBJFNQmo9nwMOfH32Vaz5/FpusJkpdNgoL83hizTYMBgOCKKCrOol4HLPdRjwcJSFL7GzpZdnSmVzzmdNZtXYXAI21pVhsVroHW0ccv3c4yO7WPmZPqs489+lZ9Wxq6WVOQ9lxvzeH8qOvXcplN92Jpum8/OZ2brzq7GMWUg8+9QZbdrezZXc7p06t45TJR/eZy5LlRPOrX/2KoaEhHnvssRH9lb/xjW+MyNE6lFtuuWWEkPrc5z5HVVUVv/rVr+jp6aG09KCXYCKR4Nxzz+Xb3/72YedgtVo555xzuPXWWxk/fjwXXXTRiNfPOussnnvuOb7zne9k+jju2rWLffv2fezaA2YFWJYsx0Gpy06pa+wIWV8owmAk9SuxNsdFiSNl/fB6cyedniAtQ35qC9w4DmNTEFdUYkkls0R5aLK5UR7bbTk/z47HF8JqtyIgYjDKxGJJch1Wnn1jZ2bc9HGltHtDCKJAba6TDXs7MZlNWGSJurJ8asvz+fPr22nuGETXdXzeEH9/cQNXXDiP/f1eFk+pPew1OaW6mGhS4VVFpaVtgH1dQzR1DBzWxHXGxGpmTKzmz8+/Q8Sfat0TTrfwMdstvLpiI01tqfy0//r3i7nxs4tYs6ONSVVF5LlsKIkkyXgCs82G2W5l0652Vq3ZjEEWSSqpSGZr1yDj6soxGiQkScQoifjDcfLdNsZXjfyFPKOmmBk1Y0f3jkY0lmDF2ztpqCmhobqY8xZN44XVW1i6YMpxRbFqKwp4Z+s+zCZDZmk3S5YPE03TePXVVznzzDNHiK8DHC4/8lDxFYlEiMVizJgxA13X2bVr1wgBBrBs2bL3Nc+LLrqI5557jrVr1zJv3jwgFf0ym80jej1/HMgKsCxZThC2dHK8AFgPSZQvdFjp9ARxmI2ZpP+Eoo4QVeF4kkfX7SKSUDitvpyqPBdPbNyLrutcMrOBgsMYeubmOqipLqSldYD+Ph+aomBxWPEdEmmTRJEzp9WS67Ci6Trd/V7e2NSEQRSxW0xYTEYeW70Nv67izHPgHwoAUF2Sx7kzxo153EPZ2N7Ptq5BMBkQBCjKdVJzDJWRV5x1Cms27Sepqamkek0n5A0QSC8By5JIcb6LgVCMXk8Ql82Mnn4+qaioySQGo8xQd8oi44D4OkBn7zBXfGoegwMeXli9BYDKfAd//PtKJo0r4/zTpx91jkdC03Ru+8M/2bK7HYMs8eivvsbXrlzKvy0767CVmIfjCxctZMakagpynJligQ+D9bu6eeGddq6+9HQqS7L9BD/JeDweQqEQ9fXH19e1p6eH3/72t6xcuRK/3z/itVAoNOKxLMsUF7+3HzsHWLBgAQUFBTzzzDPMmzcPTdN47rnnWLJkCXb72D+OT1ayAixLlhOEiIAnGEMAxKKDX8ALxpXTUJSL05zyFtvQ2U/LsJ/aPBenVKSiMcPhKJFEKq+syxtE52CeWcug77ACrKm5F6NRJhZLoKNhslkyruwWmwk1qXLzJQuoOiSq8sCzbxMNxYgCAaBn0I+rwEVRaS61DaUM5diwJTW++8WlYx5T03Re29lGQlFZPKWGaHrehaW5XLl4OuNL8jJLA0fid397lb6OHoxmE5qmY3HYMFotSBYTDTPHc87MBmorCnny8TVE40k27+vBF4py9sIpLF+9laKSXGSnnVyzjBKL43JY8IeiWM1mmroGMdmsVBTlMDgwnDnm/u4hdkdjrHpnF5MbKqgsyePJVVt5bWMT586byPkLjr168bcPvcSW3e1Ayqy2u99LfXXxcYuvA0waV/6etnuvBEJRnlmT6r2r6wI/uvGSD/X4WT7+qKrKl7/8Zfx+P9dddx21tbVYrVb6+/v53ve+h6aN/FFkNBqP6d5wJCRJ4oILLuCxxx7j1ltvZdOmTQwMDHDhhRe+r/1+FGQFWJYsJ4i+YCQjmgaCERyHJNwfKqD6g6mE8L5AOPNcmdtBY3EunnCMU6tLsBpldvUMoek6DcWHb00kyyKJhIIoiohGIwgw2DOM0WzEYDaQk+diS3v/CAFWmO/CYOpD13SUpIKQFgyDfT66IjEiwZQZx1i+ZLtaetnVNcTWtDGry2pmTm0Jogg2o5HG0vxjtnLwptv+JOMJ8suKiEfj6JpKXkkeBoMBqzElJBdMqqJ3OEhjZQFuu4WZk6oZ9gY5b9F0xtWWjOpFqes6j726iXhCYfbkaqY3lNE7HGRPxwAms4loMIzFZMBuNaHrOk+u2oKm6Tz0wjoS0RgXnzXrmOa/bW/HiMcfNwd8q8VIUa6Nfk+YCYdZLs7yySE3Nxe73U5zc/Mxb9PU1ERbWxt33HEHF198ceb5N998833N5Wj3kIsuuoj777+flStXsmbNGnJzc1m4cOH7OuZHQVaAZclygqjMcdDtDyEKUHZItWJMUegKhHCZTBTYLMwoK2T/sJ+6vIOu95IocPakkYnXX5h79GiMoh7yC1MAm9WIluNAVVXsThuyQaKqYKS7/pzxFWzc24XFaEDWNDqH/aCDxWLAapaJR+KcNr1ulJVER5+H/3vgJQxGA5X1ZQgCFLqsmA0yp9WPdp4/Gl++5DSa2wdQkwqIIBpEkrEEO9ftQpJENq7awNYzprFwRgO//OrBysVfP7CcUCTOvo4BHvzZV0deD0Xl5w+vYPu+HgBynDYuOG0y//eNz/C35Wt55Nm3KMyx8/2vXkRuOpfvlMZK1u1qJxGN8eTL649ZgF1+7hz+8MirOGxmrv/cmZQfQSifjMiSxFc/cyolZZVUln18KseyfDCIoshZZ53FM888w/bt20flgY2VhH8gmnXoa7qu8+CDD76vuVgsqR9VgUBgzNcbGxsZP348//jHP9iyZQuXXHIJsvzxkzMfvxlnyfIhous60aSC2SAjHuVXmcUgM7uiCEEQRniItXoDeKIx+kMR3GYj/lgCTzhGvs1C6fF3HhpBUUkOwwN+FEVDVzVy8p2Ew3GcuW4MBokZ1UVoSZVoPInFlPKl2tbczdCAD4Bl58xC2bKf2rJ8YjYjgixRUlHANUtTIiSeVHh5ZxueSIz6dDulRDzJxDwn58ybMCr6dDz09PkQJJmYP0Q8nsDitOMsyEMAwoEgACvX7uWl17by2x9+kbrKlEhwuuyEInHsztHLsqs378uIL2BE8/Pte9pRkgp9Q352NHcyLp2Mf/Pnz+S2PzzN25sHufAYekAe4NxF0zh30bSjDzyJkSWR/MO0ycryyeNb3/oWb775JldddRWXX345dXV1DA4O8uKLL/LII4+MGl9bW0tlZSV33HEH/f392O12XnrppcMKp2PFbDYzbtw4li9fTnV1NW63m/r6ehoaGjJjLr74Yu644w6Aj+XyI2QFWJYsR2R9Rz9t3gCFdgtnjDtylKdjOMAzW5sBgUtm1Gf6P1oNMp4omCQJSRTZP+QjrqrsG/Ixoej9RU2ikQQGkxFIkJPrIhqJo+sQ9IeoKHCxakMzmq5js5u57pxTyLGY2NLUhckoU1Oax4wJlUQkkYo8J8+/tYtwQkFJqrxR0s6CSVX8/B+v4yxMJYUPWU38xxeXMuwLs2jmuPfcOukAm3a1Eg2GMDvsaIqC3WlHNhpQEgmSiTgGo4Foern2T4+/xlWXLCIvx4YxL5cyhx35Xc3Qh7xB7ntsFboxZTq7cFotZ885aKx63qJpbNndga7r/PHvq5g3vZ6i/JQC/uG/X4SqaqOiflmyfJIoKiriscce48477+TZZ58lFApRVFTEokWLxvTsMhgM3H333fzv//4v99xzDyaTiaVLl3LllVeOso84Xv73f/+X2267jZ/+9Kckk0luvPHGEQLsggsu4Be/+AUVFRVMnTr1fR3royIrwLJkOQIdvlQkZiAURdN1REGgNxBmKBxlXL470ysSoMcfImXErrO9eygjwIrtNnIsZqzpKFpjUS7Ng17qC0Z7iR0vAd/BPLKhQT+ZlQAdVEVD1bRM0+umXg8xX4i2dJuhpXMaWbmzneZeDzs6BinNc7GrvR+Ax9dsZ1JVEb1DAQSzAbvdTGNJHg3vUzAeypTGCla+s4toOtp1QGyFfAEEUUQQD1aJbt3TQeu9L2A0GjDZLBgtJuZOSPVzVFSNu594gx17O/D5gohyhOkTqvn3zy4acbyFs8aT517FkDd1vFAkRhGHLANnxVeWLJSWlmYiS+9mzpw57N27d8RzdXV1PPDAA6PGvnvc7bffzu233z7mfsd6fsaMGTz55JOHnackSQiC8LGNfgFk7zhZshyBdxunRpMKb7R0s7vfw4bO/hGvTS7Nx5328Grq97C7d4g1+zrZ0NNP87CXA3sal+/mvAk1jMt3v+/5VZflYjIbsTssSGlD1LxcB9Nqi6kudBMOhJFlEUkW2bSnk8qSXCwmA7lOKw2VhRSml/EsRpmiQifJRBIAJangspk4e1Y9ckLhrPoKGopy0TSdpKISjif4y2tb+fOqrYRiiVHzCkfirHhrB91HcJf3ekMYjAbsuSkRFBj24ZBFzjhtBo7cHGwuB0ZL6le3wWREEEUUVSMcCBMY9HH56VPRNJ1fPLyCt7a14I8lMZhNCIJIOJ7kvn+8RigS45kVm1j1zi52t/bxzS+fx4S6Uj7/6XmZJc0sWbJ8/HjqqadQVfV9R9o+SrIRsCxZjsDsymKaB71U5jgRBQFRSLnRK5qG/K5yarvZyLSKQlY3dQKws2cYk1km12ghpqgkVA3LeyzB7hr0YzEZyHtX3lMsnmTq+FIGvWEGvCEMRhldh60tfTRWF2GxmAj5wxhMBvoDQVr6fdz7g2UIgoAgCMwfX04wFqc0x8mK7a1EApF0xExDEkUumj+Ri0i1/AjFEtzzyiaC0TjTq4vZl27h8z8PvoJJ0/nuF5dit6YE6P/d/U+27O7AbjXz59u/gnWM/pcNVYXEY3G0UAQEEBC48OxT2bSvB6vTStgfxmS1ZjzC0KE4z47VbOLseROQJZH9XUNsa+4GUpVTFoc9tczb2svepg6a2/rYtjf1flhdToxmIz+/6ZKs2WmWLB9T3n77bfbv38/dd9/NWWedRXn5h2vfciLJCrAsWY5AmctO2SHO9yZZYkl9Bd5ojHLX6OTlqeUFyJKIUZLo8YXY2+9BFATqC0YuVx4Pb+5s55GVWzBIIrd8dhHlh1Q19g0F6RsKZh6bzUYSyVQUy+sP4y5wI0oiwbTlxRs72phWV8KEykIAnt+0j11dQ2xrHwSgsDyfkD+C3WlBEARUTePWu55k254Orrp8Mb5wyuk/Gk9ikiWSqsrgoJ94NMGe9n5OSS8LetJLo5FonFg8OaYA6+73oalqunelQE5JPi9ubSXSP4TsciDLAsMDqeVSRVEAjb172jAZZSaPL6d7KEBxnoN8l40hf5h4JEo0mDJ+PFAv4fGHDzmijq7D3tZeHFYTNqvphPRcbGrr4+lXNzCloeJjn5SfJcvJzh/+8Ac2b97MjBkz+OEPf/hRT+d9kRVgWbIcJy6LKdMu6N0IgkCxy8brLd0YJZFSl40iq5VkUuPu1zZTne/inEk1x+yVBdCRrlhMqho9nkBGgB1qQWG1m9E0HVXVUJIqNouRiWX5PP/WLkRJRBAFTBYTOtA56M8IMHNaFOq6jiAIWG0WrHYLBXYLoijg8YfZuCPVT3HnzlYap43DF46zYEIFBlkkGIoRd/lxlOQx8ZB2Prdc+ymeXrGRWZNqyHWP7U49dXxlOldNxWQz48hJJfsnERho7siUtlscdgxmEyZUdF0nkVRZs6ONN3e1c9fXL2be1Br2tPVj1FXe3JjKO5k7bRybdrbSN+jLHM8oiZS4LAx5/Fzxzd8xcVwZP/+PZcf1XozF7X98hr5BP6vW7mZ8bQk15YWjxiQVlVg8gcP23qtGs2TJAg899NBHPYUTRlaAZclygun0BUmoGglVwxuM0jLkJ8dqJqFqNPV7WdRQgdVoOOb9nT2rHm8witNmYsYhhpmHViFGQjEQwGIxYbWZUZIKK7e3kuuwMOQPY7alcqkayvJYOKkqs92nT6mnutBN/6Cf5Rv2ouvgynPS3N5PS6+H9n4vFyyZyd79PVx27qkZt/Z3mrrY2j4AgMluxWwQRzjAj6sq4tvXnH/E8+rp9yAIArquEw/H8PQOAgIWh5W80iKCXj+iJGE0m1GSSaJKgnNPm8LmLg+CKBKPJ/jRXU+yrz9V8l5TmscVn5rLqg1NtPR6RjUQv+Xqs5k5sZr//u0TAOzZ30M8oWA2Hft7MRZWc0qMS5KIaYz31RsI882fPMygJ8BXr1jCBYtnvq/jZcmS5V+DrADLkuUEU5XjpMcfJpZUSKSd8euLctjWOUB1votwPMmWzgEainLJP4yPVjyp8Pymfaiaxqdn1fPvF47tT1WQ72AwvQRpNMoEfCFkg0winkAQBPLzXXz+03MY8oeZUVNMvsvGofEegySlGlHXFPP82j248p3EYwmqi3L4/TNvE0so1Jfl8ZsfXDXiuCU5diRRQNV0OnuHiYVj7Njfm1mCPBZ2pRt/C6KIJEtIBhmzzYoAKGKSvLJCgh4//sGhzDYbdrbhD8eIOuwkYgm6wxEc+bmIoog/GkdDJI6EpqoU5rtIJhS86eXXrt5hVr2zi7qKQkxGmVMm175v8QXwo69dwitvbmfiuDJKC0dXtu5p6WFgOCUS16zfkxVgWbJkAbICLEuWE06O1cz5E2tIKCo7uodwW03kOSzMrCrCKEn8+a3tBKIJmvo8fGnBlDH3sX5/D5tb+wDIc1hZPLl6zHEJVUeSwGqzEk1XI8bT/1cVlea2PmbWl3LOKQ10DPj47r3L0XWdi+dPYuGUkfv0DQcY7vciyRLXXnMOf3xhfWo/ms6Kzfto7/dxwbwJFLhsVBW4uXBWPX9/fQfJeJLCXAcNlaOX3o54nZxW7LluQh4fIKEkVHr7OkHXsdhtiLkyBqMRZ5471T7IYSMQCJFMKiTjXpwFeYjoRHx+XIV5+AMhHnv+LWxuF4IosHj+JC45ayYP/vMNHDYLz6/eSmdvqoXSL777eSaOKzuu+R6OwjwnV1644LCvT2mooK6ykM5eD+efMf2EHDNLliwff7ICLEuWE8hAIMxTm5uRRAGbyUCO1YzNZmDHwDAGUWRGSSEWg0wgmsBiPPzHr9CZilTpkLGKGAtV09ARCAYiqEkVyXDQOyswHMBkNdHS42FPWz/7+jxE4qkE/Udf20qey5rJBRtKV0pK6Ubef3z6Lb72mdPY1zNMRaGL3z39DgCb9nRy48Xzaawuwh9NYDQbqW6s4NOz6nHaRhs1HonSwhxkg4Gc4gIkg4QkieSVjiMZT6IqCpqq4ypwYzUaCPgCDA94SCQVLlg8A1WQaOoa5sJF85k5oZKNu9r59Z+eAyDs8wOwdkszX7xoAV+7MtVU/MU3tmWOvbOll8dXbWX2pCrOm3/sDbjfC3armbt+eHUmzy5LlixZIOsDliXLmGiaRlOfZ0yPq0PxRGJ0+YKZhPHXmjqJKyqRhMJgMEpTv5e29PJTUtNIaioXTa/n/Cm1XDS9fsS+BgIRmvo8aJpOQ2ke/3bOLL569kwmHyGyFI8mMFtN2BwWLDYTIjpWmxm7w0J5ZQGzJlby9qYm/udPy4mGY5l2RJBa5jzAX1duwWK3ZP7rH/Tz33c/x6KptTy6alvm/MLhGK9tbAJgTn0ZE8rymVJZmFrGBPo8Qe5/cQMrN+8/6jUe9IVx5DiIh6MkYnFMVjMhfxCDyYDZZsFoMaKpGteedwqnNZYTD0WYPqGKr16xhGhSZcgXoncoQK7DytI5E7h06SmZfQvAZ8+dze793ezvSPm1/cdXLsDtdjB1ci1b9/eyt32Ah5evJ6moh5nhiSUrvrJkyXIo2QhYlixj8Oi63QyHY4iCwHULp2IeI1rlj8ZZ0dSBDkwqzsNmNOCPxkeMEQWBzsEApXl2avJcWA0pATTuXblCwViCxzfuQdV0ZodjzK0rpeQYevQl4klUVcNsNqLpOuMmlBMMxlCSKp8/exabd7ajKKlqyWdWb0dDJ68wh1Mby5ledzCh35WOXhmMErFQjJx8J8MDfjoHvAwHIgAkwzEMwIJpdazf3kKXN8TeXi+iKDDfX055npPH12xnT+cgG5u7aawsoDTPedi5nze3kafWbMOe6yTg8THY0UcinsBkMZOXY2d6bTUleU4aKwu5728rUDWdvS09eAMRNu/tAmDN5n3kWAycPnsCFotxxP6HfCF+9qfnEQWBO//rKqY3VPCn265hxVs76PGGaekeZnJtKQZZGmt6rHxnJ939Xj5z9qlj2mhkyZIly/shK8CyZBmDA0JK03X8sfiYAiypahzo/BNXVEyyhN2WsnoQBAG3zUypw8rWrkGG/BGW1lfR4QmwpXOACcV51BcdFGG6rmeiTKqujTrW4UjEEpisJhRVxemykkyqaJpOSb4DfyTK06tTy242i5FwNBXNC4eivLO7k1PHV9BYUQDAF5bMoMsbZMgXJpFQCAUiSJLIuLJ8Fk2pprl7mMsumUJjRQF7Wnr47m+foKSmlNLaMjRVp9sTpDzPSVGOnT2dg1hMBhxHES3r93QQjUQxWc2YzCYCQz4kWULXdMLRBGdMq6Uox0E4EkdJR6k0XeeRZ98iEY1hs1vxDfv5wyOvsn57CxedNRNZSrnl68Cqtbsy28QTqWjfvY+t4qXXt2Eyytxz27WYjYYxlwb3tffzi/teACASTXDDFYuP+T3JkiVLlmMhK8CyZBmD+XVlrG3tpcRlo8hpG/Ha/iEfg6EoE4pyOaWiiHAiyfiCHGRJxBOO0WsIEU+LgEAySb47tb0/nuDVXW2E4km6PIERAsxpMXHJjAa8kRiNJXnHNEdN16mpL2Gwz0cilmAgGEWJJlg4px6X3YzHF8mMrSnLZ3d7P+hgNKciRdF0PhikLC2+fckCNjT38Od/voUoiVhMBlau3cU7O9tJaDptfR4aKwowmwxIkshg1wAzp40j321nWnWqrc9lp01hSk0xRTl2HNYjC7AVW/aDKJCMJzHbrKiqit3lwGg2omo6v3riDdRgmF27WikpcPPZc2czY2I1t/3+KaLxJAZdIRZJCWVfMMKtv31yhDfa1IZKln1qHiajIZNwb0xHuyRJ5OGn3+DVt3Yyc2I1t9182QgRZrOaMMgSSUUlxzXy/c+SJcuJ5a677uL+++9n8+bNAPz1r39lzZo1bN26Fa/Xy5133sm55577Ec/yxJMVYFmyjMH0yiKmj9ErMJxIsrEr5X8VTSqcWV+Rea3dE6DNm8r3MkgiNqOByhwH23uGcJqNuMwmfMEYslEiEkuiqNoIL6+yHAeyQaI7EKLMaR/V6ujdiIJA0B+loDiHYCBCMBAlEI7T2+9HFgQ6hoMUVxaSbzFy02WnsWpLC/FkErPRgN1iYnpdCQCBSIwXN+9nQnk+Dz39FtF09C8UiXPXX1dQ1pDyDdvZPsC5p46nuqyAu374ReIJhfE1JZn5BMNRTEZDJrH/aEwscdMx4EeJKwz3DSAgoKe9xMxGmVA0QU9rLwC9gz42tA7w+EvrqCzJIxJNcOnZp1BWlMv2vZ2Mqyzi9nufTe23rpR5M+q5aMks5HctL153+ZlMHFdGXWUR3/zJwwBs2tVGKBIbYZJaUuDmrh9+kQFPkFmTqo/pfLJkyXJiePrppwE4/fTT+ec///nRTuYDJCvAsmQ5Rto8fjq8QQySSFLVcJhH5hwlDom+TC8toCYv5Vg/Lt+NlO696DIa6BgOYDcbebO1m/qCHErTrY78sTj7PD4AFE2jLtd91Dn5PEESioJBlsjJs+MdDrGvbQCLxUjHQACb08qgP8zLb+/m0sXTx9zHn17ZhDeaYFvHAJF4EkEU0DUdURJB1wkM+8gvyOHcUxsy21SXFYzYx4q3d/LrB5aT47Lxmx9cRd5h3O8PpavPR/vO/ZgsJiwOBzo6hnSO3KIpNbyysRmry04insBsM6MbZGRZpqMnZSXR0TPM+JoSXA4L0yZUcv3lZ9Ld7+HzF8wn1zX28Q2yxOmzJwBw6dmn8sTL6zjtlMYxHeorS/OpLM0/6nlkyZLlxPK3v/0NURTp6urKCrAsWT5p6LpOOKlgliVkMSW41nf0owMWg8z86lIK3mWiWpfvQtU1RASqcg8mnx+IZIUTSRZMqWRaOEGzx09/KIo/luDCtFgQD1kCO9YehdFwjHAggslqwpTOudJ0ncqSHAY9IXoGAviG/LS4UlYW4Wicv7+yCavZyGeXzECSRHzBKMgSqqJhc9lQEgqyUcZlMzMgikTCUXKNMpOqRkcED/D2lmY0XWfYF2Jvay/zZ9Tz95c38vLaPUwZV8rNy84ctY3NYsLqtKMkFZKJBJIsk4wlmNdQxoTSXB7+ezvhSByLw0phVSmJeIJDzPZ5c1MTK9/ZRSKpsGb9Xhae0sCAJ8itdz3JN7907pgtgQ5l2afnsezT847pOmfJ8q+Oqmps3dXCsCdIXq6DaRNrkaSPxihBPAE9Wj8OZAVYlk88mq4TEGT6Q1FqrCmh0uL10xeKYJYlZpQUIokCdpOBYDxJjsVEkWNsby5V09HHcBvwRePsGhxOJehLkGe34IvGybEe9M5ymIxMKswjrqgUHGPPwMLyAiLBCOn8fURRYGpjGWZJ5JyZdTy6ahtFJbnUpnO0nly1lVfXpfolVhblMH9aLclgBG80gSAKhHwhHG47kkGmqzPlVC8bDbR0Dx1uCgBctGQW+9sHKCl0MWNCasny2dd3oOk663a24wtGcB9yzQKRGJtb+0hEYwiiSMjro7i6FAGdUCDMff9YTTid31VWXoQqilisFqw5OUiRCPFIDF1P9b4EaG7vo7m9L7P/f7y0nu9c+6ljuoZZsnzSWf3Wdn5z7z8ZHPZnnivIc3Hz9Rdz+vyxzaKzvH+yAizLJ559niCDooXBnmEsZjPFThvBdIJ6TFFJqhomWWJJfSX+WJxc62hxpOk6LUN+dvallsesBnlEFGx9Rx+iLGA2yMiiyBl15fhjcaR0L8QDCeBu8/HZHYiiQE5BquWOQRSYM60KjzfEb+97FaPFiEEWMZmMPPH8OgKDAV5euyez7avr9jBzQgVLTxnPX55/h9wcB0KeA0mSCKetJyRdIxKJM2tazZjHP1C5OaWhggdu/8qI13KdVob8YWRJ5PEVmzlt+jga00Kwvd9HIBInGU9gMJtwF+YiCCIBTwCtppSWfj8IApUluRQX5dLtCaLpOslYHJPViijJhHx+RFHgnIVTeOmN7UCqmEDVNKY3VvFBs37bfn7/yKtUFOdx282XfeDHy5Llg2D1W9v5we1/GfX84LCfH9z+F/7ve1dnRdgHRFaAZfnEo2jaqH/X5Djp9AdxW0yY0oncRlmiwD468hWKJ1nZ3EFCTVklCDCq2bbFINMbCGM3G1hYU4ZBElm5u4P+QJhJpflMLS9gOBSlKt/J2vY+YorK3KoS3EexcggFIlitJgRRIKGqvPTqVjyeVD9Ig9FAYDgApHohrt3ZPmLbPe0DbGnqZvGpDSw+tYFv/OFZBlu6CPtDyEYDE2ZPZHJlIbMqCmisLR117Ka2Pn74m8eRZYk7brmC8uLcEa//8puXsnF3B3c/8TqrNjSzfmcHf/zBMgDqy/IpyHMRj8ZIROMYLWZC/jDF+S4m1ZWwdmc7eSWF3HrTxQwHozz5xg5a23oJ+wMIQRE9/T4JgsD6ff3Y3C7GleVx8xfOAqAo33XE6wapJcxnV25m4awGPn3mjKOOfzd33PsckViCgeEAjy9fy2fPm3Pc+8iS5aNEVTV+c+8/jzjmzj89zcI5kz6y5ch/ZbICLMsnnoY8J97hYUqLiihL52O5zCZcxxiNGgxFiKV9qqpznYwvzMlsm1BVJEGkoTCHmKJQ6rLjMBlJKCr96SbRnZ4Ae/qGUTWd+uIcgmmH+v3DPmaVHz7v6gDRaByTxYiS1IgpGiarKdXaRxQwmWSKcxwIgsBZs8dz3zPvZKJWFpOBurKDSeaRUJS8siIsTgeCAAajgaZ+H1edOX3M4765cS/BcAyAd7bu47Li2SNeN8gScyZX88iLGxjyh7EfYkthNspcsXg6v350BUJcIRKIIBsMdPUMocYTTKxI9Xn83s8eIRCKpRqNh6LIksjSBZPZvLsdm8VEfyiJpusYTEaMFvMRhVfPgJeHn36T2spCLjtnNr/+83Ii0QTbmzo47ZTxuA6zrHw4TCYDkXSnhPxjMM092Vj5xjZefm09X7kqh8kTaj/q6WT5CNi6q2XEsuNYDAz52LqrhZlTxn1Is/rkkBVgWT7xyKJIrp6gJsf+ntrFlLrsFHgCxBWVrqEAPcNBzp5UTSCRYL/Hj1GS8ARTCfeeSJzqHCfN/V5sRgOyJDKzsohVezsA0FQdi0EirmiUOY9eSQigJhUUEaLRJEaTkZIqN3t3dWDKN3HVp+dy5vQ6gpE4e1r7qKotIhxLIghw8fxJFOQcPMa08eWs27Ifq82MuygHQRAQ9MMfd9Gpjbz85g4MssS8d7VVOoAgCPzwuvPYvq+H6eNHNr+2WAzYnXbQIOwLkozF0XWdv/zzdXyByIixsURqSdhgkHnp9e1ouo7TbqGmtoLOfi95LhufP/cUjsSfHnuNd7bu47V1u5nSUEFFcR57W3vJz3FgfVdF67Hw6//8Anc/uoLGulLOnDvxuLc/Gq0dfSxfuYFFc6cw+QQvqcbjSX72hyfRNI17HnqRu37y7yd0/1k+Hgx7gid0XJbjIyvAsmQ5Tvr8YXr9ISaU5GE2yJhkiTPrK3inpYemtEXCrp5h7LbUl3pCVTPLmCZZwiBJvLmvG0XTcJqNTCkvwGqU6Q9GmF5RiNkgo+n6UX3ADiDKMooKZqsRl8tOZ+dQykICePadPTz1+g4CniCKomKzm5kzvxFFUXG9S3QsPrWBTTvbCfjDxGJJamuKuOKMaSPG9PtCBKMJxpXkEk8oJBKpVkiJQ/pKvpuCHDuL0xYWkWicviE/NeUFDAwHcbjtKIpKIp4gEYkRj0QxiqMjj5JBxmAyYTfJRNNRp8n15XzvK5/GH46RdwSz1EAoikGWKCl0A6nIX67Lxv/e/Fm27u2gsbYEg+H4b4WFeU5+dOMlx73dsfLfP3+YlvY+nn15Lcsfue2E7ttolKmrLqa5pYfGceUndN9ZPj7k5R5b5PZYx2U5PrICLEuWQwglkhglkYSqZSwoDiWSSPLEpr2omk6PL8SnptZlXstN91MUgFy7mQKHFX8sTiCWQFE05laVkG8zY5BE6oty2N07nHHDryvMoe6Q/pBJVUPRFMzy0T+isggul41wJI7fFyYejWMwGpBFgYSiEo8lMg2nJWDL2maWzh7PjIZyVE1jd8cgxTl21rb2kkwqGIwGFEWhbzjIP1/fAUmForJ8vNEYnlAMXYezptTQsqct7aafZNPOVmrKR3qDvbpuD4+/uplFM8Zx5XmnEosnuPG2v9A36OdTZ0zHbLMS8IVQk0ki/iBKOsp1/qJp1FeXkOeyc+dDL9HZ58VsszF1XCk7dremzlkW+eoVZ7L89a1s2N7KVRctxGwyMOgJMGNiNWt3tJFIqki6xk//+AwWk5Gf/ccyZk6sprTQTUG6QGL+jLEjdycDrnQHBpfjxDvxC4LAr398HWvXbeK0BbOPvkGWf0mmTaylIM91xGXIwnw30yZ+uEvU27dvp7u7G4/HA8DWrVsByM3NZfbsf52/16wAy5IlTX8kRk/EhwDogFGSmFFScNhI1LtX5zSgwG0DAfpDEdqHA8Q1jUA8FbFxmAyZ5PylE6tZ3FiFJI5e8gwnkmzrH0LTdSYU5JJrMY8acyiKnloiMJiMqKqG3Z1aSrXn2IkGo4gCVOQ66OzzYLeauOULZ1GU/kX7+JrtvL69DbNB5tzTJjJpRi3d7QMkkhqCILC/Z5hENEHwXREiTyjK4rmTeH3jXgyyzMJZ40fNa8W6vQQjcV56ZzdXnncqw74wfYOpG/2O5i7OWjSVgbYekokkSiKJwWxCTSbZtb+HL116Oht3tTPgCaCpKmGfn7c3+DEYJCwmA9F4kh/85gm6+obRdYgnkuxt7SWeUFi6aDrr93YDUO62oKoaoUiMnc1dfOqM6Ue8lodj085WEkmVudM/vDyYn/znl1i/pYlpk8auQH2/GA0y+dnIxicaSRK5+fqLx6yCPMA3rrvoQ0/A/+tf/8pTTz2VeXz//fcDMHv2bB566KEPdS4fJFkBluUTT1xRaYlALBgBScwIq4SasqA4VIBZjQYundGQWoIszad1yIc/mmByaT5Wo5y5Ue3u9RCKxFMO9XYzFoM8aslvLPEFEFUUtHSifCSRPKIAy3VZcdhNeHwRQtE4oiTiMBuxOSzEVA1BktASCnFVIxJLEon5efiFdSyaOY5TJ1Yx6EsVAsSSCiFfhOZdHQz3DuLKz8VkMZGMJ0nGFZSkgmyQ0eIJqssKOHNyNW6bmft/8pXDzu28BZN4YuUWTpueihKWFeVw+Xlz2LK7nS9ctBDBICObjCkzVkUhEgghyRKyJPH3F97h8ZVbEIxmhHgS9JTlhaJq6Frq2nT1eygvyaezZ4i6yiK27e0EUn0hDzCxvhyPN4DDZmHBzPcW7Vq3bT+33vUkAN/68nmcNX/ye9rP8eKwW1i8cNrRB2bJ8j44ff4U/u97V4/yASvMd/ON6y76UCwovv71r/P1r3898/j222/n9ttv/8CP+1GTFWBZPvFs7R6mNwHezmFm1BbhNBtRVA2X2YTlkMjP9t4hOr1BJhbnMrOqmD5/mGe37gcgGItTcEjT7gPSKqmoDKRFzu7eYfYP+tFJLV9OKStgYf3o/Js8i5lCmwVF0yk+yvKTJxAhEIrhclqwywLoIt0dA9TXFFNX4GJ9OuLkjcQxmwyoqsrGPZ1s3NPJ9798NhfNm0AknqS2OIf1bX0UlhUAIolYAne+C4NBRkkm6djbTsgXxOayI5qMrN7ZxsyaYioK3Ied26IZ41g0Y2TE6EuXLsr8+8lXNuDKz8HbN4ggiphtVsK+IOefMYPnV21CU1TMdhsGowFNVZBkCYvFSG97HwazCaPFjMlhp75a4ukVGzlzzgRyXXY+e95s1u3qIJFUOXvuBL500QK6+70IgkAkGue1dbupqyxifE0Jq7bu540d7cxtrGDprLEFWiSayPw7nO6TmSXLvxKnz5/CwjmTThon/E8KWQGW5ROPw5xaFowrClVOB4XO0aInqWrs7k/lI2zoHKA615WxcwDQNPCFYxhEEZtRpsJlJ6moWAwy77T0UGC3sr6tj0Ds4Jf5po5+FowrG1V5GUokGQhHAfBG47jNRgSEEY27AVRNIz/XgdcfxheMYjIbiYQiqKpK54APNRonGU+momJ2M5cunUHSF+HhF9cDEI0n2bC/l44BHz1DAaxOSyrKpWqoispg1xB5hW5swPSaYt7cEqIy3Zj7zZ0dvLx2L18+ZxanNBx/Evfqne1sax+gu6kNUZbILysk7A/jzM9la3M325u6AJ2KQjeKkqS1MyUkD/w+N5iMGIxGJlQV8ezLawHoG/Lznes+TTKpsKepg3hC4YyZ43h9235+/qfnMRokyotzaekcRJYl7r71yzzx+g50Hf751i4WTa3BNEYy/umzGwlGoiSTKp86ffpxn2uWLB8HJEnMWk18yGQFWJZPPI2FbrxeDxUlRWOKL0gtF4oCaDqY5JTbel80Ql1JDk6jEZfZyGvpJbAClxVfWmidOa6CmZVFSKLI89v2E4glEAUBTdfJc1jGtL04YOgKMBAM89i63RgkkctmNWYS/QGeeGcPFquJihI38aTKrj3dhPxhTGYT0WCUpM1M3bhiItEE+QVOfMMBQoFoZvvfP7aGaVOqgZQB7eTSPNY3daHG4yTjcSRZoqdjAIDCXDufOWsWrZ4QOTYHe4cCAHQN+o9bgAWicV7d3oovGkeURSRZJuQLIkoSqAovvbYJLW20OuzxM6m+nCFvkGAohg6UFLgZ9oX41LyJfOHC+XR09LKnpYfz0+Lona37eWF1Kmm3vqqYAU9KtiWSKi2dg6nzVVSi8QTVRTm09nmpKHBhTFeqvhtBELjgzJmZx/va+/nl/S9QkOvg+1+9ELPp+C0ssmTJkiUrwLJ84hmMxbHk5zGUVCiJx3GaRtsgiILAuY3VdPtD1OS5SKgakaSC226myG5FUA8Ze0jO2Mu7Wrl0RgMWUaQ2381gMEJtUQ4Go4ie1PCHY7hsI3O8ci1mqt1OVE2jbcCPqumomkqXNzBCgA0GwoSiCXr6vJjNxpQBqyyhJRUkSSQmixQ6LFgcFvp7Pby9p3vEcRKKSonDSn6jjfEVBTz06mY0XUfRwWAyoSoqJqNMPKFQWZTLQCiO3x/hktOmImga8YTKkhmH/8Xc2echEIxQW1GI5ZD8N5vJQG2hm1Yg5AsS8ocJ+0Og65htVpR0xaYgCHj8YV7fsJcvXLiAtzY3c+qUWq6+5LTMvsKROF19HuIJhY60Bci4qiKcdgvJpEJdZSG9gz6cNguBdFRx5sRq5k4fR11lETeV5tM16Kcs33nMHnBPr9hIe88Q7T1DbNjROmYBQpYsWbIcjawAy/KJRz2knFHVDu88ajcZGV+YS9uQnx5/iGK3jaSmUe60Iwki5TkOFF2jMtfBQCBCnz9MLKHQ6wtRW+DmndYegrEEW9r7iQZjhGJJNrl6ufG8U0ccRxCEjAmrVTbQNpwyc60ryBkx7uLZjfz8sdWg6fg9QdB14rEEkiRitlmIRhIMDwYwGGW62wbHPKdn1mzHajbwqTnjM4n/BoOBZCKJ2WLilzddRGefF03T+dlDrwLw5GtbGUjnRW3e18OiqaOr9H7/11d4/rUtAFSV5vH7//4yYrroQBJFvrx4Opqm818PvYKGQHdLH6qqoqoq8WgMXdMyS7wlBW4uWDyTi5bMwmoxsre1l9XrdrNk3iT6PUGGfSEAXnpzB1/+zCJKCtw8cPtX0DSdJ15az9MrNgIwbUIVvd4whSUFmWpIoyxRWzKyhdLROHVKLavW7sLlsDK+puS4ts2SJUuWA2QFWJZPPEUWE0MDA5QWF5NzmIpDbyRGtz9EntXCc9v2oekpa4dLZqQMRt/c10WXN+UW3ecLM7OyiH5fmCKnlTJ3SkxV5TnZ0T1Ens3MPs/B6kNV00dVRG5v7SOaSHJKQzlfnDd21V1pjh2708JAjxfZICGIAslYAofTigrIskxbUw8WhwWjxcSkmmI27e4YtZ9ILInHH6E830XXkB+ry4qu6ei6zotv7WLZOacQCMcoyLEz5AtTUZzLQGsfAIHI2EnpG3e0Zv7d0TtMPJEcEQUD6BzwsX93BzUTqiirLaarpRdN0zJ9HiHVXPuH/34xT6/YyCPPvkVtRSFdfR4SSYUNO1r5/r9dgtFiRkkkycl18vjytZwypZb/+s3jJBIK55w2NbMvXzRJQhd4Z0cb1108/z2530OqA8CMiVUYDTKmd/X8zJIlS5ZjJSvAsnziEQUBORom7whfyGtauokrKqqmZWwqDo2VvbtaKM9u4fpF09B0nb5AGIfZyOLGKk6pKubBt3Zgd5hJJBREk8TLO1s5b0rK6HBdcze7OwdYtzMllCKxJGdMG9sEUdd1ZFmitDIfvzeE3xNEFwSSako8WW0GSmuKGOzxcOWS6Zw6qYpfPRyn3xvEm271Y7aamD+lhnEVBSQlSMYTREMxZINMMp7khTd3UVmcy4Jptfzy5ktJJBVMRpmi9U3EkypnzRx7CfKqixZy7+OrUBWNS84+dZT4AlizdT+iJNG0dR8WhwV0gcBgahnRZDERj8ZRVA2PP8Q7W/YB0NI5kNle03SqS3P5j+s+xabdHSxfuZEH2nvZvLsdrz8lcJ02Mz/82sWsWN/ErvZUFPDsOY3vWXwdwGGzjPm8qmrZyrEsWbIcEyeVAGtvb+e+++5j69atNDc3U1tby3PPPZd5PRQK8cADD7B69Wra2towGo1MnTqVb37zm4wffzAPo6uriyVLloza/7Rp03jsscdGPLdp0ybuuOMOdu/eTV5eHsuWLeP6668fkQ+i6zr33nsvjzzyCB6PhwkTJvCf//mfTJ8+/cRfhCwnJbIoECe1fJbvsmE2SFQf0vj5lMpiYorCcChGod2C25LKI9vSPci+IR+yKHDehBqcFhMaYDBIGAyppO+hUEoM9XiDPLuxmUQ8mdnvvl4PZouROfWjqyVFUWSwawjZakZTVSpri+nrGkaNJ9AFkVAgQjwSp8hpodkb5KWHVtCRTqq328wYbGaKS3KZXFvMd+58ClOhm4LSPGKROJFAhHjacuEfKzezYFotsiQiSynh8qk5jYe9Vl3DAbriCg6Hlc7uIZ5btYnLzjkV+V1J7mfOHMera/cgyRKxcIRYKIJslCmpKcFgMDLU1sOMiVWUFuZw1UUL+Z/fPzWi8rQ/7Vk0f2otZXlOXlyxAR2oLMlF03QSySRL5k8mz23HG06wq30Qi8nABad9ML5GDzy5hseXr+WM2RP4j+s//YEcI0uWLP86nFQCrLm5mdWrVzNt2rTUUoQ+Mh+np6eHv//973zmM5/h5ptvJh6Pc//99/O5z32OJ554grq6uhHjv/WtbzFnzpzMY5ttZIVbe3s71157LQsWLODmm29m7969/OIXv0CSJK699trMuHvvvZff/va33HLLLYwfP56//vWvXHPNNTz99NNUVFR8AFciy0dNXyhMmzeA22JifF4OZ46r4J32XryROEU5dmRZJKIodAdClDntyJLIGfWV7OgeZOWeDjZ3DHDx9HrC6fY6iqYTT9tSTCzJp6nfg81sIKGoNJbmA2A1GrEYUx/J+ZOriScVWoYDtG8K4baZaSzLHzXPqdNq2L6znUg0QSwUp2pcMdFInOGh1HKomm4QLuY4iB2ytCeZjeQWukmoGi+tb6J70E+uKOLMdSCIAsF0BAlg5viDf+NJRSWpqEeMIL2waR+dwwEG0g18g+EYiqqNEmDtXUPEwlFEWSYRi6NpGpqq09vah67rqEmF1ev28MbGJs6aN2nU/WB2Omr4xsa97NrXzfduuJBINE5laR7f/fnfUDWN9u5B8tx2zl8wiYk1xbgcFnIc1qO8+++NlW/vBGD1+t18+9rzkY6xl2eWLFk+mZxUAmzx4sWcddZZAHzve99jx44dI14vLy/nlVdewWI5GP6fO3cuixcv5pFHHuGHP/zhiPFVVVVHjFLdd9995OTk8Ktf/Qqj0ci8efPweDzcfffdXHXVVRiNRuLxOPfccw/XXHMNX/rSlwCYNWsW5557Lvfddx+33nrrCTn3LB8dmq6jmK144wms1tSXc28wjKrrDEdixN0qVqOBxfWVAPhjcXYMpJbKhiPRTMI8kMkDA+jxh5hUlEc0oeC2mPCEokiCwP5BL4qmYTIZsFiMhJNJYkmFp7c2Y3OYOLW4lLd2d6JoOqIoIAkCLuvYuWk79/ZgtJhRNQj5wwTDcdAhMBzAbkst40myhKZpuHIcTKoo4M0t+4nHEihJhdJcBw3VRTTt7yXkD6PpOtFQFKPJgCvPga6DLS22ApEYd/xtNYFonOvOO5VptWMnoJfk2OkcDjDllAnkobFgZgNm0+hcqS2724kEQ7gL83HmuQl5/YCIJEtEg6HMOFXVeOXtXZnHi+dO5KqLF1KQ48QfjHD7Pc+i6Tr+UJTvXPspVq3dlel92dY9xMx0K5/q0rwj/yG8Ty4/fw7/eHEdZ86ZmBVfHzCxeII//+1VDAaJqy8/a5S4z/Lx45lnnuHBBx+ktbUVXdcpKipi5syZfOtb3yIvL/XZveqqq7Bardxzzz0AbNu2jUcffZQNGzYwMDBAUVER55xzDv/2b/+WuZefzJxUAkw8yk1rrAtqs9morKxkYGBgjC2OzJo1a1i6dClG48Ff8+effz733HMPmzdvZs6cOWzatIlQKMR5552XGWM0Glm6dCmvvPLKcR8zy8lHXySG4nDRFoxgMZnJtZrJs5iJJEOg6fjCMYpdB0VWMB5HFgV0HUoPEV8AOQ4LFl8IQYCEprGlewBfLI4vFmd9Sw9GScJmMhBXVDRVpdjpZFJxLsOhKP5oHEEU6fWHUdLVmPMaypjfUDHCqmLAF2LF5v1UF7tRVQ2/J4CWVCkoy0USBQa6UuJw1oQqdvd5EQTobesnFomTrC7C6rCSjCcJDge46pIFuO0Wzjp1PD9+fA0DPcPEI3EsVhP+4SCxaJwVgQiXnDmNnuEgvnAMgL2dg4cVYJ+aVc/06iLyHFasYwivA2iKkrKa6B1A1zQsTgeSLCEqSWbPnoDT5WD56i0YDDLR8MH2QtddfgbudIcAi9lIfq6DgeEAFcWpasbTZo2ntXOQRFLh/NM/vFY+F5w5c4Rf2CeR1W9tZ9vuVj574WkUv6tq90Tyt3+u4eEnVgKQl+Pg4vPmf2DHyvLBc++99/LLX/6SL33pS9x0003ouk5zczPPPvssAwMDGQH2bpYvX057ezvXXXcd1dXV7Nu3j9/+9rds3bqVBx988EM+i+PnpBJg74VAIEBzczPz54/+AN56661885vfxO12s2TJEm655RbcbjcAkUiE3t5eamtHJjjX1tYiCAItLS3MmTOHlpaWzPOHUldXx1/+8hdisRhm85GbJWc5uTnUeeKAFUMomWRv1zChaILt0gBfOX06oiAQUxTa/anojFESybeOTMY2yRIue+rvYU/vMCajjMVkyCyfRZMKl8xswBOOUp7jyDTnVjWd2nwXw+EYSyZUUWizEE+qnDGpGsu7Ku0eWbmF5u5h3twBoihgd9kRJRHfcIhYxxCSLGE0yGzvGiQeTaCpKrF0taLHHwFRwGg2ogNPrtnONefPRpJEPjtvAs9tbCaU7yCppaJoiXiSmK7z66fe4uaL53PalGqGAxEWp/s7tncPIUki5cUHrRxEQaDikPy4w7F9XzdKIonN7UIQBXRNQ1M1FA28cZWvXTCXS5fMYMAT4Ls/ezSznX7IG2Y0yPzuR1czMBygtqKQRFLh3sdWEQzHuP7yM0eZpCqqxqY9nVQW51Cc5zzqHN8Pm3a2snVvJ2cvmEJZ0QcnRk4WuvuG+eHPHkTTdPa39fKb2274wI7ldh78Me46jHlylo8PDz30EJdccgnf+973Ms+dfvrpXHfddRlT5rG4/vrryc09eO+ZM2cOTqeTW265hR07djB58ofTt/W98rEXYD//+c8RBIFly5ZlnjMajSxbtoyFCxfidDrZunUrd999Nzt27ODxxx/HYDAQDKaWipzOkTdho9GIxWLB708l+AYCAYxGI6Z3mXM6nU50Xcfv979nARaPx1HTrufRaHTE/7N8eOSIOp5wkLycHCxoRCIRkkklYw0hiyLRSARBEEgecjPQNR1vIIBJPvgxyjXJiALoeipfKp5QaMh34TAZ2KvqRKMJOoe8mCwGApEIKClxFYon6fQESWoa27sGKM6xomgaajJBREmOmK81nSdmNEipSkyDgKKomG1mREkkEU9QWpKLP5rEaDZitZuJ2qLomo7BbCQciCCIApqqsbG5myW9gxS4bNQVOCi2mvA7zATTrY0cuXEioRg9w35isSgXzj7YL/G1tTv4+X3LEQSBW792MRPHlY6Yp6ppR1yKm1BXwoA3TNjnR5BEJElCEEQsDhsdfV5Wb9hLRb6D1zc2ZbYxGWVkEfa39bCtqYvZU2vIcdoozrMTiURY/vr2jP+YQRb5tyvOHHHMv72ymVfXN2M1G/jZjZ/GfBgbiZfX7qVrwM+Fp00i3338X/ADwwH++7dPomoab27cy29/cOVx7+OD5kTfc1QliSxJJDQFs8lAJBI5+kbvkbNPn47VYsRokJk9o/4DPdYHxfu9/vF4Km/ygH/e+0XVNHY1d+MJhMl12phYX/ahLaUHAgHy8/MPex4Hntf1VIX3gccul2vUNgcK8vr6+pgwYcKY+zvwg/jQfR0PqqqiaRrRaPSwAvFYlkA/1gLsiSee4LHHHuP222+nuLg483xhYeGI3KzZs2dTX1/PDTfcwCuvvML555//Ecx2NO/OcQNoa2v78CeSBQMQiIQIpB9rosQ4pwW/qOIWFPbs2ZMZKxsMKM5ckqLIOz3DmCMBnLqSeb2SlLmrZNCJJFTCfT0YzRL7O8IEExrlZTkY4qk+j+bhfgCCCiTTn+NWT5CmAR8APb39lL1L308rlHDLueTZDPxjUy+xcAxJloiEIlhsFmwOGw2FFt5piWE0pno7AkTDMWQ0aoocSOi0eWMgiqzftoeKXAuyKNDSPYCzOA+n04KuaiRQ6E/KzCh3sHv37hHz2LC1FV1P3cTWb9mJkPRnXtvaFWBjR4Ayt4mzJ+SP6TJ/an0Ob2zSMFktmO0WIv4QoKMDggBbtzfx+82tIzzSrCaJ3Xt28/OH3iQcTfLCa5v46mcOGtnGQr7Mv3UlOmrOfQNDACQSCrt378VsHJ071OeN8NhrqSbrQ8MeLphTNWrM0Rj2R9D01HWPRGOj5nEycSLvOV//0mI6uj2cMrX6Az/nPIcAqCf1tT0W3s/1l2WZePz9N4hfu3U/Dzz1BsO+g8U3eW4bX75kIXOm1R1hyxNDY2Mjf//73ykqKuK0004jP390wRGQEZyxWOyw+1q7NtUbtqys7IjjgPd87eLxOIqiZFbIxmLWrFlH3c/HVoCtXr2aH/3oR/z7v/87l1xyyVHHn3766VitVnbu3Mn555+Pw+EAyETCDpBIJIhGo7hcqSUUp9NJIpEgHo+PiIIFAgEEQciMey9Mnjx5RASsra2N6urqEUUGWT54jvXa7+rz0uYJMCk3F6+mopNaAjS4cplQcjBHocsXwiCJDHUMsberj2ZB4Pozp5DjaSU4HCSRUDHIEmaDPOIXmtrWR4sniFGW8aeTyNuDGnMa63FYRi6lHTBSeHJzH0azEZMsYpTthENR7A4LA0EdLalgcdvQgZA/QiKWQJBEFH+cQpuZ+RMq8EfjrGoawm0zM6GxlEAwTkT3YndaMcgiosGE1SkTkSwMazZObSjNNKwuq6imazCKQZa44sIzRpiSPr/rLQC6fXEqa8Zht4yumty4pwvZYiM47CUeiWJx2DGYTYiiSDwURhfcqetyyJKjNxhn5aZuwtFUVFAXJHSji5bOQc6YPZ4JEyZQV1tNKBJj7rRxGff9A1TXjuP1rS3YTQYmNFaMKg5QVA3LgA/Tm+3Ekwq1VaWH/RV9NASjkx3NXSxdMJna8oL3tI8Pkg/invMeL9Unkvd7/ePxOD09PZhMpveVBvPW5mZ+8cBLo54f9oX5xQMv8Z83XMD8GfVjbHniuPXWW/n617/ObbfdBqQK7s444wyuvvpqysrKMuNEMRUpP9z5er1e/vjHP7J48WIaGhoOezxd1zPf6cfaguzdyLJMZWXlqNWx49rHe97yI2TLli184xvf4OKLL+Yb3/jGe9qH1WqlpKRklII9UIFxIOfrwP9bW1tpbDzofdTS0kJpaen7+sMf642zWCwfi+qNf0WOdO3jispbaff3YFzhM7Ma2DPoxShITC4txJr2/drVM8Sru1NNufPSxR2ariMZDHzh9Kns6R6mLM+BKIu4TEY2tPSyb9DHovEVLJ5Qg6m1h3AiSZHNzIZ9vcTjCl2+KLPy3GPOKxmMYHRaCQajFBQ4ECSJoC9Mp6YT8kcwGGQcbit1jWUM9HrRENB1nf2dg5w/t5G393YB4AvH6PGECIRiiLEkuqZRXJaL3xdFlET29XrZsrebPl+EqVWFBEIx/L4ATW2pa7KtuZfTT20kGImzZnsrE6uKiCV7mFJTTOFh5q5rqRuqxelAU1Ukg0wiGkvdHMMRxteUsGVPB5LVgppUCfuD2K0m1mxoBlIu+V9dtoQf3/UUqqaxp7WPW645n/qaMvLc9jGPabWCZyjAH19aR0VxLr/77y9hSFfQJZIK/3P/83T0eTl7biMzx1cwua50lIg7VpYunMbShR9eEcB7JXvP+Wh5r9dfFMWMIJGk91YFqmoa9z626ohj7n3sNebPbPhAlyMbGxt5/vnnefvtt3njjTdYv349Dz/8ME899RR//etfMz+CBEFAEIQxzzeZTHLLLbcA8OMf//iI1+RA4ONw+zoakiSl7l0Wy/vSAB+7Wul9+/Zxww03MHfuXH784x8f83arVq0iEokwZcpBE8ZFixaxYsUKksmDOTYvvPACTqeTGTNmADBz5kzsdjvLly/PjEkmk7z88sssWrToBJxRlpON4XCUFU0dbO8dyjxnkMRMI+xChxWn2cTM0kLC0QTPb9vPQCAVuo8kDi5FTqsp5vSJVXx23gRKchxYjAYmVxZQ6LSRb7UQSSisa+/DG43z3JZ9DIQi9ATC+GMJnHYL5W4H1QUuxpcd3j4hHEvi6fdhc5jp7fYSCUbJKXSTiKV6NXqHAhhkGV3XCfnDSIpKxJdy5q8tyyc37Ylls5owmQ1U1BVjkATy8h14B7zs29rEQOcA4WAqx8YTiPCzB1/l7iffYGvzwebeB/IgHl6xmRfW7eW1bS1845L5LDvz8AIkFosT8PqIh8MkojEioTCxUJh4OEKOy87psydgNhpIROO4CnPIKy0gdohJ7UVLZvGXp15HTR87EIpyzffv5er/uJs3Nu4d85hrd7Tx7OqtAHT1e4ikzWZ1Xae9d5iOPi8Ae9sHmFpf9p7F1yedlW9s5YG/vUwwlM1pPZnZ2dzFkDd0xDFD3iA7m7s+8LkYjUZOP/10fvCDH/DPf/6TP/3pT8RiMX7/+98fdVtd1/n+97/Ptm3buPfeeyksLPzA53siOKkiYNFolNWrVwPQ3d1NKBTixRdfBFJ5XLquc+2112Iymbj66qtH5FDZ7XbGjUu1Rbn99tsRBIHp06fjdDrZtm0b99xzD5MnT874jAFce+21PPvss3z7299m2bJlNDU1cd999/HNb34zY01hMpm44YYbuOuuu8jNzaWhoYFHH30Un883wqw1y78OW3sGGY7EGI7EaMh3YzLIiILA5ac0MhyO0uEJ8I8NexhXlEPLoA+AzZ0DnDOphjK3nSll+bitZiaV5TP5kKWn9W29vL2/h7oCN5+aWodRktD1VL6TLIrIh/zCtJkMfGkM8RKIxnlzTydluQ6mVhWBQMr3yxtGRyepKHiH/KhJFVESsbvtDPT7ScRSFhdDw6ksN5MsIokCw2lhFY7ECXgjDPT58Ax56WvvwWk1E/KFUJIa9lwXxfkuagucrEvPRTbIfO3KszAYZM6YffAX6qHEkgpmw9i3mVA8ia6oWN1OJFkm6PVhMJuwOOx848rFFOQ6mdpYwap3dtPTPLKH5fwZ9Zx3+jSeeHk9AE67hfNOn8Yv73sBgF37ulk4a/yoYy5/axcGqwVN15lYW4IrLUB/es8zvLGxicmT6kjqOpeccfJHrk5W9u7v4kc/ewiA/kEf3/v65R/xjLIcDs8hOV8nYtyJ5LTTTqOxsZH9+/cfdewdd9zB8uXLuffee0esVJ3snFQCbHh4eNSS4oHHBzw9+vpSSx4HTFEPMHv2bB56KPWhr6ur49FHH+Wxxx4jFotRVFTEZZddxk033YR8SMVaVVUV9913H7fffjtf+cpXyM3N5aabbuKaa64Zse/rr78eXde5//77M62I7rvvvqwL/r8oCfVgVUtcUTM5TwZJREBgbUsvkGrQbTcZCCeS1OS76PAE+Ofm1PLY5IqC1NKjILCzZ4jX9nZkQvjt6RY6kiSQ77IQjCSoLc4lz2ZhdkUR/licKSVjJ6E+u6GJPd0pn69itx1HjgMRHaNRQtEO9KcUsJkNdLUPEIvEsDkslFeXE/SH6WpJJ/1H4tz9/Fo6BwMYZYnTJlezuWMAh8uGIEDP/i6cdjPuknyGhkMk40mMAiyaXsffnnubeELh/IWTmNpQOWJ+Vy6Zzhvb26gsdLO9c4jVu9qZWJ7PsoWjy8HnTKnl0RfXEw6EQNexuhwkYwlK3FZmT6oGQBTGDtLf9MVzsFvNnDF7Auu27ae2opAJNSWcdsp4+of8XHzWKWNuN39qDU0dA2CzsnV3O/1DforyXWzZ3Q5AMhLh19//wpjbZjk2DLKEKApomp5tVn6Sk3uMFb7HOu69MjQ0NCrxPhaL0dvbmwmsHI4//vGP/PnPf+YXv/gF8+bN+yCnecI5qQRYeXk5e/eOvXRwgKO9DvDZz36Wz372s8d0zJkzZ47qD/luBEHghhtu4IYbPjhfmywnD7W5Lrb0DOK2mLCZDLQP+9nRPYRkkPBGDlbVJFUdkyxywdQ6LCZDJhoGKUf83kCYcreDHd2DqJqOqqkkEkomDyueVDEYZPLcBvyxON5IjBe2taBoGvG4wrbWfjRNZ9nCSTjSOWaWtBiURAGjLBEYDlBZU0h1WR69/T5km4l4JEFrc0okmgSBs+ZNYGfHIEazGXe+k7A/gtlmxJtepkwoKnMmVLBiy35ESUQn1ZS7vXuYikluzDYzSiLJF847FZvFxITqQry+MCX57lHXzmExcd7s8ei6zqvPp2Jlzb2eMa/zi2u2oCSSuPJTPj6xUJhkLMbcydUA+IMR7DYz4yoL2dcxgChLoMMpU2px2lNJy587fy6vrdvNlt3t/OxPz7OvvR9N11mzYQ+XnTN71DHPnjuBvfu6WL56C8UFrkwE7Oarz2XV2t185uxTR22T5fiorSrhN/9zAx3dA5y3JHs9T2Ym1ZeTn2M/4jJkfo6DSfXlH+g8LrjgAs4880wWLlxIYWEh/f39PPzww3i9Xq6++urDbvfss8/yy1/+kgsvvJDy8nK2bNmSea2ysnKER9jJyEklwLJkORloKMyhOteJLImIgsDLO9uIKQpFuQ4kScRlN+EPxVE0DV80zuaOAZJiKg+hviiHwXAUp8WE25LKGZtUWsBgsANd1fD7o8iigKrpCIA3GMVokDCJEr5Iap8ArYN+2gdTkbI93cOcmvbYmlhRQHOfhxK3A6fFBAJ0tA7Q0TpAXoGTIocVo0HO+NyE40lWb9qP2WJEVTTsLhsFhS40BJxuK7quM7OmhLJ8F5IkoqoakUAYs9lIbV0Z3kgMo9nIaVOqGF9VxM59Xby9eR8Ab2xs4pKlY0ea7vn7St7a1EzN+CouPnP6mGP2tPYRj0TRdR1BEFAVhcI8J2fMnkAiqfD/Hn2VNesP/uDS0pWhS+dOzDxnNMrIkoiiapiMhoyRbjw+0jvtUG688izOXzSVkgJ3pgpy/swG5s88fNVUluNj5tRxzJx65MhFlo8eSRS54Yol/N//e/qwY264YvEH7gd24403smrVKm6//XY8Hg85OTmMHz+eP//5z8ydO/ew27355ptAqo3RM888M+K1n/70p1x66aUf6LzfL1kBliXLGBjTlXHBWAKTQSKaVEDTUdFJKgeXKAUBynIctPmDCIJAkctGe6+XRCiBOi41bnJZPpPL8tndNcSK7a1MqSpElkTCwQQlNiu6KDCntoQip43pFYX4o3FmVRXj80fQdJ3xpXkpB/eWXtbv7yEUS9Lc56HHG0yZryJgd5pJJjUKHRYaZ1QTDoTp6fOl2g4lFIwmIyWFToqL3cRiSXbs7kIW4JbPnEZh2kncaZDwqRpms4lf/Pga7nhsNWYxdYuw2FORovqqYuZMq8PrDzO9sYpQJIZ9jD6Vu/Z1E/QG2b52Bz/6/OIxr/HZCyazu6WHRDSGbDahKioDwwH+8LeVbNnZiiSNfdO/495n+ZZ6Puu3t3D+omlcsvQUtjd3cf3nzmRgyM+gN8j5iw6fwyUIAnWVRUf7EzhuOnqHeW3tbmZPqaWxrvToG2TJchKwYGYDP/i3i7jnbytGRMLycxzccMViFnwIP0yuvPJKrrzy6GbFB9KMDnD77bdz++23f1DT+sDJCrAsWdIciBoBRBMKe/uG6Q6FMZkNFBplLp46jpd2tjIYSyWkVuU6+NTUcbQO+dncNYAoCGz3x+geTnnLPbZhD3WFbsyyRH8wQnPHEMFogqEdbcytL+O+lVuIJhQq852UpH12FjUczCu84eyDRn7LN+/jrb0HK5HyHBbyHVZycuwMDfjxeyPous7u/b10DfpICCLOXCeKomA0GZBlke1bW2nea6SsuhCr1UQi7db/2sZm/vLcWmx5TlRNQzYb+c2jKxkaCmJ320AQ2Lini0WTqiktcPHfN15Kc3sf377jr+g63H7L5xhfM7Iv5A1XLOaxF9YyZ1pdxqLj3SyeO5GnV2ykpWMAJZaqRhREgZ2tfSQVlaSicubcSazf240oS0QCQZR4ArvNzC/uex5N09m0oxV/utLu3r+v4o7vXPGe3//jZf32Fu566GXqKgv5/g0X8t93PkH/sJ+nX93AX3/5tTEbkGfJcjKyYGYDc6ePY2dzFx5fmFy3jUn15dmm8h8wWQGWJQsQkky80NyNQRY5u6GKl3e20eEJkOu0YDTI2C0G+gJhXBYTl88aj8kgk5O2pbAaZeJp+4lxJfm09HsRBAGz2cC+QR+x9GvxdHK/qun4wzGU9GPt0GaUhyF5SGHAsgUTaSjNR5ZEejuHyC/NRVM03Lk2vMMh/N4w5TVFNG1vJxKOkZ/nxO8NEY8miEcTjKsuIi5JCEAgkmDVhibiSQWHKKDrIkaTTFvHYOq6+MMYTAYCwwEeWr6O735xKQA7m7szlhA7mjpHCbBJ48r58U1HzhuRRBFNHHkLKqwqRZJlXGYDZYVuBKMBOZ3InV+QS9Dr49Qptazb1oI/GMHltBKOJVAUFYf9w+3J+uTL6xnyBhnyBtnT2st79HPMkuWkQBJFpo6vPPrALCeMrADLkgUISkZ0FRKKRrs3kMkl8gajmAwyZ0yv5/ENe1A1nbYhP1+cf7CqryzHweWnNJJQVCrznERVhaFoDE3XM+ILwOkwMTSs4LSaeHDNdpKqhtNi5HMLJmX6JqqaPqL1zgHOnlqLzWQgx2ZmYsVBjxtREjEYDYhmkWRSw51jw5XnwO8LU1iai6briEYDzlwHsUiMaCjG7j0dFJUWsGh6LRX5DkpL8+jo9xIJRShO79sgiyQVjVgkRjwSR5REHNaDkazFcyeyau0udE3nrPnvreHtwHCAQV8YR14OsXCEZDxBcNjPgpn1fPM/UtYF/1ixmU17u8l1WvEMDBEOx3jlzR0s+/Q8Xt+wl8+dP5fSwhz2d/RzxpyJI/a/r9cDAowrPr5E3KSi8vM/PU9b9yBfu3Ip0xrH/lKaP7OebXs7KCnIoaa8gFtv+gyr1+3m1Mm12ehXlixZjkpWgGXJAlh0lZggI0sC+TYL1cUu4orCYDBKidNGjtWUFkgqBnl0WL7YdbBMe3pFES9s348oCJxaXcy4whye3dBE62AQWRT40ulTuOvFDQBEkwqv7G6j1x9GJOWaP7u6hLnjykbs32yUWTKlZtRxZaOEd9CHxW7BYjWhqtC5vw+fN4QzN9Vo3mxWqSvLo2dfD6ATiSZp3d/DtMoCnt+0j65wjMrx5ZBU0ASBZDyJpusoSYVkPIau6ciSyBtbWijMcbCva5COrkHa0i74m3e1c8ac4+9B88PfP0XY58eRl4PFbkNJJokEQngGvZkxly2ZgVkW+ecr63HZLPj8YWZMrOLvL7yDpuk89PQb3P+Tr4yKwO3qGuTRN3YCsGzhJCYeRyugnc1dGSPXx5evPawAu+DMmZwxewIWkxFZlrBbzVx10cLjvQxZsmT5hJIVYFk+8ez3BBnWJAR05leVMhyLEVVUKovdXDpzPIKQapx90fRx9PnDjCvMGbF9fzDM602p/CyjSUYWRWryXezsGWZjex/1Rbkk0hV8OuCwmCnKc+ALxSjMsdHrT+WUaQCCwJaOgVEC7HBIkoQkSxhkEaNBZrjfi8VmRk2qRENRJFnCP+Sntz3l/9VQXURTWz+CIOC0m4lwMNoW6B8mgowoi6iqjmyQybG7mTupkpc2pCofd+zvpaljgET0oB1Hd7px+PFiMpsRBIHgsBfZZERPL7MOelI5dKqmsW7bfh74x2tE05YZ//fNy5k+oZLv/OxRdu3rZnL92F58h0Ye40n1uOZVU15Afo6DIW+QU6bUHnGsw5bt25olS5b3RlaAZfnEE0ykGzsDwXiSHLOZ4UgMqywjCbCtf5ioomCWJWalq+dC8QTBeAKDJPHizjb84RhWkwGnJAAqrelqIk2HaCKJ3W7GFktgMEh4IjGmVBZikiUmlubzRnMX+we9xBMqggDjiw8KvHA8wQub9mE2yJw3YxzhWII121qpKHAxfVwpybgCOiQVnaA/Ql5xDm1NqRZBsXCMdxOLJVg0pxFZFNi0qwOX20ZgwEN3Wx+apmI0m3Hmu7FYDNgcVpacMp6L5k+kurKYlu4hTptex68eWUUQKMyx0+8J8vzaPUweX8G0huPzCqotzcUTiqKoKrqmEUwkEAWBL122iL88t5ade9rYsXekA77RKCEIAj/99ufoH/JT+i4xfIDpNcWZvLlp1cdX8ehyWPnjbdcQCsfJz3Vknu/qG0YQRMqKxj5mlixZshwPWQGW5RNPQ54Tjz9AjtNJVa6T4bQ31UAwwl/bBqgvTxuFpqNY0aTCy3s7UDSNYocVg0FCENJtdxQV9IOJ9UVOKxW5TlRVw2o1oms6L+1oIRhP4rQYmVNbyty6UpoHvEiSiK7r2G2pNljxpMKDr22nx5uKCJXnOXlreyu72gcQgO9dcQaFFfn4hwJIgEYqaoUOJqsJQRSoyndRXuBiw64O/OEYHX1epo8vZ8AbYsf+XkqqixjsGyYSDGO0mJBkEU1V6WvvZdqiGWzqHOQiYO6UGibWllCU6+CKs2fxx6fexBdTMFlTEaCeIf9xC7BFM8axau1uREkiHolyzoKpeMJxHnphA95QjLAvkBlrMso01JQwaVzqGAZZovwIuV2iIDCn/tiiiGNhNhkxm4yZx8vXbOWuh14G4OYvncvZC6YcbtMsWbJkOSayNaZZPvFYZAmblsQoCPjCMbyxOIIgYLcYCcUTmQ+JlC5ziytqxjBV13VmlBcyd1wZU0rz8fgjeAIRdFJtGg/0ghzwhBgeDjE0HMqUdh/o/eg0G8m3mREEkCSR9oGUAevbTd0Z8SUKUOga3Q4k6A2RU+hG1TQ0RaV1TycWmxEtqZDjtiHaLezv9xJWDi7JBSIJ1PSxo6EoleOrKawowmS1IJtMePqGcRW4keSUsAyEY3znzqf45q+e4J+vbRuRjG82Gsh1Wpk14firp5xOGzZnqvWRI9fN+r1dNPd48IZSkTuLw4aQnmc8obB9byc9A94x9xUMR2nvHhrztRPBW5uaxvx3lixZsrxXshGwLJ949nmCDEoWBgNhNnUNceG0OvqSYfr9YWxmI+MLcvFG4+Sn833cFhOlTju+aIzaPBc5Vgt2k4FIIkkgliChqiR1HZNBpshpJaGo5LqsRJMKFovMeVNqGQhGqMpLJclLokh9route7owmQwExAD7uosJReOZOV5wSgNluQ6+sGRGZgmyLN9JOBBGEFJyz2g0oKk6qgbOAjdmh41AJI4/GEVXdexuO4IoIIkwtb6UgWgcu9lItHeI4d5h3EX5xKNxLA4bsgB1RW7mNZSzp70fTyDVtHv7vm4uPmMqt3xhCSvX72XT3i5iiSRrd7RxwWnHFxV6dUMTheWF9HcOgQDBQAir0w66nhKwoshl58ymqbWHrXs6cNjMOGyjrSaGvEFu/J+/EAhF+fwF8/nChQve2x/CEVj26fls29sJwBWf+nj1m8uSJcvJSVaAZfnEo7zLhyuaUFhYU0aPP0Su1YzdZCTHcvCL3xeN0xNI5Xi9096HDpxSUURtnosLpo3jhe37M4npy2MJrCYDDeV5OKwmqvNdFDisFKR7EB6grjQPdPD7I8waX86vn3wDgPPmjGdKTQlVBS4AXDYzF8w7WHGoqToBTxi7y4YugNFmxGA0oKkakVCUeCyJJEmYLCZkUSDgC7Ni7V6EtXtJRKO4rUYmjitDVRRMZhmby0YyFqO/rRenDiZR5JXdHdhdNgRV5eIzUg7zMxsrUDWNzU3diALUlY3dPPxIXHzaVO74x2qKKvLpbO4kGYuRm+9AstgYSgs+0Wjkf276DBt3tlFTUTBm0ntb9xCBtBnr1j0dH4gAmziujCd/dzPAYR36s3w8iMUTBENRCvJcH/VUsnzCyQqwLJ94Sh0WWj0+ogmNeFLhlV1tLJs9gcocZ2bM/kEvu3qGcZiN1BflIAoCWjpSAzAUjlKbvqGPEHQCqLpOAo1PT6/DajCg6zrBWAKH2YggCEQSSRKaxnc+exrNvR560z0gATz+CP5gBApcbGjq4qFXN5PnsPIfnzsds1HG7rQSCkaIhCIk4kkQQEAgEopgyHGiJhWCvpRY1I0y2oGlUyART9AdCOGLqZRVlSIhIOoKvv5hjBYj/1i5hVc3NpFXUUhRRQG1RW6sRom1W/cze2otp06s4hffuARZEijIOZisfqzkuW04kkm2NHVlnPCnjq+kpqaEPz+7FqMssXTOeAwGmXhS4Ye/+QdzptVx7WVnjNjPtMZKFs4aT1v3IJ//9LFHp1RVo73PQ1mBG5Px6LfCrPD6+NM36OWG79zFsCfAl69YyrWfP+ejnlKWNM888wwPPvggra2t6LpOUVERM2fO5Fvf+hZ5eXkAXHXVVVitVu655x4AEokEv/nNb9i6dSs7d+4kGo3y9ttvn/RNuA+QFWBZPvF0+MNogkQknrI6iCsq3kgs1ewaaBry8tL2Fg50Kmoe9OKypyIxdqOM3WRkQtHBD/zZE6tZubcDWRKJqQqCKJJnNf9/9t47zKry3N+/V929Ty8wM/SOoCAqFrAiJJaoUZPo0RiNRo0m56R5TPI7pn3PMU3NiTGmSDQaE5Mo2BUVAQGl12GY3svufa/y+2MPAxOKIGA57Pu6uGDv9a613rU2s/Znnvd5Pg8CAvXdQbZ1DdAajFJb5OGCSbW8vLOFrG5QZLXwxsYmTBOmjamgrT/C6h1trN7Rxg0XnMw/V25D0w16wnHe29XO6ZNqSMSSqBYVu8tGJplBkET0nI7dacdqV7HaVRLRBIZhkspqeL1Oaku9OK0q722sJ521oisKiXSOs2aOZENTD+V1Vei6QWQgxsBAlHg8ib/UR824Sr76wz+h6wbXX3YmV140m/IiNx+UN9ds570tjTh9XtKmia5pXLlgNj63g9mTalAVGdugoemf/vk2HT0h2ruDXH7+KXjde/PhFFni27d86ojP/9DTb/HOlmbqKgPc9+VFH/g6jjWxeAq7zVIQfMeB9zbuYiCYL+546Y11BQH2MeGRRx7h/vvv5/rrr+eOO+7ANE127drFc889R29v75AA+1fS6TRPP/00U6ZMYebMmbz99tsf8syPjoIAK3DCE7BbaIkkcNgUMrl8svqeZtwAwVQaVZaG/KT2DXDV+D1MLNv7cNAMg/q+EDXFHmKJDDuaBhAAiyixpXkHweTevK6m/ggPvbSWysq8eEvmdAQETEzsTitiZG9j3KbeEPFBuwyAkYP2C+UjiokE44iiiGpTkWQJ0wRRyi83ZtKZYa2OMrpOyqJQ7LTy8PdvoKMvwlOvvMfoqmJ2dIcQFZnmrQ0IgojDaSeTyRAbyKBrGqt3tKEPWjuEBr3LjoZoPIVpmMQG8on1iirjGxRWewRuPJXh1XUNjKopp6MnxIRRFbicw5chH/nLMnY0dnLD5WcxaczhV2I2dQ0A0NIdwjAMxI9B37u/P7+S+3/9DBPGVvO/P/kKsiS9/04fEN0wiO/z//FEYOa0MQT8bgaCUc4/66SPejoFBlm8eDGXXnop3/zmN4feO+uss/jiF784FLU/EG63mzVr1iAIAs8880xBgBUo8EmjwmVnV2+QqJH/AhYARRQJptI4FIVqj4tERY7W3gguVWHaiFK29wbJaTqefRpNa5rBP7c0sMf2M5HIf7mZQF88STCRBkHANE0cFoXeYJxUKoc9lGBqbRkTSv2cVFnE+qZuQok0Xp8TwzApcdowRBGHy46sZFl0yjiqBnPCBrrDlFT4iUQSJKIpVIuKzWUlk8pH87LJ/N8I4HTbcXgcONxWNrf28t6ONmZNGsm/f/5cAG5/4J8AFFWVkgjFMASBk8+cRm93CJffzeSx1Uwp99E7EOWKi2YPu4eGYbJm025KAm7q9mmVdCjkQZErCAKIAj6Pc78xL6yt542NjciiyB//3y34PY5hDYIb23r5+yv5rgI//f0LPPTd64bZRxyKmz59Gi+u2s6cqbUfC/EFsGZDvsJye30bsXjqgPfkWJDJ5rjjnt+wq7GTz1zczVdvvuy4nOfjRlmxjyd//Q1i8RQlRd6PejofKwzDYEdzD+FYCq/Lxvia0g/t5yIajVJScuDnxvvNQfgEN2EtCLACJzyaYZDM5hAECadNQZIk1rT34HFYkEWR6aVFbG3JN6fO5nR8NsuQJ1hrKEbl4JfkazuaGYin8DptmKZJKqchCgIuh4rfaUXW8n0kXaqKphtD0aRRAS9zavKtdPrCcVbv6gRAFEGSJSbXVbC9rQ9FlqiuKmbWuL1Rnpyu09bUgyCAarWQTqVR7SqyIudtLTwO9FyO7pZu9HSK8VNGDi4vxkmbw3+zjASjKBYVQwd/VQnR/ijb3tuJx+/GZzhYMGM04kEedo8/t4I/L1mFJIk8+J/XMfIwkvL7+qMgCAiiiKwomIrCQCRBwOOgpSfE469vQJZEBKCq2LNfnlk6kyWdyeHzOAhFEnT1hXlg8cv8+xcXHvB8qzbs4oHHXqa2uph7b7uUiXXlTKwrP+DYj4obrz4fXdOZMXX0cRNfAG0dfexqzP8/W7Zy8wkjwABsVgs2q+X9B55ArNnawmNLVw9VOwP43Xa+cPFsZk0aedzPP2nSJJ588kmqqqo4++yzKS4+/NZhn2QKAqzACU9DOE5ZsY++SBJVNxAFAVnKCw3NMNg5EGJWTTnbuweYXFHE717fgNNlpcTnZGyxFwDdMBFFgXRGI6gnUSURTTcQhLyBqlWVsSDSGU3g9VhJ5XQ8Hjt+h5Vzp+7t8SgKe3/bs1pVHA4LG9t6GAjnH4ynjavCquz9sbU58tEuQRDIpDO4A24EBCRZwtANSsu8FPnsdOxuIxbOsnNjE4HKYspGljK6YrhIsjrzeWSqTcWlKhRVFXHRnIkUuWyMrS0fEl+RWJIf/+Y5Upkc37hpIeXF3r3tg3SDUDTByMoi+kIxlm9oZPrYSur+RZD1BaM888paBFFAVhUUiwqiwC3/tZh7b/kUa3Z10NGfz9W54YKTOWl0xbD9NU3nrh8+TktnPzMm1gwticYO4P6/h7+/8i7hWJL121rY2tDBjIk1h/6P8REwuraC/3fvjcf9PDXVpZw8bTTrNu3m0xfOfv8dCvyfZc3WFn7+52X7vR+MJvn5n5fx1avPOe4i7Lvf/S5f+cpXuOeeewCoqqrinHPO4frrr6eq6sgMnj9JFARYgROecCqDxaJQ5LZhVUSCkTTpjIbDml/KimVznFZXzqmjKmgPRomlssRSWWyCSMBhI5xM88Tq7ewJDmU1HZtVwW9RsCj5ZbbgQJyBZAZJEhmIpxnUdwQTaX776joumj6KyiIPo8p8XHPGZCKpNAlNp6ErSEckL24kUaDcOzwqIikyfpcNQRDIZnXi4Tg2pw1yJql4moQq4XBaqR5fh67p5DSdzuZuLjh1AhV+F5pusKOjnxKPg8pKPwOhBA6HlVg0icNh54zpo/a7X2+/t5ONO/Itgh5++k3OPn0K8+dMZN3WJop8LqaMzfdnfOCpN2lo7+eFlVt5+FtXI4p7o2eCICANilSX14GsKvS29aBardS39jKxppT1DZ24HVZGVwaG7QsQS6Zp6cwbr3b3R/jy1fNpau/jqotPPejnfNpJY9lS305pwMOow1wm/b+KLEv88FtfYNu2bUycOPGjnk6BjwjDMHhs6epDjln8/GpOnlB9XJcjx44dy5IlS1i1ahVvv/02a9euZfHixTzzzDM8/vjjTJgw4f0P8gmkIMAKnPD0hhIgCRiGiddppaLIhaIMT37WTRNMk7XtvVSWeYnGU4yvzkd1NrX3oRkG8j5Va8l0DqddJZHOsnZ9E4l4mooKH5KqkM1qWK0y1kGBF9FyPPbKer519dkATKgqwjBNlm3YTTyWGqq+nDmqnCL3cP+wRCxBtF8HIZ8rIckSmDB6fCV93WGyGY2OjhCSLKHn9KH+kJbBKNqLGxpYvasTVRbp2NVGcU052ZyOacKI4gP7JE0eU43TbiGdydEaSfL0W5txZNMEIwmCkQTrtjVzypQ6rIMVjBZF3k9AFflcnDpjDG+v3cnAYDK8JMtYrRamj6lgVHUJk0aWYFVkVGX/x5TP7eC6S+eyemMDVy2Yw+xp+wvFf+WSc2dyzuwJ2K0qygGOeSLySc6fKXD07GjuGbbseCAGIkl2NPcc9+V6VVU566yzOOusswBYvnw5N998Mw899BAPPvjgcT33R0XhKVTghMduUegIxSnxOrCpColsDq8ioYoidlXGb7MhiyId4RiaYeD32nHYVXpiefPP8eUBNrb3oukGDlUhlcthGgbxRIZcTiedylDic1Lsd9HWE8HnshGJp/KVi6pMPJamaLC9TySRJpHO0t4f4Zm3tyIIAh6/k7pSPxceQGTombz4Uq0qilVBRMQbcJDL6WSzGk6rSCylYegGJW4rPaaBIAiMrgwQiado6siLn2xOR5MUtr1bjzvgxunzDNly/CsD6RxjRleBJBEerDiorS5ly45WnHYrIyryVaF3fPZs1u1oY2Jt2QGPk0prw17rmkYkGOa1lVt4cHcnRT4XX776XDwu8YCWDFctOJWrFhw84nUgPP9igFugwIlMePAZdqzGHUvmzp3L+PHj2b1794d+7g+LggArcMIza0QxyzUNYdA0NZnRwEhzwfiRQzYApmnyTmve9V7TdCQTZo4sBaDEZeeLZ0xjIJHilW1NyKJIidtBVziOxSJzyfnTWbmxhWKfg9HVARLJDPUtAyiSxMRSH67KEqbWlRGKp/jB46+TymqMrioaOq+W0+mNxln81maunTt5KHo1hAl2uwWHy0Ymq5GIpYlF00iKSMqQsDpsGKZA50BkqDryf/+5ikgoTjaZwFvsIxFN4C8vxuZyYA6G3LLa/uXfncEYv3/+HXZvyj8UL1kwh1lT65g+qoJFZ07F5bAOiRynzcKZJ40+6H33e+xIqgJG3gMM8manDa097GzqYmdTFyvX11NXXcLPv/35gi9WgQLHGK9r/84SRzPug9Lf309R0fA80XQ6TVdXF6NHH/wZ8kmnIMAKnPC4LSp1JJG95WzpCZPVdAyrSTKn4R4UYOFkmj2LNXXFXmaPKMMw9/pr2VSZjvYYsXTeq6sm4Kba52JdWw9rt3eQyelsqu9m3sxaplaX4rPZ2NEdxOeyM3NkPkLUNRAjlc0LkbaBKC63Hd0wkGWJZEajqTdMa3+EMeV7fcckRQQEYuEkugl6TiOdyhAo9WGzWwn3RxFlCUEQEAYT/J1O25CXmYlIZ2MH5SU+EqEIVpeTRCxBeZGH6y+YOXQeTdP50cPP0tYXpnhUFYqqIIsC82eOYdSIvBCtKjsy9+krLj6V5esb0HIa7oCH6EAEXTfYUt+OIIAiy2RzGk3tfWSyOey2D1a5Fk+mkSVpaEn0QPQHY2ze1casKaNw2AsVcgVODMbXlOJ32w+5DBnw2BlfU3pc57Fo0SLOOecczjjjDEpKSujp6eFPf/oToVCI66677pD7vvnmm6RSKbZs2QLAsmXLcDgcjB49+mMv3goCrMAJTVrT2BWOkXX7GBNw055IE8/kEASBZfWt1AW8TKks5k+rt4EJFkXi0imjWLK1kZSmM7W8iPGlfnTDZGTAzcb2PkQBaoo8/O29ejI5HYtVwW5VcDmsdMVSdMVS9ARjmCa809g5JMDqyv3MO2kUK7a3YbNb0DSDZDxNRspSVuajxOOgumh4Xlbt+GoS0SRg0tcdRstoZFMpupJpZFVFEAUEQUCURXKD4tDttlFa5qejrQ8FD+29YTKSiMPlIBGJYXU6CKeyPLlsI+efMo7aEi/tPUFWbWgAYMrYau764U14HFYU+YMbhYYGYoiSiNPuJNwXoqzIQ3d/vg2TaUJO07hw7lROmVr3gcXX2s2N/NdDf8dus/DTb11LxaCB7R4eePRZ/rrkbfzl5WRyGtMnjOSHd1/5ga+pQIFPEqIo8oWLZx+wCnIPn18w+7j7gX3lK19h2bJl/PjHPyYYDOLz+Rg3bhx/+MMfOPXUQ6cZfP/736ejo2Po9be//e2hY95+++3Hdd5HS0GAFTih6Y4liGs6WKy80dyNJAi4rCqZnEZLX5SWviidg2IJIJ3T6Y0lSQ36gG3t6qfc7eAva3eQ1XW8TiuyLPF2cyeZwWU1Ucx7gdkHk+5N00SWRHJa3vLi3d2dnDwqb7MwtrKItmlVWwABAABJREFUNzc3k0yksVhVLBaFulIfN1548lBbnn3paunH7rGhZXWcHifZTBbTNLErIgsvOJm19Z0EgzH6WrtIJ1KDyfowtrqET11yGq+sraejL4LTZsFEwF2UFyipWIKtTT10JzN47BZ03WD82GoSsSQXnj6ZIo9jv7kcKU++vJZkLEkymsDh9ZCTLXiKfaTiSbKpDKYJdSNKmDN9zGEdzzRNNN0YJgrXbW1G0w2i8RTbGzr2E2B/f2Elum6QzmQRRJHECeYMX6DArEkj+erV5+znAxbw2Pn8gg/HB+zaa6/l2muvfd9xixcv3u+9119//XhM6UOhIMAKnNC4rRY6Yvleib3hBMmMhsdmIZLKfxErksiuvhAWRULTDUpcdhLpLIlUFkWWcCkyqxs7SQ22MEpndVyKTDqn43XZicRTyJKIVVXI5XQURSKRytDTE8VuVxlIZlkWSWFKAl39MVq6Q+iajq7pnDqmiotmjUMQGCa+cprO5qZuKovcSKpEsCuEIAgoVoXcYPROlxWee2MzLpeVVDiMIMmD0TARm9POW+/W8+aaHbj8bpw+J51NHTi9bjLxJKo93yQ8MNhiKTIoShzVZVw0cQRjRh44qR4gmc5iUeTDytfq7oshShJOnwdRFNF0HV9ZER5No72+FUPXsSgyT7+wmjE1ZUyfcPAvgkw2x90/epz27iDfvf2yIY+vERV+qsr8lBV5mHPS/kLu3LnTeXHZe0wYWcT0qeM477RJ7zvvAgX+rzFr0khOnlD9kTnhn6gUBFiBExq/zYpsmDT2R0lmNARgZJELTXOimQY53aCpLzLUB7IrkqBr0PTTIosEBxPVDcMAExy2vFAyTRNJFHA7rIRjKXw2lURGQxKgOZTE6bKSSecwDBNNgLd2tBEeNFudPq6SWaMrcTus/HTJOwiCwBfnn0SlP+8Ev/jV9by3qwOLImFoOlaHlUw6gyiKODwOdE1HVmS0rEa4P0ImmWFkXQWhYJx0Okcqnh5KtMcERVUQRYFsKo2ryEs2maZqRClXnzWV3y1ZhdVlx2q35q8/tLc/5b+ybPU27n/0eSrL/Pz825/DZj10S6DZk0fw/Ioo6XgC2WIhFY2SisW45ap5vGnqtHcHeeK5lfQMRJEkkUf+60bKBo1v/5XegShN7fluBW+/u5MZE2tY/M+3+fOSVQBcceGsAy5jrtu8G8MwaWho5/7/vKFgy1DghEUUxY9dZ4j/6xQEWIETnoFIEkmWKPE5EASB2iIfFR4nsiigGQYdoTgvbG4k9y9NYQ0z3zfSBFKpHMlkFj2tMWVsOTomDZ3BoaXLxt4I00aWktbyBq+SmA/xR+NpRFlE1/M+YppuMK2unGl15bxT345umIBJTzieT1a3W2nuzjevzuR0VEVCtVmw2lScTiuSRSXUHyWTymAaOlWjymnb3Ul/TxCnz4W72Iski/S297Pw9EmkdINNO1rz16Fr9Ld3U15TTn9PhPb+MLu35KsdJ04fw7QpdZw/te6g9/GdDQ0Ypklb1wDd/WFqqw5tduqwqmiZLIIkoic0rHYbF58zg7NPGcfLb21kILxX7JmmiXmIY3X2hob+3R/KG9fubOwaem/rrg7OO30KOxo7+d3f3mTS6Cquu3TukBA1zIM3/C1QoECB40FBgBU44QklM4TSWUp9DmRJpCsapz0eRxbzjbNLHA4+P2cSv1uxGciLLkkSqQy4mFlVykA8xYbdXXSbEE5mWL+zg1mTRzC5poTNjT0gCGSyOppmML7Yz9aWPlJpjVgqQzqtE/DYKPI4uOKU8azZ2cGuriBjyvxUB9zIooggQF8wxqNL12BVZJy2vZElUVUID8TQchrh/igWu4VkNEEqnkC1WGmKZ7C77DjdVnZtqMdbEkCxqOg5nSKvE7fLzryTRvPqugaef2UNLq+LeDRFoMjLmqYeRk6oIRGK8eVFc4aqHQ9GLqcP/Vvg/SNJ1eUBDN3A4bQjKQqyolBc7OXx51ayoykvnop9Ls49fTKTRldSfpDoF0B5iQ9VyVdNjqnJL5Heeu25fPunf0FVZG78TN7ccfE/32ZLfTtb6tuZP2cS93/vJt5YsYkzZk8qRL8KFCjwoVIQYAVOaEzTRDdNBBMSaQ2bRaY7lqDY40Ab9Groiieo9bm5eOoo6ruDxLUcpiBQW+Sl0uei0udianUJ/1hXz7pdnSTSOdZsb8fnsaMoMpIg5I8bT9ITTzKjtoydXUESiTTdwTA9XUHsqkwylKR5cInPpiq0h6Jog1G3tbvyVT7pnMa86aN4feNuRlcE2Li7E6tNxeK1MdAXJRmO4PR7qR5TRU9rL9lMDlEEq8NG5ZiRmKaJYZjYVYUtbX3Ut/cjiQLfvOps3tm4i2xWJ5fNoksi2XSWoopiiot97yu+AGyDwlAQGLLo0HXjoPlge6JPqXiSkpGVuN12ThlXxau9A0NjvvGlRUwcXfm+5x5RHuCh715PfyjG1HH5VkgVJT7+8OObh42bNn4k67e1UFnqo8jnxGpRuf6z573v8QsUKFDgWFMQYAVOaDpiCex2C7FBoZLTdKLxNN59LBYqXfmlyRF+N2/sbCWRyeF32mgPx7CJIgoCI0t9FHkclBS7yOZ0EoksqXQOm03B67QNiQ1JENi8q4uOUDy/rGaaiIJAIp1jfUMnXp8LQRRw2BR8hp2+wbww+z75VJVFbu6/+WIAvvHHlwn1RcilsoweXUE6m6N5dzeZVBbDMJBkCXfAjSRLOD0Owv1RvF4nuVyO9sFeirphktN1pkyppb8/TFaHro4Bov1R7A4LX77k9MO6l7d8dj6VpT5qKoqoqy7hD8+8xdMvrmbOSWP4zi2f3i/C5HbmDVsN3aC7sY3rvrSIMr+LqxeeRkmRhyKv87DE19B9KfVRWbq3ynH1xrxtxuxpe72ArrxoNmfPmoAkCryxejuTxlRRvY+vWoECBQp8WBQEWIETGsMwKPHm3d+jyQyGkU+e7wzG8LvszKouw2+3Ypgm4WSKRCbvpRVNZVAtMq9ta2HTllYunzsZ0abgG+zVaHoNItE02axGIpXFxMRhVWlsGyCSyFcVCoKA3WlDNkzC0SQ5TSccjGKxWkhlckwcWUyp18GogJfdbf3sbu9HkSVK/Xsbcnc29xAo9RENxvB47SR7IigWhVw6h6zI2D12etv60XJ72/50xRJE+oJIssR5809m5oSRjCz1sWFTMx6XjWQqg6EbmKaJVRRZ+vYWfvHkMv5t0RzOnnlwSwiXw8o1C08D8j3m/v7qe5gmrFy3i1gijds53E17y662Ya+3NbQjCgJzTx7H+adPOYpPFd5YvZ3/99slAHzjpoWcNWtvM9+SgJtv3f8UGwdbJz32/245pEnr/2X2NRMuUKDAh0tBgBU4oal0O9nY0YcsiYiCgNUmIyAgyxLhZIacns9rerOhnb5EippiDxgmMU3DNE16evPGoU3dIaqq/AxE8hErm0XG7bbR1DaAVCTi9wwKs32+7wxdJxpOUFvqo3p0BRt3deST8RWJ+s4gp46pYmZFfulvVImPMZUB3HYrgX0acvsDbqLBGIoq0bC7m3gkSSaRJpvO5Cshc1kS4RgjasvpDyaQVRlRlAbPbxDuDTLuvBk88/YWLHYrKBLVFeU0bmsmHkrQHAoxEM1Hld54b9chBdi+/P65d5BUlVxO4/SZY/cTXwDhaGLY6+deX89zr6/HZv0MJ0+uPazzHIxEKnPAf//re5lsDl0/MRPwf/TAX3lz5WbuvuUSLrno8KKcBQoUOHYUBFiBExpJFImlspiA1aIgSSKhaBJRFMlpOgKgGwZ9iXwzWg2TBZNqWbqtCc0wECUBl9tGoNg1rErPalGQRBGEfKujVDpHJqeh2BRcksCoYg+9PWG2hxKUFbnZ3h3C7XPisalE0zliqSyvbWpkzpgq6srzLX7cNgt/f30DVaVeLpwzEQDFplJksxCPxAkPxLG7bGQzWSRJwFPkQbVaKKkuoXN3F8lIFE+JH9Vuw12UP+aazY30/e4lDFkmFoyRc1hprW8jGdlbgShhIisK804Ze9D7GE9leOndXRR7HJw5tZaR5X7aekKMHFHGN7648ID7iAdIehcEcB6DVkAXzp2aN1cVBC44Y+p+279x0yJeeGsDMyfVnrCth9ZuqMcwTd7b2FAQYAUKfAQUBFiBExrDNMnmNLKajkVVkE0Tt9NKKp2jpsRLiSvv+D65PEBLMEoqo/G7tzchiiKKLOILuHD7nDjsFkKJNJBPLu/pi5JM5RAEKHLbGUilSWVziKKA1arQEoqxu7kXgHd3tmN1WpEkCcEUsKsyqZzGu9vbWLmxiZsvnsXkmjKeePFdVm1uAmBUVRFjqksI94Rx+Z2kkmlcPieSJOL0uLBWFKFndU6fXMNzr29AVhWqxo1E1wwS0SSjKgNs3t6MJAgYg7lusiqTiCSw2GxYbRbSySymaVBXVcz3b1nIY/94m7dWbeHGK87eryLxHyu3sWpbKwBlfhc3X3o6584aR0WxB/kg7Yo0Td/vvYvOnMb4uoqj/lwlSeTyC2YddHtlqY8vXnHOUZ/nk8x/3Ho5Tz/3BqUlXpLJNPZBr7cCBQp8OBQEWIETmnXtvUiiyIQRfkzDZFdnEGWwefWMfRzfJ5T48Vst/OXdnfk3DJ2cruN325ElkRKXg+aBPX0MTbScgapKWGSZlKEjyxI+t52BcALdMDFNcHtsxKIpBEkkEowjiAITJozgM2dOYd2uTha/ug6A3764FutghAry7vzuwS/LZDJD+YhiiovchMMJ+nrDONwOdN0kEoqxZNlGZEUCTAxNIx5OIkkiO+pbUUUBT1kxviIP6VSW2ppiXG47PX0xcprO7i3NSKJAsD/EMy+v5cmleVPTdCbHfXddQe9AlF1tfRT7XTiseysgbYORxLEjDu0DNn1iLS+t2DL0WhAErrv0TFq7BvjZ71+gyOfi6zcuwKJ+ePlZG3e0sqW+jYvOmobf43z/HT7BnDpzHD958Gk27+hAFCRu/bcDRyoLFDie3HLLLTQ2NvLyyy8fcPvixYu57777eOWVV8hms/zyl79kw4YNhEIhfD4fEyZM4JprruGss/JWMytXruTpp59m48aNDAwMUFlZyWWXXcZ1112Hony8cj0LAqzACY1hGOR0nfr2AXTTQETAKktE42nkwSUywzRZ3thBVySOKOQNWCGfzzUQSeK3Wdja0kM6q+G2W9B0nWQySyqRI0EWt9uGy2FBFAR6+2KIooCqyviLPMhqXrhYLAqTq4r5zNzJqLLE7PFV5HSd9+rb2dUxQELPDfWf/OwFMykNuIcqK7dvaEDLZAlUFlM2ogRZlgn3R9E1HVEScfndJGMJrLqOO+BgV3MPuXQ+ByrZ3Ek0HCNQXoyz2M32TU3INgvJWD6al06l2d0VJRbfm6/VF4yyaWcr333on9jceXf+b11/HpXnzSDgtlNdPLxh+MH41wiY3aritFt47B/L2dnUxc6mLubNmXjYvSD3MBCOk87khlVEHg7xZJp7f/HXvPhs7eXer1x6RPt/Eikv9bK7pY/aQ7SXKlDgeLJw4UK+9rWvsWnTJqZO3T9dYOnSpUyfPh2AK664gnHjxvHNb34Tv99PR0cHb775JmvWrBkSYE8++STpdJo77riD8vJyNm7cyAMPPMDu3bv50Y9+9GFe2vtSEGAFTmhmVpeyuz9MKqNh6gKjKv1sbuimP5QgOygQtvUN0BvP54XVlvowBtsTAUiiwM7WvJ3DpJoSWvsjZHM6FotCKpVDVSQsSn4JTtcNFEUik9EwTY1kMoskCsiSiKBIbO8J8fbONuZNqsnbXhR7UCSR/kgSTdcJ94WxWRSmj837XAmCgKyAx1+EbFHQNZ3e1h5yWY10OoMsqxi6QTwcQ8vmaA5FcLhdWGw2tGwWq82CK+BFlCSsDivt8TT1m/LWDQgCqqqgDFYH2n0eGMhH4AaSGV5fu3NYzlsqk2PWpJojuvcOq0wuk0Gx5HOwEqkMf3/lXU6eXMtLyzfhcdkP2XfyQDR39HHXD/9ENqfxrZs/xRkzxx32vrIkYrUo5DT9mOShHYh1mxroD0WZf8b0w+qXeby57fPnUD2ilrLSoo96KgU+YgzDpKFzgGgyjdtuZXRFAFE8/ubE8+fPx263s2TJkv0EWHt7O+vXr+eee+7hb3/7GwC///3vsdn2FvVcfvnl+VZwg3zve9/D7/cPvZ49ezaGYfDzn/+cf//3fx+27aOmIMAKnNBIokit30VbJIHLZiGWzmIKAhfNHE2xO5//lcxq+BxWkpkciiQypboUu6rQ0BtCVWQkUUA3TCaWB9CyOXZ2htB1A7tdwe2ysbOhG0WWyOk6hm4gyvJQ5Z1umATcFnoH/b7WNXYzb1IN21t7eeifqzCB82eOZm19B2NHV/DFi2ZRXuQGIJ3VsLlchPrCCKJINp3B5rBiddpw+lwIiNicVnas3Yah61iddhRVIR4eQBQlvnTNeaxp7cMiS8TSWbSchmK1kEtnEIBPzTuJnbHMYJ/IvZWEkizj8nuYOb6KgXiGc+dM4pSJI9E0HUkSD9tRPqabZONxDE1DsVgQZZn+UIzLzj+FJ3/2FRRZQlGO7BHV1hUkk81bbuxu7T0iAWa1qPz825+jvqWHOdNHv/8OR8imbU3ccc+vAejsDnL9Vece83McKXuaoG/d2cLEsSMK3QBOUDY0dPL08s2E4+mh97xOK1fMncL00Uefk3kobDYb8+fP54UXXuCb3/zmsAbgS5cuRZIkFixYwIMPPojT6Rwmvvaw7z4HElgTJkzANE36+voKAqxAgY8LDb0h1jT2YLcomIPtc8pL3CDt/SIaE/CysaMX0zQJp7Osa+9l3phqItksmmGycPY4RvpcxDI5gjkNRck/DOx2C5puEI0mUS0KiiiiqBIWm0o6nR2ypIilsrgcFtIZDbs1/yMZjCaHIkwvv9cwNJeOYJTKwSU+VRZxe52IYv6311hIwDDAZrUQ7A0jKhLJeIriqjJ6WjtIx5MoqkJRaYCqiiJa+yKUmRq1xV5WNvcRDCcori4D0+S/b7mYRFZn2UPPoqgyVlXmc5fM5dm3t+AtyZvO3njr3iW6levq+fEjSygNuPmfb1yDx7XXKuNgjK4uYdLcWfR19ZGKxjF0YygB/0CNsw+HOdNH8+n5M4nGk1xy7swj3r+8xEd5yZEtXR4u8cFKWoBYPHlcznGkBMMJvvM/DxBPpLlswWncfctlH/WUCnzIbGjo5JEX1u73fjie5pEX1nLTRaccdxG2aNEinnvuOVavXs2cOXOG3l+yZAmnnXYagUCASZMm8cQTT3Dvvfdy9dVXM27cuGHC61CsW7cOVVWpqqo6XpfwgfjoY+AFCnyEbGzLVyImMzlisRSSkNdebZE46UHzUp/Nyo72AeLpvAlrwGFle3sfb6/aydp3d9PREaTY7aChL98Q2uWyAQKhYJxcOseEseVUVQcoq/JjdVix25Vh1geJVI5gf5RMKk2tNx/dmj1hBOOri4fGSKKAz2ljTOXepSJRFOlp70XL6QgIePxO6kaX4fA6CPX2EwuGsdhUiiqLCFTmE+JjwQjRSILOgRgbGrt5ec1OfvqHF/FY80uNNoeVonI/d/7kCaqKPXxq/nRGVBbx5cvnMmn8SAIVxUiyTPRfvLXeWLMDTdPp6Amxo7HzsO69gkl3SzuGpmEMRgR3D34eHxRZlrj5s/P49y8uPCwR+GFy2ikTuetLl/D5K+Zzw9Xnf9TTAaCzJ0x8sHp3w9bGj3g2BT5sDMPk6eWbDznmr8u3YBjH17D39NNPx+/3s3Tp0qH36uvrqa+vZ+HCfHHIpZdeysKFC3nqqae45JJLOPnkk7n11lt57bXXDnns5uZmHnvsMT772c/icDiO63UcKYUIWIETmsmVxXRG4iiSSM40GYimcDssiKJIKJXBC4gCFDntdEcTjC7xMjbg5dE3N5LJ6oBOPJWlPRwjmM6AYSKKAl6vHYsiUT7oWt/cE8E0TVKpLMlkdtgcRFHA63cxtszPrPFVaLrBP1duw+OwMnt8NVZV5lOnTsCiyvstEXl8LkRJJNQbRFJktIAXTdOw2K1kEilatzei2mzYXA4s9nxLJNVqRVZlBCCbyi8xmukMkb4QqkWhc3cbqViSzU2dXDF3ClfMzbvS64bBWVNrCcVSXHTK8KW9C8+cyqadrVSUeJk8pvqw7v2jT79BOrFXyPk9ThacNW2/cYZh0tDaQ3mxF5fjo7NKME2TN9Zsx2ZROfUDLlFevvCMYzyro2PcqDJmnTSGxpYe/u2z56HpOrpufKiVpwU+Oho6B4YtOx6IUDxFQ+cAY6uOX56gLMtceOGFLF26lHvvvRdVVVm6dCk2m43zzsv3apUkifvvv59bbrmFZcuW8e6777JixQpee+01br31Vu688879jhuPx7n99tupqqrirrvuOm7z/6AUBFiBExpJFnFYVRLpLJhQU+olZ5jYLTIN3UHWt/VS5nfRPWhMuqNzAJckY7UqlFf6Qdexeqx0RxOIokhZsZvt9V0MDMQo8juYUF2EIEA2laM24OGVWBPJbI5x5QHGlvtp6A7SE0kwEE/zblM37zZ1M6ncz/JNeb+vyTWlfP7ck2jtDWO3qhR7hv8GF+4dwBXw4vC6ScSSeH12MqksZTWVRPpDZNNZFIsFi82Cw+MgGc0vfZmmyWWnTyIzrYbqsgCLX3oPw4B4NEE2ncVT4ufPyzbhcthp6g0zc1Q5bpuFK8/av0oJYMbEGp782VeO6N63d/QNVXLquRwzJo6kNLB/BeVDj7/MC29totjv5n+/d/0HXp48Wl5ftZX7f/8CAD+8+0qmTxh5RPtrus7//mEp/cEot9+wiKIDXOuB6O4N8u7GBuacPJ6Az33E8z4Uiixx3zc+j91up38gwpU3/ZBwNMF//+eNzJx2ZNWnBT55RJOHFl9HOu5oWLhwIU888QTLly9n/vz5LFmyhHnz5u0XtRozZgxjxozhS1/6EsFgkBtvvJHf/OY3XHfddXi93qFx2WyW2267jUgkwlNPPYXd/vGKiENBgBU4wUnlNHxuKyYgiwJORWLGyHKsssyTa7YDoJsGNotCKpMjFIqzpCtEeVUA92B7oY5Igr5IEkEWKPE5KS1yYbOr2O0q0VSWVCbHlsZePDYrNotCIpOjoTvEqk2NmGY+Aubxu4aiW5v2WYbb0tzDH19Zx9qd7ciiyL9feSZVgzlgpmlSNbqSpu1tCKKEpEjs2LAbT8CD021jRG0JkXCCzpZudC2HaepYHVZUq4rFojBuRAmVgwn91woCP/njK4CIv7wYp9dFkcfBH9/YiGaYNPWGuWHe9GN678eNqaahcVW+QMDtZtma7Zx3xhSmjB0eQdu+O7+k2ReM0h+OM+IjEmCStNdQVpYObC57KN5evZWn/vkWAC6nja9/+fL33ccwDL78jYfoG4gwamQ5f3zga0d83sNl2642evvz1b0r391eEGAnAO7DNN893HFHw4wZM6isrGTp0qUEAgHa29v5zne+c8h9/H4/l112Gffddx8tLS1DAswwDL7+9a+zdetWHn/8ccrLy4/7/D8IBQFW4IRmfImPHV0D2FWZWCrL5vYBFFmh2u9idm05a5q7KHXYyGQ1+nqS9PdGqSjPJ2kL5I1HDRMsFpm2njDJjIYkClgtMoYJjZ0h+gfy0bOtXQMks/k8snRmbxK+aZhEQ3EcbhuyLCPJMiNKvbT2hAFoGfxbMwx6wvEhASYIAi27urG5HCSiCXI5DUVVCPZHcHocJGMpslkNT8CHlkpR7nNg9XqIxZOIyRT3/upZ7BaFf//CuUwdU4k34CLYF8LhtqGl09xwwcn88oW1gHnAtkFHiySK2Dx7o0C6bvDulqb9BNiNnzmbxc+uYNq4akaUB/Y7TldPkOa2Hk45aewHEkaHy9mzJ2C3qVgtCpPHHnkyb2V5Ub4aVtOpHXF49hqGYQ4l7IdjifcZfXTMOmksZ546mWA4xiUXzXn/HQp84hldEcDrtB5yGdLntDG6Yv+fu2ONIAgsXLiQxx57DKvVitfrZe7cuUPb+/v7KSrafxm0ubkZYNi273//+yxbtoxHH32UceMOvxL6w6YgwAqc0IRSGVx2lV0dwaGqw+ZghM5YgvPHjWTuqEpe2NpEJqdTWu6hssJHVtdJZTRsqszoSj+abhBLZYkmMqSzGqIoIgigKsJgPpgNXTcQRQG7I98XMpfTEYS8Ieulp03guXd3IUkSLqtKuc9JOpkeEmDBRBKrVWVGXRmTRpawZkcbFQE3JV4nVqeVTCJNUZkPl91CTtPRRQnFomAYJoaeQEansqaUrKYTy2lgUWlo6MQ0IZXVuOvHT3Dr1fNIpjIEKkrQshmuPHcGXqeNf5s3nda+CNNrSg95HyOJNEtX76DY4+C8w2zY/YVL57JifT3JVBZRknDaLZx/+pT9xs2cXMvMfZpzR2JJ1m9rYebkWjRN49+++jPiiRSXXDiHr9/6/lGlo2HW1FEfeN8xtRU89uDXiUSTTB5/eMuXsizx43tu4I0Vm7ho/skf+NyHg9Wi8sNvX39cz1Hg44UoClwxd8oBqyD38Jm5kz8UPzDIL0M+/PDDPPPMM1x11VXDnOt/9atfsX37dhYuXMjo0aPJZDKsWLGCJ554gnPPPZfKykoAfv3rX/Pkk09y4403oqoqGzZsGDrG6NGjcTo/Ph0uCgKswAmNiYnLbmFqXQnNPREEBFRFxjRNVjd2sKMriCAItLf2Y7UqGLpBeVX+t8FoMk0smcVuVRiIJhFlkUQ4i8OhksnkaOuLEgi4kBSZXE7LJzdb8on0docFm93CxKoiZo0fQVI3CcaSzJ9SS4nHwV/e3DQ0R4vVgsWqctrkGv66fAurtrWiSCL3fn4+6XgaE5NYOEl4IEL1mGocFpV0MkVHfQuxUIy5584gEklSWealN5ZB0zSyqRSyxYqh66RTGR77+3KykkI8FMU04aUNjUT7wnT1R1hw1rShVkMH458rt7F6RxsAVcUeJrxPGyKAgNfJYz++ib+/sgqPv4jJtRXc96t/oCgS9952KUU+1wH3+/8e+jvbd3cyfcJIbrny7CF7h86egcP6zD9KqiuKqT7Civ6Tp43h5MJyYIHjxPTRFdx00Sn7+YD5nDY+M3fycbeg2JexY8cybtw4du7cyaJFi4Zt+9SnPkUmk2Hx4sX09PQgSRKVlZX8x3/8B9dcc83QuBUrVgDw6KOP8uijjw47xmOPPcbs2bOP/4UcJgUBVuCEpsRhZ1tHH32JNDndwKkqROLpvGlfNj40rqo6gJbVcLlsZHUDURDIZHTWbGmjrNiFosqYQFnAQe9AHE03cTqtGKaJ0ybjcuVzKBRRZNpIF73BGD0DUap9Tl7e2ULK1IjpGjs6+umNJBhXXcybg4n4U2tKqSv3U1vq46W19QDkdIN0VmNkpRfVaiWXy7FzZwd97X34y/yk01kqRlWTSWXo6I4QCcdB00jHE+za1YGhG5wzu5qegShTZo+jdyDC7kgq766vKgiiwCNPvwHA1l3tPPTd6w95Hz2D1YmiKBxxvsj4Ki8TJozhz8+voaUz31XgrbU7uOz8Uw44fk/iPpiMqCrh67dezpbtzXzhyo/e2LRAgU8i00dXMLWu/CNxwv9Xnn322QO+P3369KGWRIdi8eLFx3hGx49jIsB6enpYu3YtAwMDXHDBBZSVlaHrOrFYDJfLNSx5tUCBjxOCIJBM5+gO5fNrJlUWEc1ksSgS21r6SKW0vE2DaWKxW8gO+lVJkkCxz0Ef0N0XY0J1EePKvazY0UqR34lhGGQNA103iETS2O0qhmEwo66cHa397GrswjRh+ZZmRo3L/4apKDKvDIqui2eM5quXnY6uG4zfJ5p01VlT8btsjCz1URFw0xNOkYj0oqgKsiJisVrIpnO4XA6SyTQmAtFIgkwyzcZ3dwwdR5QkLp43g4mDxqe6YXDTd35LfzSBr9hHW30LgpC/bo9rf+fpf2XRnAmMLPXid9mHEvsPh2xW43/+vJac/g5nTB+FqsjIssi08SMAyGRzLH93J6NGlFBblb8P99526dASJMAlF87hzDlT6B2IHvZ5CxQoMBxRFI6r1USB/TkqAWaaJj/+8Y95/PHH0TQNQRAYO3YsZWVlJJNJ5s2bxx133MH1119/WMdraWnh0UcfZePGjezatYu6ujqWLFmy37inn36a3/72t3R2dlJbW8tdd93FOeecM2xMLBbjRz/6Ea+++iq5XI65c+dyzz33UFIyfGlk3bp1/OQnP2H79u0EAgGuvvpqbrrppmF+S6Zp8sgjj/DEE08QDAaZMGEC3/rWtw5LjRf4+NMV3pvcHIokGFtVhNtiobMvhjZoQCjAsN6HdlXBaVGIhlNkRIGTRpbxzo5W0uksskVBAGRFIpnMYRgmfpeNlKazsydEMpPDYlXJpLPUlPoY4XGytaOfnv7Y0PFFURhmuprOaUiiiM9lG7KC0HQDURDxFPlIxdNIskAqlSWr63S39mCaJjaHBW+JH9eoCjRNo7e9n3QygyAIpLM6S1Zt57UNu1ElkTET60hta6Ky1M+lZ0ymrrqE/lCM2VP3el6Fognu/cVficRS3Pq581iyYhuyJHH3tfOYWlvGhvoOZEGg4jAbct99/1+JRPLXvezder7w6dNZcNZ0bINLnv/759d4+e3NWFSF3//oJrxuB163g3NOnTh0jGQqw1e+/0fCsSQ3XXkOl553fHOlChQoUOBYcFRO+L/97W957LHHuOGGG/j973+/z9IAuFwuzj//fF5++eXDPt6uXbt48803GTlyJKNGHTjZdenSpfznf/4nF110EY888gjTp0/nK1/5yrBEO4CvfvWrrFixgu9973v8z//8D01NTdx0001omjY0pqWlhRtvvJHi4mIefvhhrrvuOn75y1/yu9/9btixHnnkEX75y19y/fXX8/DDD1NcXMwNN9xAW1vbYV9bgY8nraEooWgSu0XBZpHpDyV5fkMjL25uRJUlFEnE67LhdFjIZjUy6Rwum8KMkaVcMn0MX7noFKZUl7B2dyeCRSIWz9DfGyGbyZJO54b6I2YzOQQgk8nhs1twOG34ijy0hROopkBvb5RUOsfMujK+cNYUZo2uHJpjY1+Y3y7fyB9WbB7mQK/rBslEing0AUJe8MmqhJbTkBUZPZvF7XOTy2oY6Qw9rX3k0lmmT6jmzJNG8+72Fv65YgtZTSeeyRETBEZPG4PkczNzSh1TxlZTXeZn444WsoNdAf703Cp2t/bSH4rxl5ffo7FjgPrWXtbtaOPPL73H//zpNb79q2fpDcb+9VYfEPNfDLazOX1IfDF4vyDvoaXpBgcinc0RHcwD6wsWomAFChT4ZHBUEbCnn36aSy65hLvvvptQKLTf9nHjxvHWW28d9vHmzZvHuefm8zi++c1vsmXLlv3G/PKXv+Tiiy/mq1/9KgCnnnoq9fX1PPTQQzzyyCMArF+/nrfffptHH32UM87IO0/X1tayYMECXn75ZRYsWADkk/R8Ph8//elPUVWVOXPmEAwG+fWvf83nP/95VFUlk8nw8MMPc8MNNwxF8mbOnMmFF17Io48+yve+973Dvr4CHz92dAfx+Ry0tQ8gigITakshqhFOZggn82InFE0SDqfQNB2LKlMZ8DClopi0pvH85kY2tPQA4FRlRtWV0NMTIRRK4nBaMc28UNrV3IvP60IzDKLko6qCIBBNZfj7mp3YLQqXzR7H9Jqy/dzuW4NRDDPvWdYTTeIe9MH62Z9fZ9rJY4gmMmTTWYI9Ibx+Dxa7SiqapLtdINgbwVvkRnXY+PTCmUiCQHwgyZJlGxEASZWRZRktpxEPxXH5XYT6Qtx8z/Dk1TNmjuO8M6bw9ubmoaXJgWQGWZFw261MGVXB+p3tQF5ErVi/i9OmjaK06NCRsJ99/TPcct+fyOUMzpw5isvOHx69+vI15zKioohxdeUHTcr3e5x87/bL2d3aw6J5Mw7rcz+W/Pnvb/C7J19h2sRafvjt61GPsIF4gQIFTkyOKgLW1dXFSSeddNDtNpuNeDx+0O37TeZ9Gmu2tbXR3NzMRRddNOz9BQsWsGrVKrLZfIuXt956C7fbzemnnz40pq6ujgkTJgwThG+99Rbz589HVdVhx4pGo6xfvx7IL1HG4/Fh51RVlfPOO++IxGWBjyfZnIYkS1RW+ampDtAdTSIAVb69pcqCIOByWfB6bNRU+YmkMrzb2ElXLIHTriJL+f+38axGd18MUZGpqPBTNzLvgp9JZdGyOllNwyJLpFOZ4euZ5HtRvr2j/YBznFZdQrnHwahiLzX7CJreYIxdW5tRsll6mrtIJTL0dPSRSWVo2t6Ep9hDaVUx/lIfsViK51/dzEvLdxDe44YP2OwqNqvMFy6YiRiLsf6N92g+QE/At9/byfcfeAZFUXAXB/AUB/AEPIwcV02gIoAoi3zuopM586TRlHvtPPLka9z+X48Rjaf2O9a+qKrMVy6bwS+/eRV3fuGi/Vrg7Gjs5Pk3N/Dy25sP2Y/u5Mm1XLXgVOzvU615PPjdn18mlcrwzns72Lil0E+xQIECh8dRCbBAIEBXV9dBt2/duvWYOtA2NuYfbrW1tcPeHzVqFLlcbmhJsLGxkdra2v0iCXV1dUPHSCaTdHV1UVdXt98YQRCGxu35+1/HjRo1is7OTtLp49+iocDxQwMsioTTZsm7qpIXJgP7tN4odtuYVFPCyAofqiojiQJv1rezqaELp03lzBm1fOrUcYiiMBQdiifThKIpHHYLkizi8TsRRZGcrmNoBrFognQqg67pQ+fpjSSGkvD3xWe3csXJ47l46igUae+P7K2fmUs6nWPnznZ0BGwuK74iD5lkBquqIudyOK0yvR399Hf2o+U0nIrEFxedyteunceE8ZVMOmkUI0eXU+xzItqs2FwOJDlfNCNKwx8PhmFQV+LirOl1zJ1eS011MdlsjoFQnO2tvRT7XNxy+Rlo6XzkMJ5ME0sc/OcjGIlz2/+3mB/+fjlf+u4feWdDw97PRdcxTZMX3trIQDjOW2t3fGyXF6dMqAHy7vY1Iw7tl1agQIECeziqWPl5553Hk08+yWWXXTZkbrZH9Lz99tv8/e9/58Ybbzz6WQ4SieTbZLjdw6us9rzesz0ajeJy7b9c4fF4hpY1Y7HYAY+lqio2m23YsVRVxWIZ3v7E7XZjmiaRSASr9YO1achkMuh6/gs4lUoN+7vAh8OUEi8rWnoQBCj1OjAME4siEdmnSXQokcFntzCxxEfDQIS+SBLDMFhb30H4nZ2cP3MUpZVFLDy5jjd35tvmyHJevCRTWWRFRlEkcjkdm6owfryfbR3BA86nYyBCMpk8rLlXBJwoVguZdBZJMNCzOqH+MHrOwFXsw18eYOOqzZSNGoEoCciySCgaZ922Jjo6+1m7cgsjRldi5jSunTGamGZQOWYEFquCRRb5t3OmYZFEbv/RE2RSGdwuO9PHVvLbv+Yjv4vmz8ApivgCLkaVutm4s4U/vbiOohIffo+dyWMq8bksB72eFe/uoGewctE0TTZsb2Lq2Aq27Gjh2z9aTJHfxQ2fu4hdzd2MryvHYZUP+958mNx711Vs2t5CTXUJDpvysZzjgUilUui6QVd3P+Vlheq3D5ujfeZnMhkMw0DX9aHvkQKHx558ddM0P9C903UdwzBIpVIYxoFzUw+n9+RRCbA77riD1atX8+lPf5qTTz4ZQRB45JFH+MUvfsGGDRuYMGECt9xyy9Gc4v80B8px29NWocCHw0AWFFOhubWXsNOK2+8hksygDyZ8uySY4jRIRoP0WmRcNguxSAJbLktrOIEJLNvSwtrWfmrKvUyuKWbdjk7imo7TaUGWRPqDUdxuG6auc0aNg1AihlXLkJZV8vWV4FZF7LLASGuO7du3H9bcTdMkGUviKfKSTqWRFAmr1YaAgMNlIxJNkM3kaNvRxIhxI1AsKs1bG/nnsnWQSaPlNBq3t3DluZNoadpNOpFClCTCvSGqR1fQ39XKQCSNze3G5obKgJ1oeK/ZabC/jwVz8gah7c2N/H1lMx19MTqAK+fWUl2kHPJarEIKu0UmmdEoCzgZWaTy4188QUvHAOlMlvauAWLBHu66Om+cuHPnjoMe66PGoUJfTwd9PR0f9VQOm2xO46e/fZmu3ggXnzOV88+c9FFP6YTkaJ75siyTyWTef2CBA/JB710mkze03rNCdiBmzpz5vsc5KgHmcrn4y1/+wu9+9zteeuklLBYLa9euZcSIEdx222188Ytf/MDRoQPhGewbF4vFKC4uHno/Go0O2+52u+nu7t5v/0gkMjRmT4RsTyRsD9lsllQqNexY2WyWTCYzLAoWjUYRBGFo3Adh8uTJwyJgzc3N1NTUYLO9v+9SgWPDU+sbSGc1Tj1lLImMRltfmJyW/+1ocrkPTHD7nLz53m5mV+Rd7EdWFlFR7EWSVdr6opiDPncNrX0oqsyISh/vrmsk2A8CArpuEByI4fY6Ka0awdKX1hNNZrDYDBzO/GcdzRqYhsiKbQNce8FJlAUOz0vL8vx2dE3D5XWQCKdIRPKO/E63DafXha8sQCwYpa+9D13XESWRS+bNJOCy8eCfXyctipgVVdSNqcXla8UwdEqqirFoOqu397O5K0IqGkdSZCyCgysWnoXD7SOWSPPp+Sdhs+zNuepKyDS+vB6/286cmVNx2d+/afbkiWNp2N1EfUeCJW/sYOPmXQCUlfiZO3sCF557xn6pBAWODTsb2ujqzUf6d7fl7XUKfHgc7TM/k8nQ2dmJxWI5pt+zJwKmaQ59p3/Q54ssy4wYMWK/1bEjOsYH3nMQq9XKrbfeyq233nq0h3pf9uRhNTY2DsvJamxsRFEUqqurh8atWrVqqNJsD01NTYwdOxbIhwfLy8v3U7BNTU2Ypjl0/D1/NzU1MX78+GHnrKioOKr/+Af64Gw222GFLgscG5w2lVg6x4bdPVgUkX2dDrZ05St7t3SHiKVzbG7ooSzgRJAlsprO5AnVTJkMjR0hgtEkfcE4G7a2oSgSxWU+bFaVWCzFQH9+GVtWJBx2OxaLDMkMxr/YKvRFU3Q09/Dae43cdMlphzV/f5Gb3s4QqVicXEZHtVkRBZGGzY2UVJfiKfID4pDdQ3WJh5gpsHxTC2NnT0QzTWLZHHHNRNN0FFUhEUvR2R8hHgxRPqqaTCoFKVDkEhwOB1ccpFHzwjOncfr0MditKhb18B8tb7zXxKrN7WT3WYqJZA0CpfnzFTg+jB1VxZwZo2jrCvNvV59/0OdOW2cfDz/2PKXFPr583cXIcsFY+1jyQZ/5oigiiiKSJH2izc5vueUWGhsbD2pZtXjxYu677z5eeeUVstksv/zlL9mwYQOhUAifz8eECRO45pprOOusswAIBoP86le/YuPGjWzfvh1FUYaK6vawJ/AhCMIHuneSJCGKIjab7ag0wFEl4Wuadsgqx3g8Psx362iprq6mpqaGF198cdj7zz//PHPmzBmqZjzzzDOJRCKsWrVqaExTUxPbtm3jzDPPHHrvzDPP5LXXXiOXyw07ltvtHqrunDFjBk6nkxdeeGFoTC6X4+WXXx52rAKfTKp8Lkr9Top8dmRZxm5VDjjO7bbS1R9j3Y5OIoP90nKpHFZJoqzIiabr+Fw23B4bbo8dVZUJhhJouonH50KWJVyKRJnPiSHLuL1OnO69D11VEpFzGrIkMmNc1UHnq+sG63e2D+VOZXI5yqqLsDns2FwOSquLKa8tpXbCSLoaW2nf2YSiSjhcVqx2lbETR/LmtlYiyQwD4QSGplPldVLucRJs7yEajBINRpk7fRSXzJuBnkwxflIdF519End84YKDzmv77g6+/L3f818P/Z2v/mAxP//jiwesWkymMjS09AzlYKQyOTbuzrcfUm027F4vdp8PxWLhtRWb9tu/wLFDEAQ+u2gWv/vZnZx+ysSDjvvZw//gjZWbeeqfb/HSG+99iDMscCKwcOFCWlpa2LTpwD/vS5cuHTI9v+KKK+jt7eWb3/wmjzzyCHfeeScWi4U1a9YMje/p6eH5558nEAgwefLkD+MSPjBHFQG77777ePfddw/oVg9w9dVXM3v2bO65557DOl4qleLNN98EoKOjg3g8PiS2Zs2ahd/v5/bbb+frX/86I0aMYPbs2Tz//PNs2rSJP/3pT0PHOemkkzjjjDP49re/zTe+8Q0sFgs/+9nPGDduHOeff/7QuBtvvJHnnnuOr33ta1x99dXU19fz6KOPctdddw2JOYvFws0338wDDzyA3+9n7Nix/PnPfyYcDh/TAoMCHw0ORSGZzmIYJqoqkc7kf2EQBFAkiSKPDdOEvkiSQEBE1wzC8RTpTJbdXZ2MGp9v5TOiMoAAdPRFiERSpFJJGFx+FDCIRZPEokmS6Swn1Zaxrmn4ErnfZeP6edMo97r22lqkszyzegeiIHD5qeOxqQp/XLqaV9fsxKrK/M9XL8XpctGxuxMEAUkWSSXSZFNp4pEEdVPGkk6mScXTyIqCza2yb7A9mciw7s2NfOvGi5AlEX/ASzAcQ5IkcqkUX/78+dxwmPfxqedX09LRP/S6pbOfC86YwoRRew1lNU3njvsW09kb4pJzZ/Klq+bxj2Ubke0OxGwOdAN5MCpsGga7tu9m+65WJowZcUSfaYFji8+zNwrp9TgPMbJAgSNn/vz52O12lixZwtSpU4dta29vZ/369dxzzz387W9/A+D3v//9sCXbyy+/fFgi/Lhx41i5ciUADzzwADt37vwQruKDcVQCbPny5VxyySUH3X7BBRcctLHmgRgYGODOO+8c9t6e13u6mC9cuJBUKsUjjzzCb37zG2pra3nwwQf38yP7+c9/zo9+9CPuvfdeNE3jjDPO4J577kGW917yyJEjefTRR/nxj3/Ml770Jfx+P3fccQc33DD8a+emm27CNE1+97vfDbUievTRR4eWPAt8ctnZNUAsmcVmkRF0k2xOz4sRjx0BMExIJ7P09cdwu23YbAq5dI6du3s4d8Zo9sR/8zkFOURRxOdzIEkCyWQWRZFIJbPEo2msqoyqyFw6ezwum4WVO9vQDROLVSYrwhOrtnFqbQVnTRoJwMbmHnZ15aslt7T2Mb22lM6+fM5OOqsRiibp7+jGX+olFk+QTWRBgJ6WHkxBIJ3K4nQ7UCwKmUwOQZbYvKWZpG6gazqR/jAKBrVV+XzKWCKNarViGgavrtzCHZ8/H8Mw+fkfX2Tt5kbGjx3BrVedTfEBDFGnjK1izabdyJKIphsEvE4qSnzDxqSzObr7wgA0d/QB4LSrIIDL7yMWDGHmtPy9jEQoKfJQXho4xp/4kREMxbjru78hFk/y4+/cwNh9BOWJwte+fDlj6iopK/EdMlJW4JONYZi09IWJpbO4rCoji70fSjNum83G/PnzeeGFF/jmN785zA906dKlSJLEggULePDBB3E6nQfMl9t3n/fzE/04cVQCrLe3l9LSg/velJSU0NPTc9jHq6qqOiy1esUVV3DFFVcccozL5eKHP/whP/zhDw85bsaMGfzlL3855BhBELj55pu5+eab33duBT5Z7Pm9KZXZu1Su6QaReBpN09ENk4Dbht2iIAiQ0wzSg474tTXFFNtsbG7r5fWNTbgcFoqLXCQzWeKxNG2t/TgcFlSrBavDQjySpC+coLLIzZkTR/DmthYEARyOfCKoIAj0Rvf2pawt8WKRJURRIJ3N8egbG5g6o5asYHJSXQWjqooxkOhq6UGURAxNI9IPssWCaZpo2SyabsVmUUkn0hi6zkAsiaTkl1m1rIaWyZEb9CLTshl03SSXyVI2ogyA59/Zxqsr89W6723azW8tKt/6t/2XIi+/YBYzJ9ficdmJxlIU+Vw4/iUJ32m38rUbF7BuazNXXJSvbPS4nWSSKTLJFJgm6VgsH327bgGfWTR3P2PWD5vV63awuznvdfjym+uOuQDr7g3ys9/8A4/LwdduuQyL5aO93gNht1n47CVnfdTTKHAc2drWx/PrGoa1OnPbLCyYMZpJ1cWH2PPYsGjRIp577jlWr17NnDl7c0yXLFnCaaedRiAQYNKkSTzxxBPce++9XH311YwbN+4TJbYOxFEJMK/XS1PT/saRe9i9e/eQP1iBAh82pmmyqrmLzmiCqRVFjC327Tcm4LQRTmXI6QaGYSKKAoZhksnmBZkiSximSTSRQc7kwDQJB+PUVgUQBfDYLLT2D3rGxdNEwglkRcLrd1A3upT+vhjxaJJsJsfUujLK/fnokSpLjCr10tAdIhxOIosik6qLKfU5eau+jVm15VT4XXzjktNAgPv/vpK6mmICARcXnDuNaYO+TYqqYHPaMXSNZCpNNhXBGDQxBchlcmh+LwCCRcHqtJGKpQATLZdD1w1+8ceXmDm5ltrJo0hGEzg8Toq8TlZvbeb5tbtQLCq5TBbFaqGtq5+DUVOZf1D73AdPnD9n9kTOmb03ivL8a+8iSmL+HOkMpmEwZWIdly44/SMXXwAnTx9LVXkRsXiSc06f+v47HCF//MtrrFizDYCpE2pYeP7sY36OAgUOxda2Pp5csXW/96OpDE+u2MpnT5903EXY6aefjt/vZ+nSpUMCrL6+nvr6+qFUn0svvZRVq1bx1FNP8dRTT+FwODj11FO5/PLLmT9//nGd3/HiqOTj3LlzefLJJ9m2bdt+27Zu3cpf/vKXQqJ6gY+MjKbTHoljmCaNA5EDjnFZVURRwO+yEfDaKfY6kMjnK2UyGolEms7uCIoioWkGCAKVlX7Ky72M8ntp7o/QG8sbb+q6QTSaJDgQY6A/TjKZw2JVEUyoLPbwpQWzhoX0R5f6yCbTxKNJSqwWEok0a1u62dDWy+rGvKGrIksokoQN2N3WT18wjpgzcAxGsZKxFDanBdViweHz4Ax4qZ5Qi68swIjxNdSNreKmy06nuiqAalVRbRZsLhvZTAY9l6OsyMPm+jb+8Mxb6LEENpedVDxFc2svv3jyDURRoKy2EkEUyaYzTK0tO2afz7tbmmho7SMVjZMbdM+3e73MPWM6dtsHL+0+lhQHPDz58DdZ+vj/x6RxI4/58Wur8ysIkigyoqrkmB+/QIFDYRgmz69rOOSYF9Y3HLIN2LFAlmUuvPBCXn755aGWgkuXLsVms3HeeecB+crD+++/nyVLlvC1r32Nk08+mRUrVnDrrbfyi1/84rjO73hxVBGwO++8k+XLl3PFFVcwb948Ro8eDcCuXbtYtmwZfr9/v5yuAgU+LCyyxAifi85IgtFF3gOOmV1bQSKbpS0UR1EkBEEgEk6QSGt4fQ403cChKlgViWRWQxAFFKuCKIrEkmmcVgWX3YKuGeRy+rAS/VQqSzqZJZPN0dEX4duPvkg8HGfa2CpEi8L6hk4Mw8RuU9m4uxNZlakbVQqCgEWWiKcy6IbJ029txuW04tMNnFmDOaPyVZKvrmvA6rCSiOy1b8imMvS39yLJEpKqkkplUCQRLZ0jFsx73omSQDaZxudxMHvaaP752nv43HYaG9oJVJVisVnzD1wT9GSKUDCCoiqUeB186ap5h3Xv+8NxXl2zk2ljKplwENG2u3VveoJFlTnvtMmIksil5558wPH/F7ny02cydlQlLqedUTXHrm1bgQKHQ0tfeNiy44GIJDO09IWpLd1/BeFYsnDhQp544gmWL1/O/PnzWbJkCfPmzdvPimbMmDGMGTOGL33pSwSDQW688UZ+85vfcN111+H1eo/rHI81RyXASktL+dvf/sb999/Pa6+9xiuvvAKA0+lk0aJF3HXXXYfMEStQ4HgiCAKnjjz0l5ppmiiCkM990nM4rAJVVQE6esKYpoHVqtIXTCAAfr8dSRAo8TvpiyT585rtFPld2O0qWd0gk8kQ8NkBgYaGbjKZHLbBPChJEunoHEDLary+Zif+Uh+qRSaT0VBVGUM3SGc1SlSVsZVF/OrPb5DNacyZOYYtLb0AXHHmFM6ettf/7vUNDdhdNvwlHuwWha7dbWDKiJIMkkg8HCeXyfHkK+sIhvO5ZbIigWCCIDBtQg03f3Ye8+ZMpMTv5r//9CpbtrfgKfah5/LZcZoJ8cEejKm0cthJub979h021Lfz0jvbefSeaw6Yq5Hc58Ff7HNx67Xn0dTex0A4TlWZ/7DO83+B6ZNHfdRTKHCCEktnj+m4o2HGjBlUVlaydOlSAoEA7e3tfOc73znkPn6/n8suu4z77ruPlpaWE0uAQT7R/ic/+QmmaRIM5iu2/H5/wb26wCeClY2drGvuRZJEiv1OkukssWQWh2PQXM/MizQREEQRA+iNJDEME4cl/+MjDYoLi8VCIplFliVEScRiVdFyGooiY5VFYpKEhoasyhimSXmJl4DXwdzx1Sx+8T2yOY0Sl51IKE5y8IGXTO7TkzKS2HfqnDy2mpfX7qQvHMTlcSA7Hei9YXQthzFoQmy1W7H5nAiRJKZpYrGqdDW1I4oik8fkE8rHjMxHqO654SJWbmrkb8s2EsokESUR0aIgiAKmYXLK1OEN6Q9FsS+f+1nkdR40UXZExd7+g8V+F2+u3cFPfvMcoihw31evYPqEY7/kV6BAgb24rOr7DzqCcUeDIAgsXLiQxx57DKvVitfrZe7cuUPb+/v7KSrav2fpnlZOB9r2ceeoBdgeBEEgEPhoS8YLFDhSUjkNq0WhsydCJqtj6DoWW/5ho0gi02pLKZtax6//uQqrXcXusOCxW0A3qN/dTUVVAEkUifTFkG0yqWQWk/zPg9ttRdN0QsE4dtVC6YhiME1kWeKSk8dS5nPRHYrR0RNmIJZfRnzx3V1893PzWLO1hVQmx/iqYjbWt2MaJk+//B61ZT6mj80vQV52xiReW1ePy2MnHokjSyIWm4VQbxBJlpl48jj8RW6SqRzVY2RC/RFMTaOkqpR4X5ANrf30vfwe184/CVkS+Y/7n6KhqQunw4rF68Yd8JCKJVhw4RxisQQZi5W2vjAeu5VsTqPIe/ACm+suns3p0+qoKvEedEw0tnfpNBRJ8Is/5j3/DMOkobWnIMAKFDjOjCz24rZZDrkM6bFbGFns/VDms3DhQh5++GGeeeYZrrrqKhRlbyHOr371K7Zv387ChQsZPXo0mUyGFStW8MQTT3DuuedSWbm3QnmPf2hDQwO6rg+9njJlyrBxHzVHJMAefPBBBEHgy1/+MqIo8uCDD77vPoIgcNttt33gCRYocDyZO7qK9lCM0mIXqXQWi3Xvj0TAZcMUoMLn4osXncIbm5uJZXOE4pBO5ygq95EzTHr6wsSiSZSMjM/vRFYk+nPRvMDYU40oCOiZHBaLwqdOHseM0RX85x9eJpxIs++qXl25D4fNwjeuyyeePvvmJrTsXouMdGZv1wYYTMJ32QiUeBEkif7OIIIgIEoina39DPTHUFUFUcq3LEGWmVLnxzZjLOt3d9ERijNzTCWTa8toassvdcYTac6YPYlgf5grrzyToiIv31/8GkRSPLdqO+9tbCSd1bj9qrM4dXLNAe+rKAqMHXHopHJV2Zsvl85pQ9dWU1nEBWdMeZ9PrkCBAkeLKAosmDH6gFWQe7jopNEfih8YwNixYxk3bhw7d+5k0aJFw7Z96lOfIpPJsHjxYnp6epAkicrKSv7jP/6Da665ZtjYg/mJ/uhHP+Kyyy47vhdxBHwgAXbTTTehqmpBgBX4xBOMpzAxKfI4yDmsQ5GocyfWENEyGCa8197Dy8u3E6jwUu7xoGk6KQQMCVpa+olFUxSXuFEtKq3Nffk8KzMfydnj0KxpOnaHFRB4bt0u1jV1ERtcXtxTYFQZcHHLwlOHze/C0yYSTWZo6hhgxvgqZv+L4Olr68Jit1JUUUQ6maOvoxu7w45stWJikk6kiYfiJCIxRFHEYrfydlM7n78in0zvsKpUFOUbf7uLfMRDMSwOGzv6ojxw2yVIksirq3diV2Uymo7PbiU1KJR2NHcfVID9K088t5K31u7g0vNO5oK5eTuHM2eN56UVm+jpC/P5RafxwtubMQ2Tb93yKVyOQkP6AgU+DCZVF/PZ0yft5wPmsVu46KQPxwdsXw5m3j59+vShlkTvx8fZ/X5fjkiA7dix45CvCxT4pLGmuYtYMotumGCalLnt+Ow2Rvhc1Ad1UpqGKUI4kcKRcdAfzVtOiIJAkduBZ5KNYCSJQT5XrHZ0GaGBKLFYGsMwUBQZ0zTJpnMIgoDDmRcWHaE44WAUj8fBlDEV7GztJ6sbbNjdydTaclY1dpLVdE4bXcnFp09CkkTcjv2bvloddlSbBS2rExsIEgh40UWZEbWl+cKAVJb2Xa2IsoxiVUnFE2RTafr6QwSKXHgcNmyD5p9Wpw2X34MoiZR6Hfzp2RVMHFvN757L91QdUe7nsjOn0NcfIZpIc9Fpkw7rHseTaf707AoAHv3rG0MCzGG3smDBHNq6+5g0ropz5ny8+7YVKPB/lUnVxUyoLPpInPBPZD5wDlg2m2X58uVUVlYyfvz4YzmnAgU+NJKD0ZxkevDvjEZ3NMn27gHGVvhRFInm9gE0zSASiiP43aiqhAH0hWKkkjliiQxWq4KAgWpR8fpd+AIuggNxVFUml9PRdQNl0FjUNE0iA1G0rEY8mmRLYw+6aZIOazzy/FouOm0CjeG8ZcTmhg5Wr67Hokj8f7cs3C+nyuF1kU2lSaUyWF1uFIuEYui0NHYybdY4bI58a6FwMIah6eiajtNlpyGYQLSqhJMZukJxXn1jPaHufkBAFEWatyRYbZp43t6CaLdjmiamKGBRZe747NlHdI/tVgujR5bS0NLD1HF7+zru6OhnRX3e7+ytHR185jTvQY5QoECB440oCsfdaqLAcD6wAFMUhTvvvJPvfOc7BQFW4BOLJB/ci7g3msRqUXB5HZx26hhaO8NEoylURSJQ5MQwTDweG7ppYpogSxJdbf2oFhXNNDB0E10zUK0qoiShaXmfsLZdHSg2FZvTxvjaUpp7h5vEDoQTiEJ+abKpfQDTNElnNXa19bKhsYvKIg8njc43Aff5HKQcCqlYCqfLhsfjIhZNI2RyrHhxDYpFxVtahDvgpr+tB5/PhSZIdLT3UzaimJElPkYUeXh3SxPuIj/peBKrw0oqnsA0IZnO8IVL57K7o59rz51BY0c/wWiSmeOrD7vSWRQF/ucb19DZG6K6bG+hjttmQQBMwGX96F3vCxQoUODD5AM74QuCQE1NDaFQ6FjOp0CBY0ZrJMb6rl56E8mDjvE4LCgHEWHZnE4mkyObyiJJIhY1nzRusykUeRyU+JzIsoTLZcXvtZFOa9jdDqx2FUkQkCSRZCpDNpMll80hyxKmYeD0OckkM2g5javOmTbsnFZV5pwptXzu1EmM8bpIZ3IoFoWJo8oJJjK8sLaeR19cSziez1Vr2dVOqCeEZEI0nCIYTmD3ObG7bVSMGYnX66K3tYu2bY0ko3Gig6792XSWUF+UIllElkSu/dTppKJx3AEPoiTj9HmxOh3Y3C42bW3hP646G1PT+e7DS/np46+z5O0tR/RZqIpMTWUxkrT3XguGQW9rL10tvRjJ9BEdr0CBAgU+6RxVK6Kbb76Zxx9/nMbGxmM1nwIFjgmaYdAWiZHMabSEowcdZ+gmRW47RW4b0j4BHdM02VnfyTtrGlj17m66+qPYbCper53KUg8AsXia/mCcRCJDNqfjdFlJp7L0dodJp3MYhokAJOOZQWd5ky+cNRWbRaGo2MOoUWVUF3uZWluGRZGwWFVsbjvrW3rw2q1cOGMMX7xoFnddfQ73/NsFVBTnz+txWLGqCs2dA/jL/CgWKxkNdN1kdF0pDquCaZg47RZygojN7UQQBQRRJJfJEguG0XM5Qt19BJwWBsJxzjplPIESP4ZuIkoi8VAEi82GKEn5/Djyy7V7/h1PHto9+3DY1dpHNJokGcsvwxYoUKDAicRR+YBt3LgRr9fLokWLmDVrFpWVlVit+ycK33PPPUdzmgIFjhhJEHCpCrFsDq/14H0Fe8IJRFlEkkQkWULP6UPb9iyxKYpEOJwkEHAhCLBtRycOp5VkKofX50AejKCZhoEAKKpMLquh5fJNsUVJRFUV/AEnm9v6yGoGum4SjqbY1dHPjrY+crpOkc+FbppUDjbs1nSD3nAcSRTQdYM5E0YwqtyPy2bBqso88Jc38RX7iUTiJEIJktEoG9+rx+txoDisdLWHBuevIHjcxINhAERFRhBFRFnmF4+/hk0WefQHNxEOxrC7HWTTWQKVJcTDcVxuB1+9+mwA3DYVLZUipxuU+w7ecPtwOXnCCF5bs4PugQhtbT189Yd/4u7rLxxm0Pp+xOIp2rv6GD/6wEuiiWQaURSwWS2k0llURR4WhStQoECBj4qjEmB/+tOfhv69atWqA44RBKEgwAp86AiCwOTSIjKajnWf/oz/SrnHwY7uIBYl704P+aba6XQWf5ELn9+BrumMKPcTTKQJB+MEg3FsqoxJPlK2h0Q8zchqP4lkmoFgEnXQPVoUwWazEArGGeiPow9aU2RyOg89uwpBEDFNqHLbmTamkqymk9N0XlvfwJLV+UpjRZE4Z9ooSvYxP/U4bWzd3YnNnm8oXjd+JJXVxUSjSZobuvPXommkonEEScDhc2GaYGg6gijme0RmcyRykMnlcNpUkok0siqhDFZWOu1WNu9oZe3mRt7d3Eh8sEw9HD34su4eMtkcWxs6GDOy9IC2Ek67hW9dN5/7f/tPVm1uB+BPz67g27d8+n2PDRCJJbj+jp/SNxDhyk/N5Y4vDt9v49ZG7vrub1AVheuuvoDHl75Dkc/FT791LX7PwU1kCxQoUODD4KgEWMGGosDHGVEQsCmH/i8ez+TIZbWh6IlpmsiSiCjko06pZAZEiRKfg9XvNeJx2xg7qoxIMgOYxONpSovdaIbByBHFNDb1kM3pyIpMOplBkkUEQSSZiJKMp7E7rDhddlLJDLqmY5pw9+Wn09QdoqLIzeLl+dyqSDKDvE+kRpb2F5F3XzuP677zKJLXiW5k6ekOE41l0DWNdDqDJEmYJmi5HOQAAfSshmmCYrFy+9Xn0NE9QE1lEX6Pk19982r+/sYG2kIJtGyOLdEUcybX8D+/W8o+OpPqMj8Lz57+vvf/h79+lrWbG6ko8fGb/7rxoCXtfo996N/lJYdXhaXrBrd+4yH6BvIFDLtbuvcb896mBrJZjWxW49W3N2IYJr0DUbY1dHDGzHGHdZ4CBQoUOF4ck1ZE9fX1vPnmm3R0dABQVVXFmWeeydixY4/F4QsU+EBs6x6gLRxjfKmfkT73AcdkdR2rRSGRymKaYLcpjK70E09lqW/uxem04XHbMQXwum2EoylUNe+ppekG5SVuXA4rxQ4r79V3YiAiKyKZdJZkIp9YLisyqkVBkqWh9/Ywb3odiiwxc3QF3/jf5whU5U0PMzmNhs4BSr1OZoypoKW1l3AozsIzJg2JRafNQiaVoquhFQDFakFRZfRcjmQoL0yEQeGm2iwUlRXR2dSBYlGZNb6S6lIvp+xjpCrLIlecO2PY/JKpDM+/upZwLEmRL780evNn5yEfIqq4h/bufG/YnoEIOU3Doh640vHUyVWMHVWDIEqcc+rE9z0u5KNrbZ19ALicNr560/5Rs4XnzWLDlt1YLSoXnDubXz3xKuUlPqaNL7Q4KlCgwEfPUQmwbDbLvffeyz//+c98rstg013DMLj//vtZtGgR9913H6p6/Bt5FiiwLzndYEv3AACbO/sPKsBkQcAAbPv0f7TIEgkB6qqLiMcz+Lx22roi+AMuUCQkVaGsxIPdpiAOiqHdvWFkWcjnaxkmiiKjqHI++R4TRZEQBBUjp+H3OujoDgPw2oZGXlm3G1nTCYcTZHUDt8vGsoEo2mDC+6ZdnWzZ2QZAqd/FrEl7BYS3yI9itZJOJIgFI/S15p3xJUVCUhREXSeti4wYNxJRFBHbJFRJ5LUVm3lr9TZ++q1rGTWidOh4/aEYPo9jqMG43Wbhwe9eR3t3kMljqo/ImPHuf7uIf762jjNmjj2o+IrEU/z8z6vI5Azuu+vKofO+H3abhW/efiVvr97KNZedQ+2Isv3GlBR5+eUPvjz0ev5pBaPXAgUKfHw4KgH23//93/zjH//gmmuu4XOf+xwjRoxAEARaWlpYvHgxf/7zn/F4PHznO985VvMtUOCwkEWBIoeN/kSKMvfBE8Z7B1sPKZKILItousHWlj4qi1wkUhm6g3H6wnEikSTxaIqSUg+iIKAKAvWNfYgieAaX0HK6gc0iIwCiLCFJAgN9Uax2Nd8GyCrhr/AhSyKuZIZYNDUo0CCp5ZP/k7EUKgKCfW/hQPE+S3Qu+/CCAl03SPQN4C31Y7VbiQYjmCbkkmncfg/xaALDMNi9qQGL3YrVZsXtcZJIpslpOt/79RLGjark65+fz+//9ibPvb4eWZEpKitmTGWAgf4QVy04lVOm1PHMy2tp7w5yzaLThqJhh2LSmComjak65JjtDZ0MRPKfwbqtTYyt2V9IHYwF809hwfxTDnt8gQIFPn7ccsstNDY28vLLLx9w++LFi7nvvvsAePzxxzn55JP3GxMOhznjjDO46aabuPPOO0mlUjz66KM8//zzdHR0YLVaqaqq4owzzuCuu+4CoK+vj6eeeoqVK1fS2tqKy+XilFNO4e677/7QGnYflQB79tln+fSnP82999477P26ujq++93vEo/HefbZZwsCrMCHjiAInD26ilROw36IPLA9ifcIJi6LiigJxNM5oqksOd2kqtyLzaLQ2RNCAEoCTsqKPTR2BBEEcDgsqJKI3aIgmSbNbfmo255qSFWVsFpV7A4VWZawqBJWRcHjdWAYJmZOI55Ik9nH1kGxyCSSGQRJwKrIVJR4+cqVZ+Jz2ZEkke/95nnqKgN8fsEsXH4P7iIPqiqTyeTwlQSI9IcpHlFKpDdM8YgyTNNEVWW8RV6y6SyiKBBPphBNE00Q2dbUTX1LL8sGE/61nEYqk2NTYzeR3n5+9scXufz8U3j06TcASGVyfOOmhUPzTaSzSKKIVT2yx0l3X5j/ffJ1AEZWBDj/9EID7gIFTjQWLlzI1772NTZt2sTUqVP327506VImTJhAW1sbS5cuPaAAe+mll8jlckMNvO+44w42bdrEzTffzIQJE4hGo2zevJlXX311SIBt376dV155hc985jNMmzaNUCjE//7v/3LFFVewZMkS/H7/8b1wjlKAaZrGtGnTDrr9pJNOYtmyZUdzigIFPjCiIOA4yNLXHkb4nLSE4uQ0k95okmKPDbfdQjSeRkDAYVNRJJGTxlawWVXIAW19URRVxjsoOOwWhRKblZ6+KAG/CwSIJzIU+RyEJZFQOEEmk8XUTLQiF5oByWSGVDLDp06dwNSaUtbuaOXZd3ZgGiaV5QF2tfZi6ia6KvD82nqqfS7GVQbY1tRFfWsv9a29/OOlNQQqi1AUC4EiFz2dQWKxJAgQ6gli6CadDa0EyosoKc/bNGQzWZweJzUTatm9aTeKAoIAbocVxWFDTGWQVAVBEMil86IwkdGGxBdAwLs3orizo58n3t6KKovcdO4MSjyHb0+xu62XRCoLwKjqEvzeQmXiHtZtauBvS1cwZ+Z4Fp4/+6OeToECx4358+djt9tZsmTJfgKsvb2d9evXc88997Bt2zZefPFFvvOd7yDLw6XLkiVLmDRpEnV1dbS0tPDWW2/xk5/8hEsuuWRozAUXXMDdd9899Pqkk05i6dKlWCx7VxVmzJjB2WefzT/+8Q9uuOGG43PB+3BUhjhnnHEGb7/99kG3L1++nNNPP/1oTlGgwHHlvEl1iEC5z8nEEUX0hhL0hhJopoEqC7hkGcEw2N7UR27QI0yVRbwOK3VlXoo8drr6YqzY0U40kiSbyzEwECOdzLCrvpO+vii6ZpBKZKkt89LdHSYUjBGPJTEMk5fe28VT72xnbXs/MyeM4JyZY/i3C2cydUwlFrtlKOF+V0cfT7+2HvegnYNpGGTSGUxNw2q30trUQ3ggRjaRwDQMTMPE5nLg9LhIJ7PEYwni0QS9jR3seGczm1dsJBmLk8vkiw8iiTRjxo/EXRLA6XWDAIlYHKffh8W+10JiwqgK/u3ys4Ze7+4JYZgm6ZxOa//wlkrvxylT6jh5Ug2yJPDOxgY2D+a5FYB7/3sxb67azE8e+itdPcGPejoFTgAM06Q9FGNnd5D2UGzv6sBxxmazMX/+fF544QWMQYuePSxduhRJkliwYAGLFi0iGAyycuXKYWN6enp49913h6JfkUj+OVRcXLzfucR9ckxdLtd+Qq6srAy/309vb+8xubb346gE2J133kl7eztf+cpXWLVqFR0dHXR0dLBy5Upuu+02Ojs7ufPOOwmHw8P+FCjwYaEbBtHUwV3bX9rahCgI7GjuYfXWdmLxDB6bimyKRGMZ6ruDbGvqo6s/RjicINgfp7M7QlP7AI3dYbr6Y0Ou8KIg0tcTRc/pWO0Wisq8uH0ORFFAEKCtP4KuG2QzuaFkdkMQ6IulMExoDsaQVRmv08btl5zGzNHl+SbYpkk2nUUSBSKmyZmnT6TEZcU0TcLBOO2NXaTiGUzTwO7z4C8rorS2AqfPAVLedLW3rY/Opi5mTKrlpAn5JH5BEKgs83P2jDFMrisn0h/B7XNgcVjRczkwDIxMBgm48KypXLXgVP7z1kuGJcrPGl1Jpd/FqFIfk6r3f+Adiq7eMFt2daDpJsl0jldWbD6i/VPpDLuaOvd7aH9YaJrO8ne20Nx27F38fYM+ZVaris12cCPhAgWOBQ29If6wYjPPrKvnpa1NPLOunj+s2ExD74fTanDRokX09vayevXqYe8vWbKE0047jUAgwKmnnkpxcTFLliwZNmbp0qUALFiwAMinQNntdn784x+zbNkyEonEYc+jqamJgYEBRo0adZRXdHgc1RLknguur6/ntddeG7Ztj0HlxRdfvN9+27dvP5rTFihwWOiGyV/e3UlfLMn06hLOHFu935hENofNpjDKlXdfD8VTmKKAIAuIg70fy0pc9PbFCQZjqBYFRZVxOPJfiooiMaLMw8wRZby0fhdETHTdwOuwoBkGkWAcVZWwOx1oWR3I4nBYEEQBxaKSiqfJZTVkRULXdN7b3UUyleH682YyqtTP6+/sABMunzeNUFanKRilI5LkrNkTmDK+mjc2NpFNptA0yGWzZBIpHA4rReVFZFNZktFOBEEgnUhi6DpTxo/g5eUbgfzP6OmTR3LlhbMA6BuIksnmyKbSQ8uPyUSSkR47d3zuggPe4yK3nVvOn/mBPp/XV28jnc0NvT79CLy5cjmNm772S5rbelgw/xS+fedVH2gOR8NPHnyaF15/F1WR+f0v7mZkVckxO/ZPv/8llq3YxEmT6/AeooikQIGjpaE3xPOb928nGM/keH5zIwum1DH6MP35Piinn346fr+fpUuXMmfOHCCvK+rr67nxxhuBfPRqwYIF/PWvfyWTyQwtHS5ZsoRZs2ZRWpqv5nY6nfzgBz/gnnvu4ZZbbkGSJMaPH895553Hddddh91uP+AcTNPkvvvuo6Sk5IC65XhwVALstttuO2D7jwIFPg6kcxp9g82nWwYO3A/y1FEVvLyliSS5fKQpq9ObjSNJ4tD/7e6+GKoi4Q+4qCh1E47vjahJokAqo7GyoQMUibJKP/FYmnAikzd1HcxBS6U19GyOinIfsXgKSTdJBmOkNB1F0/F47AiiQCqRZmNzD8+/W09HdxCrI9/aa+XWFop9LsAkFonz6LJ3GTd2JDabjNdXjNvnoL2xm/6O3nyULZVBy2p4PA6QJfzlAQB2dwUZWVXCrqZuBFGkomxvoumkmhLWbmnG0PNLraIsY2gaA+H4sf1gBpk8poq/vbgGwzQZX1tGR0+QnFaDchgeY/FEaijytHlH83GZ3/vR2Jo3f83mNNo6+46pACsOeLjyU3OP2fEKFDgQhmnyVv2hl/7fqm+jrtg7ZLlzPJBlmQsvvJClS5dy7733oqoqS5cuxWazcd555w2NW7hwIX/84x9ZtmwZF154Ic3NzWzdupUf/OAHw463YMECTj/9dJYtW8bq1at55513+PnPf86zzz7L3/72t2F5X3t44IEHeOedd/jtb397UJF2rDkqAXb77bcfq3kUKHDMcVgUZtWU0zQQZnZtxQHHJNI5DNMc+tLP5z3sfdBog2718UQGn12lqzeKy2VDkUX0tE4slSUaTaMoEqZpYLWoOBwqfT1RPF4bAZ8Dq1Vm9+5eTNOks2tPf0YJp89Jpd3CiBIf7fEE4VACLadjtam88l49sUgSy+DyU+9AjI6uIDUBB/XbmgHo7I9id1lIxJLE4/l8LqfPS0dDGx0NIMkyqs1CWW2+pDqbztDR2sV3bvk0CCL1bX1s2NnOnCl1SJJIWs+LLiGXw+Z2olqtpBNJ5COsbhy6t8kMdpt60F/STplSx//79yv5+0srWbGxjR1N3eQ0nasWnPq+x/Z5XXz5uot5e81WvnDl/A80v6PlKzcs4le/X8KomnJOnTn+I5lDgQJHQ2c4TjyTO+SYeCZHZzhO1WFYzxwNCxcu5IknnmD58uXMnz+fJUuWMG/ePByOvRHgqVOnUlNTw5IlS7jwwgtZsmQJqqpywQX7R+g9Hg+XXHIJl1xyCaZp8stf/pJf/epX/PWvf+Xaa68dNvYvf/kLDz30ED/4wQ+GInAfBsfECb9AgY8rp46q4NRRBxZfAFs7+xFFkehgDlU8nuG0qSPRTYPdXWFsqoJkwsjaEgIeGy+t2kU8kUUUwDeY3wWQG2y8nc0kyKQ1NENH0yGdzhKJJFDUvDGralHQchqyLCOIAuF0jlMDLnrSafwBJ4oik0xmCPZGMHQD1aKi5TRyg0t1J00dTUmRl427u5gyporNLV3ouoliteAKWMmmc9jdNrRMllQ8TSqWoLelC0mWiAYjzDjnJNZtaeLt9+pRbVZWbm5mfE0Z584ez6XnTCOn6dQ3daJnc0hOEYvNyrlzDs+dfl8eevwVlr6xgTEjy/jJv1+F1XJgM+aayiLKAnsf7EfyW/a1l5/DtZefc8RzO1acNHkUj9x/50d2/gIFjpbE+4ivIx13NMyYMYPKykqWLl1KIBCgvb39gBZWCxcu5De/+Q2xWIwlS5Zw9tln43IdWhwKgsCNN97Ir371K3bv3j1s2yuvvML3vvc97rjjDj7zmc8c02t6PwoCrMAJTU7TEQWoKHaRTGYwdZPtrf1YVAlJhP5gjFm15bh9DjKajtttI5vVsNtVRElElEScDoW+vjiKIiErMjaHjM2RT5Kvq/ITTmToDyfp6xpAkiSstvy+Evmo24vrd2OzKGi6kZ+PKOK0WwmHYoT7w7BPMdKqxi6KAm4e+OZncVgUvvTjPxPs60dSFHKZLKIIo6aOwTBMDE2jdWcLyVgcxaKiyhJnzRrP8rU70XI5VJsV0zAQySexTx9bxStvbSAZieFx2rj+ghlMm1BLse/I7CFM0+SFN/N5ZrtautnV3MOUcfvn3+1h2phSSkpLAZEFZ00/onMVKFDgg+OwHNqm50jHHQ2CILBw4UIee+wxrFYrXq+XuXP3X4ZfuHAhDz74ID//+c9pamoaZi0BEI/HkWUZq9U67P3m5mZgeHXkmjVruPvuu7niiiu47bbbjv1FvQ8FAVbghMZrtxIJRhmIpjBNE0EQUBSRTFYjGEoiCPB2fQdVQRcetw23y0o2p4NpEgsnMIBQME4mnSMjiThdecsGQzeoKvVgsar0dwTJZjSSsSQ2p51gXwSP34VrH9+rVCaHNmhzIUoiZWVeQqHYMPE1dkwlukUhldWIp7M4rSqRYIySyiJCfWHKRpZicdhxuB2YpklvWw/V42rIZnJ0Nbaj5TT++Mxyvn7jAlo7+2ns7AdV5YUNTcyaOpo//WM5y1bnC2Qi8RRnnTIB5X2amR8IQRCYNW0U72xooDTgoabq0NWRgiAw/9QJH1rexb4sfXUNf1u6gkXnzebSBacd8f7tnf34vU7sduv7Dy5Q4GNGhdeJ06IcchnSaVGo+JA8+hYuXMjDDz/MM888w1VXXYWi7C/8amtrmTRpEo8//jgul4uzzz572Pampia+/OUvc+mllzJz5kzsdjsNDQ088sgjuFwuLr30UgAaGxu5/fbbqamp4dOf/jQbNmwYOobf72fEiBHH81KBggArcIJT7XfRPBBB13VisXziPAKUFrlQZIm+gTimadLWG2UgnsYwTdxOKy4EErJEZ2s/AKOri2jvj6LrOtmMRi6rsSOWoqGlD0WRSCWzuHxuBFFAVmTKfS5qx5WTyWqEwgnaO0O4HVbmjK2koyfMi28Nt2RQZImzp9fRm8hQ5LQScFgxjP+fvfMOs6Ms+/9n+px+tm92UzedFJJAQiChhhoDCiqICqKAYgFRVEB9lVdfBf3xKoINEX0RRbp0kCqh15CQ3jfZXk4v0+f3x1k2CSkQSIDAfK4rF3vmPPPMzDPL7D33cz/fr4/ruUQSEUpFi1LBxBclCrkSvuuCIGCaNo5V+QdwwKRR1FXH+crp8/j5P/+DpMiULIdnl21g8apNg8c76agZOwy+UtkCl155C9lCmR99/WT2G7Njy44ffPXjbOroo6E2SVh/f7xgbdvh1gdfQNMUTjlm5g59LH/7l3vJF8pcs+me3Q7Abr/vaa7601001CW58ZrvBEFYwD6HKAgcNm7YDldBvsFh44bt1QL8rRk3bhzjx49n1apVg7peO+Kkk05i2bJlHHvssdt5TY8YMYLTTjuNZ555httuu41isUhDQwOzZ8/mvPPOo7m5Gdd1Wbp0Kfl8nnw+z+mnn75NHyeffDJXXHHFXrnGrQkCsICPNOt6MwiCQDIepqWxmpCusKErjWk56LpCIhGiUDDI9BcY2pzEKFt0tqfYYNqMGVnPjMnDqdU1XlrfiWna+OVKykqUBBqHVOM4Lr3dWXzXIzMgVBqvjZOxHbr78iTjIYyiSTFfZmbLEF5a30VPT2bw/KLxMEfMGkdNPMJjKzYjAkuee52boiGu+v7nKeeKtK1tZ+i44fR39NO7qYuMqqBFdBzTpLqxFjUaZsR+LaR70kwZ0AB75JnXyafzJOqS4PtMHtWIPv9gbrznaY48aD8+e2IlGEllCmzs6GPKuGEossTiFZvY3FURBl340sqdBmCSKDJqN1cFlkoGV19/D5qq8I0vnfiOsm9bc/+Ti/nHvRXRxoaaBIceuL3MxUEzJvDowkUcNOPtS2C8wco1ldVj3b0Z0rniOwrA1rd28t2fXE91VYyrfvIVIkEQF/AeM6a+ivlTWli4evM2mbCopnDYuGF7XYLizdxzzz1v2eass87irLPO2uF38Xic888//y0XCZ500kmceuqpSNJbr7reWwQBWMBHGkWS8H2ffNHE93z8fAkQWLehl3g8hCwKWKZD07BqUukS7ZsrGS9FkVizvpuTjpjCojXtmKZDKKJhlEw0XUNRJNLpArIg4JgWgiSSiIbwRAHPdpEkkZ6+PD19eVK9WWaNH8qMcc0s+U8/kUSEFlGgP1cgFg/hF8rkBorYPUAP63T0pGnvSdPY0kS2L0dPWy+26SCJIrIik4yEsCIhujZ2EhooUBUlmX89vogRnz2KXKGMWygQS4b53jnzqUlE+c1fHqS9O80tDzzPihXreGXJWqRIHNfzmDNjHD/46seZvt8IRjbX0pcukNzDq6Ie+s8r3PfIiwBMm9zCkXN2bnP2dqivHrhuQaBmJ1MoP77os3z9iwuoeQfXcs7nj0cQBCaMHUZzY807OsdnXlpBd2+G7t4Mq9a1MWPKmHfUT0DAu2FMfRUtdUk6MgWKpk1kYNrxvcp8fVQJArCAjzR9xTLlskW5bJERRQR8+vsKaIrI9HFDKJk2i1d3kc0alItlhg+vJZst4joehuWwtKMPRxCQZIl8tkgkFiKiK5imTVRXicR0RFkkmylx8IwRzJ08kmeXrOeZ1W0kquODEg25ksmo+ioOHtdMqmBw8OjJXPN/D1Iqlpn3iUNRdBXDcnAsm05RoG5EA47jUFeXRFUVJAHqm+vYuHoz3Zu6qa+Oku7J4LkermkiDFhutHf08re7n+aRZ5YCkDdstAGtMlWpvAlatsMTTy9GlGWioUqB/rpNFc2tZDzCJed9gkt+ezf3PL2c8aOamD5+6B65F5PGjyCkqyiKzLiWHWfWdodDZozj19//PKoi7TQbJwgCdTWJd9R/Y10VP7jwM+/mFDn+yANY9PpaqpMxpk4c9a76Cgh4N4iCsNelJgK2JQjAAj7SyAJEIxqqKiOJArIsUVMTpVS2eWVVB7IsEY1q6LpCOazSn8ojCQLFkkkkWpkuCoVVGpIRVqxqx/N9Upkinu/T2BCiWLZwXJ9YIsxDzyzjsedXcM13Ps0BU0bx8rpO6qIh2nuzHD1jNKbjMH/GWABa+7Mce8wBPPnSWq677wUuOv1Izji8YlTbvmYzzy5aww9+fTtDx43AtV2yeYOOzT3oIY14bQ3R5gYaQpWi9nRvmkxnLwBSPILnbans780UWbmxmwMnDufEY2exrqOfdCqHrKo4lgW+R1V1grM/fQSpbIHqRJREVCce0TFth7rknlNpHz96KHff8GMkUUTbQ6uuxo8askf62VvU1ST41X9/+f0+jYCAgPeBIAAL+NCyOZOnPVtgTE2S2mhoh21GVyd4pbUb3/Pp6S8Q0lVMy0GWRMJhBdt2iUZClA2HYslC0zXKJZNQRCcU0XFtl5AmM6IpyeLlm7DKFrIigefT1ZUmkYyh6SpdrT14rofpevzjwRd5ra2iPxZSZb7z6UO5+bkV9OfLnDB9NM21Ce5+bS0b1nTQ3Vmpt/rHI69w7okVgcA3bL5836d7cxeJumoQQVZkitki0aoknuOQqI5RTuWQ/Iooq+u6pHNFNFXixHkH8ORr6xjWVMf4EZXs0N8ff42qYUMQdB23rgbftvjxN05mSHWMb//8H3T3Zznn00dwyrEzueqiT+K6HpE96FPY2tbDN3/4RzRV4XeXf43ad5iZ2h16+jLUVMWRpHdlixsQEBCw2wRPnYAPJZbr8vzGTjal8zzf2rnTdp2lMj19eQrFMkMbk1QnQogCxKM6+AKu59OfKZLNl1EUCdt2KBeNSr2V67N/cy1TRjeiKjJVySjVyQiqIhNLRIglIiCA53lMnrplSfMLyzYNTj2WTJvf3/kM/fkyAEs39WIPWAGFtirIDm21kvCbXzieT88/iKOOmIGoqPR39WIVyhj5Mp7nYRkGravbWLNoFauWrCEc1Zh68H7IA0HGXY++ypEzJ3DTz8/h/13wCWIDx3FtB4BIPEIpmyeXyfPn/7uX1vY+uvsrCwiee20tALqq7NHgC+Cl11bTl8rR3tXP4uUb9mjfO+LK39/BKV/6H777k+v3+rECAgIC3kwQgAV8KJEEAW3AXii8CyudgmnRMqIW2/bo7MmhaTJjRtXRMrQaQRKIx0MkEmEURSSdylPIFoGKxEE8qnPXwqW8tryNjZv60IBc0UAQKp6O2VSBdF8Os2SwYkU7oiiSqIoyecwQLMPC8zyMosGmjj7qoiFCqszB44cypr6KvrZ+Ctk8siISioZ4afkmciUDgHg0RJfhsboni6YrNI5oIlIdJ1aTIFlXTTgWQfChmK14ONqWRUNzLc0DjgCu6/Gfl1ZuJ8twxrzpSIbBkJCCWSph5PO8vnwD+41p5oDJo6iKhzn5mAP39K0aZN6h05h9wAQOP3gKBx84ca8d5w1eXrIGgFeWrBnMKgYEBAS8VwRTkAEfSiRRZN644fQXyzTGdl6nlC9Y6LpCU1OSzZv62bi5n9HDauktFygUTKJRDc/zsW0PAYjFwwxpSGK5HnnDwvV8lq/pZPbE4cSTEfpLFrbtYFmVbJKqyYR98EMqDQ1JUtkSr6zcjO9t+wd/5bKNXPOdTw9OhR0xeSTX3/0cAJ5hIqsyq9v6OHDcUHKFMvlCxWQ8VhWjmM3jmg7RqjixRBQ9opHuyVAulhAEAT0SZu3SDWxe244oSYiSRNOAOffmzn5uuu85xo9q5Km13bi6Tr8Pp8ybzlPPL+XTJx6KqsicfMyBbGzrZeouFO3fKYvWdLGyvcxnT5zDlT8+Z4/3vzPOP/skbr7rSY49fMZO/SoDAgIC9hZBABbwoSWiKkTUXRdzK7JIz4CAqjzQdl1bivqaKONb6ulLF9i4sQfLcvEch1KujDWgEZbLlhBFAUEQ6M6X6M2V0EIqWkgdVNUH6O/JgCBQ7s8jCAKyLGNbNrIqI/qVVYcl2+WyGx/lsjOPRhJFigOyGIIoEIlHwIf1m3o4cNxQrr35MZa8sop4dYJSoYTjOtQOqSPfl6aYzYMgUcrmGTJqCMm6JB3rO8mlcii6Tl1tFbXVUebNqphH//Hmx1i0vJUnX1zByCljEQQB34fDD5vBV844AYCN7b386Krb8XyfVRs6ufQrJ+2xe/S7vz/Cok1poJdN3RkuPXfBHuv7rZgzcz/mzNx9n8uAgICAPUEQgAV8pBE8j0RUx3U9fM+jZDiIkkgyHqKrP4ckSQwdXks2W8LzwPfBdV0K+TK+D4oqI8sSfflKtsksm4iSiG05CIKA63pYpo2qV4KyxuoYNfEQPakCoiQSD2uksyUkRSJTNLjytqeYPLaJRRu6APA9n3wqD8Bd/1nC+BENlDwfz/UwCiUQRMKRCH1tPYiyTLwqge/7DB03nHgyiiAK6JEQTdVxMvkymUKZQkeK517fQEMyQixSWZwQ0hTsYgklHMYyDIbXJwfHyHZcvIEpOmugTmxnrNvUze9vepSp44fzhZO393Hbmn//5xUee3YZ1UMrU6M96cI7uocBu49lO1z68xtY9Pp66usS/PiizzNl4sj3+7QCAj5SBAFYwEcaSRCxBI9oSMGwPQTbJRxW2NjWj2V7KIpEOKzguuA6HoIIkiQRjlSCNsuw8BEp5EqEYyFEWSSfKQ32r+oKiaoo2VQez/c5/cj9qYmFeeCFFZiOR20yzDMrNlMuW0SiOu19WQq+T8GwBvtwXXdQrdlxPcZOHY0T1oglozz/2Gt4nk9tcz01Q2pJd6dJ96bQIzqe65FL5XEdl0RDkkyhPNjn4pWtPPbUEiRRIF4VZ+KYofSk83S1diKryjbq0GNHNPKds+ezfnMPJx8zc5fjee/ji1ixroMV6zr41HGziIR3Xqj/9EsrKaTTKCENWVH41td2bj0SsGd5ffkGXlmyDoCungxXX3831135zff5rAICPloERfgBH2m6U3ks26EvVyZfMgFIZ8rIikxdXYxIRMMwHCIRlVBYQVckXNsGQSAa1bFtl3LRRNNV8EGSZMKxyqpCRRGRfA/P9VBDGqqu8ttbnuS/r3uAB558nYUvruLhl9diGDaaplSyakJFXiKaiKCHNQrpLPm+FOVCkcOntXDAhGEcNLqJMS1NzGhpIlFTkVCwDIvu1g762rsJx0KYpRLtazdhmxae69Kd3xIUHjZ9DEaxEoy5no/jwapNvUwZ04wWDjF5TDOaKuN5PoVyZUyOmj2Jcz595E4V5d/gqIP3o7E2wTFzJu8y+IJK0b2iaeR6+1Eci0jo3Wl/dfWkWLqy9V318VFhxLAGYltJs4xv2TNiugEBu8t5553Hscceu9Pvb7zxRsaPH8/48eN5+eWXd9gmk8kwefJkfvOb3wBQLpf57W9/y/z589l///056KCD+OQnP8mvf/3rbfb75z//yVe+8hVmz57N+PHjeeihh/bchb0NggxYwEeaeDxEV0+O2roYnldZ3ZiIhyiWTPL5Mo7jYdsuiZhOIhmhvSOFqinoIZVC3iCejOLjE4+HcByXVF8Bz/eoH5IkkQhXDLMdh/WrOsllCtsU3zsDchOu61EuW0iSiOd55DJFLMOkXDRQVAXf95FkiVfXdvLAwsVcf9t/2G90E6d//WSeHjeU/u40uXSe/s5+fM8l3ZUiUpXEdTzK+QKCJFI9pAYBgeaaOMuWraPs+siqgihJ1FbHGTuinvM+eSinHjODZDSE5/n8/K//ZvmGLhbMncxnj9/x6sfeVI5f/99DRMM63/7i8UwdP5y/XP72hEWPmD2JpR87hDseeI6Oti7++a8n+caX3lkWbM36dr7yvWuwLIfPnnIEXzvrvasl2xeprY7zp//3DR5+/Fkmjh/D7AMnvd+nFPARZcGCBVx00UUsWbKEqVOnbvf9/fffz8SJE9m8eTP3338/Bx64/bPo3//+N7ZtDxp4X3DBBSxZsoSvfOUrTJw4kVwux+uvv86jjz7Kt771rcH97r77bgRB4PDDD+euu+7aa9e4M4IMWMA+Tbps8GJbF8t7+gfrlHYHWZaor4vjuz41UZ2ahE46VcA0HRzHIxxWsS2bnp4cK1a144sijutTKJgIooisSMiyRCFv0N+bQxLBKBhsXNNB+6Y+ujrSbFrXTTaVR1ZkwvHw4LHHjWjY5lx83ycU1tE0Bcd00MMaWiRMrDpJVUMNhuPw76dfp2xYvLJsI+lskY0rWxEFUGSZeE0CLRwmWp1AECo2O7ZpYZUM8v1ZRFGgv7uPdZt7SOfLRKuShOMxciWTV1dupr03Q3U8giiKFMomywfq0F5YunGb83x91WaefmUVvu/zwJOLeW1FK0+/sornX1u32+N/5OyJYFsIgsDEse98heWy1ZsGV54uWrr75/FO8H2fZata6Uvl3pPj7WlqqmJM22840yaPRhSDPwUfdTzfpydfYlM6R0++9I6ep++EefPmEQ6Hue+++7b7rq2tjUWLFvHJT36SY489loceegjH2b4O9b777mPSpEm0tLTQ2trKwoULufTSS/nSl77EwQcfzHHHHcd3vvMd7r333m32u+mmm7j11lvf0rh7bxFkwAL2aXqLZWzPI22YmI5LSNm9X+my6RAJq+QLBpmyget4KFol66TrCtlMEUmW8FyHaDyMKIr4vl8pthdFTpo1ngdeXEWuYGCbNoomU9eQQJJFymWbQr5MMVtC1VW0kIZjO9TUxEk0VjFiSDVuZz8dm/tQVAUQqU9ESOVLNI6oRxAEYvgUiybtfVlCksSnjzuAWx94jv1GN9NQmyDTm6OYK6FHQlilMpZh0jBiJPlUDggTSzbgOjaWadO5fjO1DTVIkohjGCi6NviHV5ZEtIGx+/dzy7nlkVcxy2VkVUXBGxyvxSs3cen/3gLAF085jP0nDOfOh18ipKuMH9W42/dv1LAGfnj+AoYOG8H4McN32u61peu4+a6FzD5wAp84/uDtvj/ikKnc+/ALdHT18/lPHrXb5/FOuOb6e7j1nqeIRnT+etW3GdJQ/Z4cNyBgT9OWybOovZfyVotsQorM9OY6hib3rj9kKBRi3rx5PPjgg1xyySXbvAzcf//9SJLE/PnzGT16NHfeeSfPPvsshx122GCb7u5uXn75Zb73ve8BkM1WRKPr6uq2O9abXzTe7xePIAAL2KdpjIUpWDYxTUGXpbfeYTt8evry+J6H54EkCziOPzAd6KPpCr7nUZWM0Lqxm0g0hKap1DdWUSoaPPrKGuJhjSHDaykWy6xb2U6vaSHLMoqmoIc0whGNnvZ+HMdBj+jEq2MIgsCm3ix6SCUeC5HqzzFpTBMHtTTyp389S8OwOkRJYPWqTRTSOb775QXMnTYWWZaYO+AXaZg2jm3hOA6u6yGJIrKq0L5mE1WNtcTCIYySUalB02Tqhw8hHItyyrGzmDNpBA+/uJKaeBhNVRgxpJpUrsSND7zES8tb8TyPcq6yKjEr+Vi2Q7Fskh4QogVIZYtMmziCf/7q60iSOGjqvbsk42GGNdXuss3lV99Ke1c/T7+4jDkz99vOQDsZj3D9ry58R8d/pywZUOsvFA3WtXYGAVjAPklbJs+zG7d3CynbDs9u7OSQkez1IOzEE0/k3nvv5YUXXuDgg7e8YN13330ccsgh1NTUMHv2bOrq6rjvvvu2CcDuv/9+AObPnw9AS0sL4XCYK664gm9/+9vMmjWLSGTPedbuSYK8c8A+TVzTmNFUz9iaqu3ENNNlg/WpLAXL3un+jTUxohGVkK5QVRWmrjpGIV+iXDJwXRffF1BVlb7eHKGQjm05uK5LsWjQ05WhJ1NkU3cGM12kULSoqk8SiYYQBMD3icRChCIhGofXE4romGWT3o5+ykWDxuoIkuliOh6RRJT+gomuSHiuS2drN90buylmC/i+z90vLKd/QAn/Da7+20NMmzsFPazhmBaOYyPJMrHqJI7l4DouyoCptetCKBrB8zxwHa677QmKuSLHHzKJIw8cR0tzLTfc9wIvLW+lnMtXfCpjUZoaqjn31CP56o//yucu+j2ZXInPnzSHE4+czmdPPASAcEh7x8HX26V5SCVAq0pEiWxl0fR+cvZnj6O5sYbDZk9m1vTx7/fpBATsNp7vs6i9d5dtFrX37vXpyDlz5lBdXT0YTAGsXr2a1atXs2BBpZ5TFEXmz5/Po48+immag+3uu+8+Zs2aRUNDpaQjGo3ys5/9jPb2ds477zxmzpzJKaecwh/+8AdKpRIfJIIMWMCHEtv1WN5bMbLuK5WZNXTH02Nd/Xlamqoolm02dqYoANFYiHLRxCjbaLpMd1caUZKwLRtFkXEcD8MsIYoiqixSNm1WrOmgcUQ95bKB54AoyehhHd/3sS2bjg2deK5POBrC8SvyEBOOmsz9bf2Doq3FssGVNzxMKV9EEAUSyRjRRIRoPMyw0c28uLyVE2dvEQ5duqYdA2gcMYTuTd04toMWCqHoakW8lYoPpee6+J5Px7pN2IbFTZs7KQysiqyriXHyvAMAMN3KVGMxnSbd0Ymua9zx9x+zcn0Hnb0ZAF5ZvoGffvNTe+GO7ZqfXXomLy5azYQxwwjvYQ/Kd8rBB058TyyTAgL2Fn2F8jbTjjuibDv0FcrUx8K7bPdukGWZ448/nvvvv58f/ehHqKrK/fffTygU4phjjhlst2DBAm644QaeeOIJjj/+eDZu3MiyZcv42c9+tk1/8+fPZ86cOTzxxBO88MILPP/881x11VXcc8893HHHHWjaB+MZss9lwM4444zBJalv/vdG9LyzNuvWbVucm8/n+f73v8+sWbOYPn06F1xwAT09Pdsd89VXX+W0005j6tSpHHnkkfzpT38KvOM+4Pj4g29thuPutJ3jeLT2ZFm5vpuBpBVQUbcvFg1SfQVc16/oZSWjhKMhVE1BRAQB6qtjZHoylAplMr1ZVFUhHtOIRTTsgQebJEno4RCx6hilQpn9JjTxqQUH0Jsu4rk+xWwRx7RI9+YQFYVISCWkKmixCJKiMmREA/3dKaYMq9/m3M899UgK6TytK1vxPB/HcbAMg+ZRjQOK9j6iKGKVTPKpLL4Pqq4jyVveu3wqWcNsvkTZ95EVmZrhw6gdMZxodZJfX/svfvyLvzFlbDOjhtZx2gmz9+h9eruEdI3DD55CQ13yfTl+QMCHEWMHBe3vpt27YcGCBWSzWZ566imgktk66qijtpk+nDp1KiNHjhws2L/vvvtQVZXjjjtuu/4SiQSf+MQnuPzyy3n88cf52te+xvr167n99tv3+rW8Xfa5DNiPf/xjCoVtFbNvuOEGHn744W3mjmfMmMHFF1+8TbuhQ7fVurnwwgtZu3Ytl112GZqmcdVVV3Huuedyxx13IA/8kWptbeXss89mzpw5XHjhhaxatYorr7wSSZI4++yz99JVBrxbFFGkVLZx8Ymp6k7bObaD53pouoKqKXieTywsY+oSmzenKnZBAqi6imXamIaF63jIikQkprOpM004FsJ1XCKJEPlMmaLnoUU0fM8n1ZPBNm0QQFZk4okIq1d3ks4bGJZLX0c/tuVQzpcqgquyxNAhtRx31AyeWNFKqitDX0eGH5x1DEPrq7Y590MPHM/lfxIQBAgnwsSkGJ7j0dvWSzgWplSyKJdMRFkmWV+D5zj4+EwZNxQzX6KmKsYnjpzOXY++zJ9ueYLqpnoiyShOv4VZKPCdL53AD372VwA8H2770yV79Z4FBAS8t+jy2wsB3m67d8OMGTNobm7m/vvvp6amhra2Nn7wgx9s127BggX86U9/Ip/Pc99993HEEUcQi+26Rk0QBM4++2x+//vfb5eIeT/Z5wKwMWPGbLftoosuGpxDfoN4PM60adN22s+iRYt4+umnuf7665k7dy4Ao0aNYv78+Tz88MODBX3XX389VVVV/OpXv0JVVQ4++GBSqRR//OMfOeOMM1B38cc94P1DEASOGDOMVMmgbivByTcTj4ZwPBffh0zOQMInVcphOw6RmI4sS2RSBfLZIpFoCE+VkRUfRVUwSiaCCEMG5CQ8z2XYqHr6u9OYpoNp2FiGhSiLCD5YhkkpV+bUkw/ivkcWUyoYg5lUUZYoZnP4noeZCOPbDp0bexAEgWgiTE/BYNXGVbR39nHnv1+kuaGK//r6yeD7+D70t/WAAJF4DMdxkDUVRBF3IPtXLpQq9WACDIuHqBvZQFU8gigKLFm1GYBURw+Z7n481+X8zx/DlAkj0MJhzFKJUGLvFuEGBAS899RGQ4QUeZfTkCFFpnYXz9A9hSAILFiwgL/97W/ouk4ymeTQQ7e3M1uwYAG//e1vueqqq9iwYQPf/va3t/m+UCggyzK6vm2t6MaNG4Edr458v9jnArA38+qrr9LW1saFF164W/stXLiQeDzOnDlzBre1tLQwceJEFi5cOBiALVy4kGOOOWabQGv+/Plce+21LFq0iIMOOmiPXEfAnkeTJYbEI6ztTLGxN8OsMc3E36TOblgWhaKNJFVm4yVFRFIqavblskUmVcCxHQQByiVjQErCpVwycW0H34eRDXEkRaa9J0NPZ4pSyURRZbSwRiQewixbZHqzg8cURBHPdioCq6qEa7mIoki8thrf86hrqiM08MDzPY9kVZRFy1p57IWVFNIZHNthQ1svZ1/6JwRRJBwLo4V18qks5UIRNaRXsnUDRfuqJtPb0zcwJSnQ1VfPjXc/A8DPv30qZ518KLIk4bguS1Zt4sDJYxk/qpFYROdTnzqaV1ds5gsnvj9TjwEBAXsPURCY3ly3w1WQbzC9uQ7xTQuc9hYLFizg2muv5c477+S0005DUbZf3DNq1CgmTZrEP/7xD2KxGEccccQ232/YsIGvfvWrnHzyyRxwwAGEw2HWrl3LddddRywW4+STTx5su3TpUjo7O0mlKvXCixcvBqC6uppZs2btvQsdYJ8PwO677z7C4TDz5s3bZvuLL77ItGnTcF2X/fffn29+85vMnLnFx279+vWMGjVqu5VzLS0trF+/HoBSqURnZyctLS3btREEgfXr1wcB2AecfNnkxoWv4/k+7ak8Xzhi/22+N0wHx3awTI9Cvkw8GUVWZCzLJRKu+CnaloumK5SKJoJpIwCu4yIIlem/V5duRlVlLNvB93wkScIxXXwcwrVxsn0VoU5JlnAdl0ceX8LY0UNobe9Hi4XJ9ufwfA/HdKhprsF0PapiYYaPbQZgWETDHajB0EIhnIFVnT4g+D6u65PuTlUCLEnCKJYxygbReJSph4xDkSVeLJcp5spMGDsMfasVi8WyybSJI/j+eScB8MLitVx+9S3cd9+THH7wFH526Rf28h16+6xv7eSef7/AYQdPZsaU7TPhAQEBu8/QZIxDRvK+6YBtzbhx4xg/fjyrVq0aVLXfESeddBLLli3j2GOP3W4WasSIEZx22mk888wz3HbbbRSLRRoaGpg9ezbnnXcezc3NuAMuJDfddNM2Cvh/+ctfAJg1axY33njjnr/AN7FPB2CO4/Dggw9y1FFHEQ5vWaExc+ZMPv7xjzNy5Eh6enq4/vrr+eIXv8iNN97I9OnTAcjlcjucN04kEixduhSoFOlDZTpza1RVJRQKDQq+vVNM0xz8RSiXy9v8N2DPYJo2kijguT4ibLcM2XY84skwpZJJUlWwLYdioYzneRiKDAIIooCmqwiCgFG2cByXUFhDVmSMkgn4uE5Fh8v1PWzTRhAE9LBKti+HZdroEZ1QNES6J03BtFm6sg0trOHmy1iGRaImgZgUsUybXLrA4lWb6F3XRr5s8kp3iqaGKmbuN4rWvjzlrM7mTT3Ewhr5konn2JWsl2EQikUqhuDpHJ7t8PzDLzFkeCOICpGkwsimaj515FQEwScZCzNtfPPgmDz96mp+87dHyPVXfq+Xr27d68u2d+f3/qe//idr1nfwwGMvcddft68NCdg9gmfO+8u7HX/TNPE8D9d1B/+OvFOGxMI0jh9OX9HAcBx0WaY2oiMIwrvue3f517/+Nfjzzo59xhlncMYZZ+ywTSQS4Wtf+xpf+9rXdrhvRV6oUvrxs5/9jJ///Oc7bbczXNetaCWWK38rdsTWMcnO2KcDsGeeeYZUKjWoE/IGF1xwwTafjzjiCBYsWMDvf/97rrvuuvfyFHfJG4He1rwxTx2w55jTpJM2XIaGbVasWAGAgYiLQCyqky+YeJ4PfkW2QQ9rSKKIYVhARSW+lC/jCwKiJOBbPqWCQU11FE+VKeTLCALIikQ+U0INqeD7OI6HFtaQtlLnV1QF13bRIzqu42KVKzY8tm0jmB6+UJlSfPjZpfR39A3u19GdJlSdwFNU5GQSrS+HaVsouoooy8TrEpRzCoIo4tousWQS2zAp5fJ0d/aTqKumIa4yqyXKptb1DKtRCWmwcuXKwWNc/bcn8H0IxeP4tsWnjp/BoteW0J8p0FSf3C5bvCfZuHEji1dsxvN89t9v2A6nPKKhyjhWJ8KD9zHg3RM8c95f3s34y7K8jSbWuyUmC8TkSoZ8T/b7QeWdXqNpmjiOMzhbtiMOOOCAt+xnnw7A7rvvPpLJ5GAR/c4Ih8Mcfvjh/Pvf/x7cFo/H6erq2q5tNpslkaiobL+RIXsjE/YGlmVRLpcH271TJk+evE0GbOPGjYwcOZJQaO8XPH4UeG5NBys6UsweM4SDm2sGt/eXTJ5rq4gPiqJBXXWUVLpAoWCgaDK+B5ouY5QtVF3BNm1kRca1HQRRRA+pDGlIomsyK1Z1AJUVjrFEBEWRK+baRRP8isiDJAn4no9p2vj4OJaDYznUDa0jGg+R6s6Qz+TJdPejR3Qa66tJdfYDIAhvSGNAd2c/tcMacSwb27TwXI94IoSsqZRzZbRwiFKuiFmqmHjblo0syzQ21SHrGqcdPY0xTdU8+txy/njbi6iKzBXf/hTDmypj4/NE5Vo0jV/84HMMa6zhvO/9jrbOfj5+/EF8/ayP7fF79MbvfW/G5i+3Pg1AJKzz259/hebGmm3a/s+lY1m5po2WEY0fGDHWfZngmfP+8m7H3zRNOjo60DRtu4LzgF3j+z6maaJp2jt+sZRlmeHDh78rTbF9NgAzDINHH32Uk046aYeFem9FS0sLzz333KAI5hts2LCBcePGAZXAbciQIdtFuRs2bMD3/e1qw3aXHd24UCj0tlKXAbvGclz+s6INgP+saOPArYye+80tqWXHdimVbfSQiiAKlEoWnl/xX4xEdcIRjXy+TC5dGAyEImEV1/VY+4Z2GGBbDvlsEUEEq2yjhzUs08YyHSzTQtGUgdqwSo2FKIkUsgXKxTI9G9uxDAs9Ugmg1ueK1FXH6c/kBy2RJEGgkMlTzBUqRfyuhySJ+J6I73i4jottWLi2jaIqeL5HJBHDKBTp7ehh7v6jGTWklnBYp7WjEtxZtkN3qsCEMZWxqU1G6U3nEQUYO7KZYsmgbSAQXL2+Y6/+Xm7dd7FksGJNO2NbtjfnPuiA/bbbFvDuCJ457y/vdPxFUUQURSRJQpLeiQ3bR5c3Eh+CILyjsZMkqeIWEgq9q+B3nxNifYPHH3+cUqm0y0K9NyiVSvznP/9hypQpg9sOO+wwstkszz333OC2DRs2sHz58m18pg477DAee+wxbHuLnc0DDzxAPB4frCcL+OChSCLDaiq1e6MbttXPGpqMMmVILRPqqyiVLVzHJpstVlYODtTluY5LNlOgrbWXQraEHtKQZAlREhFVhZ7+PK7nE41qNFVHUZWKUr5tOjiOi1k2cSybpqYEoZCKbVjYZYOWYXWMHtMEgO/5lPNl1FCYWDLG/uO3BBzZooHn+di2i+t61DRW0zxmKIm6GuI11SQaavnlJZ9H0SSiNQmqG2uQFAk1rCMqIonaKkr5PEaxhGnaPPDkYm594Hks2yGWiDOiuY5j5kzmkOljB4/5g69+nKMPmcwPvvYJdE2lpirOBWefxKzp47ng7I/vtXvV058jFg3xo4tOZ3hzPdOnjOawg6e89Y4BAQEB+zD7bAbs3nvvpampabt51pdffpk///nPHHPMMTQ3N9PT08Nf//pXent7+c1vfjPYbvr06cydO5fvf//7XHzxxWiaxq9//WvGjx/PscceO9ju7LPP5t577+Wiiy7i9NNPZ/Xq1Vx//fV861vfCjTAPsD4PoSjKtV+BEXf9tdcEAQmDhgn3wXkSxaCKOB4PppWKa4XBNA0j1ym4sVYKdz0wId8pogkieiaQmNtnLPnHcBL6zu484kllVoxz8e2LMIRjULZIRILoYY0LMshZdo01yaIxELkM8WKNlg2hxbWWdvWRyQRxbZsEtVxerfyaCsbNqPHj8SxbLL9eTzgH0+8BpJIti+DbVh4roOm60iSgu/5lSAsV6SYqazCjIQ1bnv0VR5+cRUAc2buh7JVfdr6th5eW7GReFQnmyvx2PPLsAoF1m/ooL2rnykTR+7he+Tzl5sf4da7n8bzfX52yRe46Q/f26PH2BGr1rVxx33PMGXiSE48NljFHBAQ8P6wTwZgb9gVfOELX9hu/raurg7btvn1r39NJpMhFAoxffp0/vu//5upU6du0/aqq67i8ssv50c/+hGO4zB37lx++MMfDqrgQ2VJ6/XXX88VV1zBl7/8Zaqrq7ngggv40pe+9J5ca8DboytX5PXOPhrjEaYMqcVyXVIlE0kS6cwWd7pf2XaRZRnfdRFkERBQFZHqqM6m9hSe5yMIYJkOWqgy9RgJaXieh2VYrG3t5dK/PMSQugThaAjP98inC0iKTF9Ximwqz7Cxw0AQ8FwP13ZZMH00f+lOY1kOkiKiqjKmYZDqSzNl9iRCEZ0VL6/a5jw9w+SE/UcxsrGavz/yKq3dGfqyReJVCTatWI83ILhqDSjfC0Kcquo4h0weRW9/lpENSW667zlkVUWPRQFQ5W0T4L/7x6O4rsedD7+MKAg4jkOhr7IQ4NZ7FnL8kW9dVLo7PP7MYm6+66nBz+lcYRet9wxtHX187ZLfVbKCj71Ey4hGJo0fsdePGxAQEPBm9skAbGupiDfzRsD0dojFYvz85z/f6TLUN5gxYwa33nrrbp9nwHvHks4+MmWTdNmkpSaBKkkkIjol0yIZ3fkcvaLKmKZNJBZBknxMw8G2PbozJSzbpZQrEYqFKnVVjofve6T7ssgDmSNVU7BMm03t/SRrYoiCQKI6TqwqijiinkK2RPu6dhzLRgnpROIRGquiZPpzFYsiwLZdyvkSCLB68TpGTx3DyEmj8TyP/s4+Ojd0oFcnaK6O01QVoyEZZU1rD+VCkXR3H8n6asximabhDWxaW6kny3T3UxVSkONhzj1yf555cQWO4+I4ZcqFAlaxRNum/Zi21bSn625ZTj2+ZQjL17bT2FBDb1+a+fNmsqdJZ7YEXEPqqzjxmL2fjfrDDfdjmlvKCQJP14CAgPeLfTIACwh4Mw3RMJmySVxX0WUJ1/Mrpta6gu/DDc8u5ZDRTQytihHaSog0mQiRy1cU53N5AwQQpYpgquO6xKoi+L6A67iIikR/ZwpRFKlqSOI6LsVcCUmRKOaKlAtlIskIruXQ09ZLKKKjhVTC8SiO4+DaLoqm8Mub/4OqK4RiIcyiSa6vosKshUJEkglUVUGUJcySQaqrUgTv+7C6tZt8vsxra9pxLItCKofvgVW2aGiuI5su4DoeDTVxUgWD+LBGNvZm+X83P8HmlRuZPHYohmHy2qvL8X2fmx98kdkHTqS2akAPz7FAVnEsi+9/+UQcz6d+oI5ub0hQ1FRt0eEbP6Z50I1gT5PJFbn5X09SUx1jzMghPPnc64R0la+ceQKTJ4zcK8cMCAgIeCuCACzgQ8H+zXWMrk0QUmQkUUQS4eCRjTy+chP5soXjety3aC3r1nZyxrzpHDRxOADdPTlqaqKIPkiCT6Fkk88UkESBESPqyBctbNshnylilC30sI6qq/iej2XYuI6LpEpU1ycJqwojm6t5dUkrrutilC1C0RB6RCPTaxCrrgQchuNhlkwEwUZSJJL1tUiKCL6Abdn0r93MsIYqUj0pBB9i1Ul8BH7390cIR8LIukYoGuKIw/bniYVLsAyLjtZuYjVJZhw2jZcef7miuu96SL5PV1sP+aKBIktc9t3T+eoP/0R3pkQqX+al19dzwmEVd4CQqtDd1YMa0lm+ZhMHTBmzV7W/Dpm5H0fOmcqmzZ18/pNH7rXj/Pw3N/PsSxXdsIvOO4W//fY7NNQmAymLgICA95UgAAv40BDVtl0UURcJV1YTDswyZbJFfB9e39g9GIC5pkFvt4skV+QePM8nFNXBg86ODLIqwUAMkqyK0tOZwrYqMhPxKgXP89HDWkU4VICNfQX0RAjF1pBkkf7uFI5ZsSgyCgaSLKFHdGRVoZDO4dgOkWQUURIxCiXyqRx+dZxNr64GKibdiigi+z62aWFIErokUc4WeOSRDSgRHVlRiMSigEdfb5YhTXX0p3O0rm6jsbGKVHclw9abzvP5b15FKp0jlEgQ1lWmTdxS/1RTV03ZqwiPXfqz/2PapBZ+e/mO1aT3BJqqcOn5n2LFihUMb97zBrmr17Xzw1/8jf5UbnBbrlCiZXjjHj9WQEDAO+eaa67hL3/5C4sWLQJg/PjxO2z3m9/8huOPP/69PLW9ShCABXxoUWWJ4ye1sLK7nylNdSx8bT1hBI6evsVHMJqIg+sgSCKqplAoWuBDoVAmEq14QbquN+APadM0vI5ctkAkUlnV6PsuuUwB13HBh2RVhOpkFNfz8WyHZDzEpvXdaLqIaVg4lk3v5k5cxyValaBuWAPZ3jRGoUTDsEaqh9SR6tqigO85LmY2y8+/+nleXLKOpoYqhg6p5Tc3PEif72MVygiRMLZhoUdD+LZN2YWmscORZZnmqM6agb5c1yNXNHBMk3xvL//93+cypC45eKyutg5KRRN3QHKluy+z1+9RqWzy19uexhee59LzT6OuNsGf//EQyXiUz22VFXvs6de47Z6nOGDqWM79/Fs/gBcvW8+Ntz1Ox8AUbmN9FVMnjuLTC3Yt2hwQEPDB4IwzztjO5WbkyJHvz8nsJYIALOBDi+v5PL22jZxhoUoSZxy9vW6b7/lEIhp96SKZTAnP83HsyorCbKqAKFVETwF8SaRctohGQxhli3yuUjivakrlZ9+nJhmitztDKKxTKJYJhTWiyQip7gyiLBJPJKgaUo3gC5RLJcxiGVkWwBMxc3k+ueBg0p393PHYqzimjes6DGuspq46xjGHTuXe51dSRuCCzx/LbQ+9wFMvr8IslsD30KOhihisALm+HKIg4PV6qIpMOKRy2vyD+PNtT+LEwnzjjOOYNW3cNmMxa/+xPPTEK1QlY4xtaeKgA/ejbFiE9L0nt/LoU4t5bflmAP5222PsP2kU//zXkwAcOG0s40cPxXU9fvbrm7Fsh6UrW5l9wIRdSmI8/cIyLvnZXwc/y7LEpeefygH7j93pPgEBAR8shgwZwrRp097v09irBAFYwIcWx/PImxU/x3TJxPN9VvWlMRyHsTVJoqqKpkqkcyaqqqAoMqWiQSQUxnddPN9H0zV81yUa0ejvy2OULcqlinuCqquEozq25aDqKoV0gQ3ruqgfXodpWgieR297P7GqKLFkhHhNnHLBoGdzN47t4No2WkQnEg2RqK2ivqmG1f1ZHMOmYURFrDXTk2Ld5l4WvrSSzrLNa+s6AbjwlDlc+pWTeHH5b7FNCy0SwixZyIpMsa8f1xOwTZM3cmlHHzKJuQdO4JDp44iEd2y/8YMLP8Oy1l4yBYMVbWlWtj/La6vauPyi0/baPWoZ3lAJFH2f8aObmTR+BMl4hGQiMmhFJEkiyUSUnr4MkiSSiEd22Wf7QNYL4MRjD+Ks046hYatMX0BAwPb4vk/OtLBcF1WSiGvqXq0BDQgCsIAPMb35EiNrEgiCwOyWJoqWTapsANCazlOj6+RyJRobq+jpyeJ4Ho7rIrkuvg+KLCOKArYDHR1pACRZBEFA0xQkUSSfLeG5HkbRQJREfM9FdD0ah9WybsVmPNcj3ZNGEETSPRmi1TEiyQjZ3gw1TXUUMnly6Tx6OEQ8UbEjScZCZHtTiKJEtjeFokhosTC1asXGSJFEktGKd5wWCaOFQzimTaQuRjSs0bu5c3AMZElEliXau9Oc9s1rkCSRn174KUqFEj/65Y00NVTzm5+dRzwaRhAEfEGs/HdAnmF1a/dOx9cwLW65eyGKLPHpEw/dRtT17TJ5wggu/uoJNA5p5oD9K3Uf99542XYP/qv/5zwefvJVpk1qect6sZOOO4jWth5My+a8M+e/ZcD2QaOrN01VPIqm7b7FWkDAO6G/VGZ9Oou1lRSNKom0VCWoCb8/PqGe5+E4zuDnd2ob9EEmCMAC9kkcz6sYXYs7li4wbId/vboaH9BkidpoCNfziGsqJcvmxXUd5MsWpZLJmrWdJKsiSIjIooRlWICAUTKpr0sQTYQxSyUcF4xCGVmRURWZVGqLHpgiS5iehyBKZDMl0qkcxUweH5AUhXhNnFRnP0bBwPNc8H2aRg2hc4NPIZPHKJu0rutk9PAGTj96OkqxzKqN3aghjYahdSxc28kXDp/CuOZaauJh6hKRSk1Xbz+RZBxF17Atm7XrK9N5giigaRq/+68zWLp6M7/+v4cAcD2Pl5duYNOGzRRLBms2dPD6io3MmVnxWPzmF47jjzc9SmdXP1okTE19zQ5Gt8Ifb3iA2++rGGgbps2XTj92p213hO/73HrPU6xe28o3ztliPbSjt+6hTbVvu/+QrvG9r39ql23+9PcHueO+Z5g2uYWfXnwm6jsIHvcG//vHO/nXA8/SUJfk2v93AbXV8ff7lAI+5PSXyqzsS2+33XI9VvalmVDL+xKEXXnllVx55ZWDn4cPH84jjzzynp/H3uSD8dQJCNgN+ktlVvWlkUSBKQ21hHdgxm45Lm9IbJoDKvGSKDKloZYlm3vIlytTk6GIRqloYhg2sixiDZhlh6M6vutRNCzSuSKCrOA7NmqkskLSB6KxMLZlUyiUGD+mkRVrOivG2aoMjkAoFse2bARRIJ/KIysyuiaSqEqgxSKUCwaRqjipjl7y6Txm2UT0BSzHo7VgkfGEiuHugD6WqsiMGbIlIJIkET0awSyVkWSJTHcWTVMxDBPf84nqMi8tWc/ydW2D+yTjYeYdPInuUY08/8pKmhtrmDpx1OD3193yBJasUTt8KKIgEBcclq/exH7jhm83xtn8FoeBXL602/fxyede5883VR6oeuhhfnTR53a7j/Wbunht6TpOOOpAQvr25vY7Ip3J87dbHwPgmReX89zLKzj8A+I9+dDjLwPQ3Zth0evrOObwwG82YO/h+z7r09ldtlmfzlId0t/z6cgzzzyTk046afCzpr29/7/3JYIALGCfI1U28QHH88kZ1g4DMBEo5CsrGQvZLcFBRyrP7c8sR1YkqpNhinkDPazjex6O4xFNhNEUmVKhjGE6aLqCkS9TyhvImkxoYOrPKJkAOLZDNKIz88DRNDZW8fBjFV0uURJAqISA/oAOhiCKyLpOKBnHNG1EWcTMW+iJBFFFRgtr9HX1cdGVt6BVJ/ElkZE1MRKawvq2Pv7vrmf5zufnoSgSyzZ2UxeP4Fg2kWQC/Mp0ZDGTRZIEXNentirGH2+uBBoHTx/Lp4+fxYSWSm1Zf38GTVXQVAVJrEw5tg7ohYmhMJIoYpRKPL94Hbl0lj9decF2Y/yVM+dTKpsossQXTp232/exuzcz+HNrWw89fRl8n92q17r4J9fT2ZOmqzvN17644K13AMIhnapElHS2gCSKNA34gn4QOOKQqTz4+MtUJ2NM3W/UW+8QEPAuqNR8ebtsY7keOdMi8TZfcPYUjY2NTJnywXgx2lsEAVjAPkdjNEzWMJElkeqdiGlqqozs+axZ2c7U8c2D282BzJhtu3ieTySmUy5b6JqKJIk4jocluBimjaLKOLZLvCqK77mUCgbhaAhZEbHtykNLVmTyuSJ/++dTRGJhYtVRVE0F3yfTm0FWRCzTJhIPY5ZMHMela1MXkUSMTG8W13ERhIrSfrYvQzGdRZQkGnWdcESnLV1kzeZezLJFJ7BiYzdPvr6edV0ZRAG0cAizXEbVdaxSueIJOVAn0ZveYvXTUBMfDL4A7vn38/SlcvSlcry2bD3PvryCux58jqFDG5gxpoVhQ+v5z39epAt2uuKwsa6KX/zwnXuiet6WB3/ZtPj0uRVLsJ9d+gXmzpr0tvoYObyBzp40I4bVv+3japrC7674Oo8/vZipE0cytqX5rXd6j/j+N0/j9JMPp64mSSz6/tTeBHx0sFx3j7YL2D2CACxgnyOmqUwbUoeAgCTuOC2uSBIfO2gCnbkC4+q3ZDhG1Sc5ZuooXm7trmh5GTaKIuM4Dj4iluUieS6iVJmOjMRDaJpKQpRAylHIFVF1FUVVUDWZ6poY3YBtWiBJRMJqZdpQECgVdRzbIV4VIhwNUcyVKXT2EY6FqG6oJlkXx7EdipkC+UwBb+Ah57kuHWs30Ti0nlB1EjWkYZk20YjOiMYq1j3YB7KM50M5XzH+zuX7sQ2DSCzErP3H8+KyjViiQjQeZf6cSXzuxEO2GZ95h07jyedep7GuiknjR/CHG+4HoK2tm9/97CvUVMX59DEH0NOXoalx53Vg74ZjDpvOg4+9RHtXPwLCoBfli6+uetsB2BU/+BKFYnm3C+2HN9dx1mlH7/Y5720EQaBlxJD3+zQCPiKob7Oo/e22C9g9ggAsYJ8jY5gs7+lHFkWmNtaiy9v/Gjuuy3X3vIDtuMSjOt86ZS71icof6cP2G8HoIdUYjsvy5ZsxjUo9mG8AAoRDKooio4dUBAHKJYuejj50XSNRHcNxKoFCuWTSmiogeh4TJg8nGg+xaNEGFFXBMixURSZZE6e/o59CrkgkHsa1LcqFMpvXtNM4ohFJAtf1SdRWUVMdY/3KDZhlE0lVKVsuYslAEkWGjWqkKhnlsr8/hlEs4XigCZVgzXNdZFVB0TSmzZqIZ9mEYlEEQcCyBdq6U9utUJw7axKP3PLzQf/Fr521gD/+7QEOmz2ZmqpK4bcsS+8q+HI9j7bOFI11CTR1+2ni2poEnz3lcP7nqltpbetB11XCusb8o2e97WPsSpaio6ufK/9wJ5qm8L2vfZKqZGyH7QICPqrENRVVEnc5DalKInFt72kBfpTZO+63AQG7wHZdNmfzZAYkIXaXjFGpAbM9j4Jl77CN72/52QPueH7FNt83V8UYXZfEcx1EUUSSROKJMNFoiELRpJAr09+bo1S0MEoW4VgYHyjmy/i+j+d4FDNFmhqrOfGEA5EjOps7MwDk0hW9MMu02LBsPUbZrCjal0waRzQxZFQzyfoqSvkSfR19pLt6yXf30lgbJ5KIIYoikUQMQRDpa+9hclMVP/rsUUREAd8HPRHnSwtmc/X3TqMqGQXAsWxkVaY3W2Llph6KmRzlQpFyvrDTIGpr8+uFzy9l3cZOHn96Mbbt7LD97vLzP9zNVy/7K9++/B/Yzo6nMExry7EWHD2Le/72YyaMGbpNm75Ull//6S6ee3nFm3ffJdfe+CAvLlrFU88v5cbbH9/9CwgI+JAjCAItVYldtmmpSgR6YHuJIAMW8J6zNpUd1OM6oKl+hxmsXTEkGqZo2ciiSHVoxzVgiizx+eNm8Mji9bi+T3gnmkqO7ROK6SiyiICAIPqMHFaD63qUyjbRuI5h2vR0ZREQkBUZ13ExSgahaIh82WRYIsLy9j5CuoosiSRrEpQNg3x/AVXXKReK+J6PHg3T19EPIoTDKpneLKZRGQclGmFjdwYlpOF5HsVMFllVkBWZRG2SP9z7PADxsEZTTZyDp4xCVWQu+/rJXPybO9HCOpGBYEyURRzLwrEs9GgYLR59yzFdtqoVqBTD5wtlqqvefbbo5aUbANjQ1ksqU6ChdvsH/UHTxxGN6Fi2y7xDp+2wnzO+fiX5Ypk77nuaP/ziG7tUwS8bJn/+x78pFI1tFPz3xPUEBHwYqQmHmFDL+6oDdv7553P++ecPfl61atVeP+YHgSAAC3jPMbbKsLjerlfg7AhNlpm0C32qNziwpYlRdUk29GQYkthxEOIBjuVQzFUyabIq4fnguR7lsklvX47a2hiJZIRMpoDv+YiSSDhWES61HJc/3/8SCAKZ3jThWAivZOK6LoIoEI3H0CMhfM/BdXwi8QjZVI5kbZL6YQ1k+rIIkkQ+la2YfEdCKJqKaztU1VUzYmgdqUKZ9Z0VQ+1PHTqZI6eNBsC2Hb7zi5uwHRfbNLFNG99zcAyL5oYqGprq0RNR5kwa+ZZjdf7ZJ3HDrY9yyIET91iw8tkFh3DHwy9xyPSx1Ndsr2dlmjY/uOJGCsVKELpi9aZtgqtcoYSuqRRK5cFtK9Zu2mkA5rgu53//D6xcW5HdmDltLF//4gJ0TeWk42bvkWv6MFE2LDp7skyY4L9144APNTXhENUhPVDCf48JArCA95yt6+b39qM/pqs8+NwKutIFDp40gikTmhlfV4X+Rk2UD47jEIqo+L6PUbIoOiV830cQKkryvd1pBElCFAU8z8dzPXL9ORRdIZqIVq7B91FUmb6OPuJVMURJQtVVHMvBMixiySiyIpJLFxBFkdbVm9B0FQQo5UqYJYNwIoYsS6iqRNG06NrYzqETh9JbtivK9D6UBuQvADL50uDUnms7lLI5AA6eNob/+vrJuzVOM6eNY+p+o1i2qpVcoUQ8Gn7XY3/ax2Zz2sd2Hvj88W8PsGpdOwC6pnL8UQcOfnfbvU9x9Z/voSoR5fgjD+TRhYtoaqzhlPlzdtrfsy+tGAy+AGzH5fSTj3jX1/FhxDRtvv79P9LW0ceS1T18/5ufeb9PKeB9RhCE91xq4qNOEIAFvOc0J2JsSGeJqSqRHWh47SnuXrSGtV0pugbkGJZt7kGtDlOyHA4eWVlpVlMXJ5cpkksXURSZSDyE7/kUcmWMUiUzU12XRNUVzLKJWS7hOh5aWCNeFQVBqFgRlUxcx6e6oQazbGFbFsm6BK7tIisSoiySzxQxyya2aYLnI8ciWJaDKInEaqqI1yZwLJvuDRkEUUCRJA6ZPhZfEPnVP59AVyT+/fjLrFy5kW+eeRzViQiSIuO+qWbrxcVr+fkf7+HMT8wllS3Qm8pzxKyJ29R8vRnLdvjaJb9j1do2mhtruPF3393r6vCKsmVlVU11jHhsS9B378Mv4Ps+qUyelhGNPHHnL96yv2FNtSiKhG27jBhaz3e++sm9ct4fBnr7s7R1VJxCX1u2/n0+m4CAjyZBABbwnlMbDlG7B+sKXM+jPVsgGdKID7zBGbZDayqHospUVUexSiYtIytaUcpWgUh/b45wSCUaC2FaDkbJQlGlwWnGUEimkC+TyxVQVRXP95EUCVVWsSwHSRRQZYkD5k5g8Wsb6Nrch+f7lPMFyoUioiRjFIvg+8SrE6i6QlVDNbm+DPgezSMbSPVmK96TqkK2pzLVWDu0kS+edDDjR1UCxT9d+hkuufJmlrR2s7a1G0kUWbt6A/gQq6lCkmWK2RxGvkC5XObpV1bRm8qxakPFF7KtK8UXTj50p2P4k/+9iVUD2aP2rn7yhdLgasi9xXlnzqerJ8XGTZ3893fP2Oa7uQdNYn1rFyFd5cD9x76t/kYNb+Sm319MNldkwthhe+OUPzQMbarllPkH8+xLy/jSZ455v08nIOAjSRCABezzvLy5h9Z0DlkUmD9xFLoio0gipmEjD2RZqmJhTpw+lpLtMGKrGidVU3A9F9ejMuWoyjgDGSVRFECU0UM+tu0Sieo4lk1+IKMmKRKarpLKl0n35ZBkEVlTEESBuqZaQlGdVHcaSZEwi2WMsoWTLZLq6CVanaCYt8gtW485UAP1hgm2rMoork06W6IvW6B2oH6tZVg9S1ZVvB7//fQS8j09ROvqyPWl8BwHWVFwjTJ6JIwoCIPBF0BhIJvX3ZdFEkVqq2NsaOvhD/98jFHNdWxq7xlsG42EqNpJzdyeRBRFLvnGp1ixYgXPv7qSL33rN4iiyJWXncOXP38CRx86jWQ8usOatO7eDIuXr2f2jAnbZM6GNFQz5AOkbP9B5rwzT+DwmSOZOHHi+30qAQEfSYIALGCfpGjZrOnPoMkShlMJmBzPxxko6pdEkdMOmsizyzfR5aQpCAILl7Zy6iH7bdOP7Ti4tos4YOptlCo+ipZhYZZNtIiGbdiEIiGKBQPhDV/GUEU5X5Qrn03TRvFlXNcFGzJ9WTKpisdasq4KrzqBpskUsgVK+TKSJBGriuO7DpExUTav3oRVHrA3shw62vu45cHnufeZZVx06uFMGj2Esz91OItWtNLa3ocgCKihEKVUCiUSQY9EiNVUDdbUhUIKxVJF32xkcy1fOPlQXlyyjp/87l+IgsDPvn0qDzy5mKWr21i6uo2zT5nL7/58N5btUDYsNnWlGNlU+5b3YX1rJ7IkMXzo21eif4NS2eTCH13H6nXtOIOrr1z+eMMDXPv/zt+pIOkd9z/Db6+/B9tx2W/c8B3aJAUEBAR80Al0wAL2STrzRYq2TapsMKY2yZjaJLNHNBLdSjDwpdYuuk0DTa+o0xu2wy2PvMrVN/9n0KZHkqSKSOnAwgDf9xFlET2iE6+JgweRRARpIJMmCAJ6VEcUBBLVcWzDRpYlJk4axsFzJqBpEpIsUMhkKWXyCJ6Pa5RJdXRTyOaxTAs9rBGNhyoK/LZLPp1HD4dRQzrqVrIasqLguR6rNlWyUzc/8ir9JQdJlhg9vJ6fXnwG4epqIskE4XgMYytzbMtyEYCZU1r4xXc/w+bOfh5/fjme5+O4HivXdXDgpJGIgkBTfZLHFy7Csh3CiTjVw4ZyxQ2PbmMVtCMWPr+UL1zwK874xpUsWrput+/hqnVtLF+9eavgq8LsGeN3uk9/Osevr/3X4OKDnr7Mbh93T7BizSa+fsnv+PlvbsbaQ7ppAQEBHy2CDFjAPklVSKenWEKRROqiIZrfNGVWsmzaMwUEUSQRD7F/cz0JReLX/6gIcqqKzHmfnItjOQiiQCIZQRAEMqkCkWgIy7DI9udRdAVRFDHLJp7rISsyelind1Mn3a0dxGqSiKLE8qWbkCQBH7BMm4Zhjfj4dG3oQJDEin6Y6xONR2kYWkshX8ayXPRYBFmRsS2XUDxKvDqObVqYxTKJRJTmmjjzZo4DoC9TRFYVYjXVfOPM4xk7rI5IIg6CTzQZJd9vk+sr4LsuJCqaW9lCmddXt/E/v78LgMbaBA21CY6dO4VELMys/Uejaypfu+S3lXFtGoKkKFi2g+fv+g1t/cZOfN/H9X02bupm+uTRu3UP9xs3nIa65Dam3B8//iC+ePqxO91H11SiEZ1C0UBRJP7r25/drWPuKX5z3d0sXdnK4uUbmDZ5NPPnzXxfziMgIGDfJQjAAvZJasI6Bw1tRBAExB1o1chbbdN0haOnjqInlUdXZQzLYcSQKgAEwcM0HLKej+d5SLJIpi+HZVnoYR1JrmS+VF3FKBnEkuFK5qq+BkWvLCTQIhrg43t+RZbC88mlcqiaSjQRp1wsEU3EsUwL23FZ8/oGQrEQruthFgxkVaJ342ZC8QS2YVLOVwItNRTigMkjSQyYMn/++JmEVIWyYXDxL25CkUUK+RKKrtGZ2Vwx9bYsXNtGCYWQVZW2rjSLV7QOjkVPf45svkRnb4ZELEwsUun7su98nrsfeo4RI5rIGC4H7jcceRerJgFOWTCH9q5+VFXmhHkH7rLtjtBUhSt/9CV+eMUNOK7PReedwqwZE3a5TySs87vLv87zr6xk7kGTGPEOpj73BI311Sxd2Trwc9X7cg4BAQH7NkEAFrDPIok7DxDKtkNtIozj+QgDvkT11TH+3zdPJlso09JcqW/yfYFYPIJt24BIPlMgGo+gKFJFewsQRCikizi2w+Y17UiyjDRgTqtHdfSwjixLFHNF8ukC0USESCxEX1c/oWiIZKyG7vWVFYYlXaWqsZZyvkS5WEbVVDK9OepGDq9k4Hr68T0PVdfQQipbi3TUJCN8+ZQ5/NdVt2HZDpYNkqLgeV7FAFyWkRQFSVVxHQdZVbFcl3ufWETLsHpyhRJ96QJl0+blpRuY0NI02HdzYw1fO2vBbo1/PBrmBxfunn5UV0+Kda1dHDh1LJqm0FCX5NvnHMvEiRMJh7fXHlu5ZjP1tcltCvFHjxzC6JHvr2H1peefyvTJo2keUsOMKWPe13MJCAjYNwlqwAI+lER1le7eHMWiST63xXOyJhEZDL4qCEiyhKIqiIpINBbBc32Mskm5bOJ5Hooi0zyykdqGJIomE6+JE06EkWQJPaxXMk+uR6wqRrw6Sqo7RduaTVjFMoV0gWx3itqGKhqG1iMgUs6VUHWNUEjHsSyGjR/O0DFDUUMaerRiLC0IPoVsniuvvZs/3/HUNte24MgZREJaRfxV19B0HS0cwnMcItVVjNp/IiMnjWHOgRNwBrwyD5k+lv/6+slEQhrxaIjDZk7gtaXr+OxXf8EPr7hhj/k/7oqevgxnffNXXPzTv3Dx//zlLdv/382PcM5Fv+Hz3/h/pNL5vX5+u4OmKXz8+NlvWyIjIGBf5pprrmH8+J3XZu5NzjjjDBYs2L2Xw32FIAMW8KHEdj0a6+KUDJuqmii+77O4o5esYbF/Ux3JkEa6UEbXJUqFgQDN9ykXyni+XzHoliUK6QJGUaYcNjFLJr4nkOlJg+8TjkdxbAdFreSpzLKJLInEq2NEYmFcx6WQyVNTn2DGzPF0tvdh2hWZCd/3QZKpH9aEpmu0rW1D0TUcy0YQRSLxKNmBAvOFr6ziuZeWsWFtK6OGN9A0vJli2cQuFcn396OGQqjhMGahQLIuiYjH1BF1nP+5Y3li/9F09mU45ZiZPPrsUooDKy3XbermoUeeZ1N7L5vae/nkgtbdruHaXVrbegZth5at3rTTdivXtnH51beQylSCrly+RHdfOvBzDAj4kNLd3c2tt97K0Ucf/ZGSRQkCsIAPJZIoomsKkiwRURV6CiVWDxR7L+no5bDRQ3lhxWZCkRCGUUCQwHNAVCTi8RCO4yFLEpIsYZZMHNPB93wcxwHPI1aTQFEVyvkyoijiOi7p7hSqJiNIInokPKikX7Y8nn9+dcVfslhCNkWMQolIIornuaQ6+3EdH9F2icQjpHsMkrJIynGRVYWiadG/qR3Hslm1to28W0lcK5EooqbjmCauZSHKMpYD6d4cK02LVLbA0CHVHDm7Ir3R3Z8dHJ+evhyHzprEsy8tp7G+mtE7kXzYk0yfPJpDZ09mybL1fGkXhfZ/v/0x1m2saJiNbWnisNmTmTh2+F4/v4CAgPeHnp4efvvb39Lc3BwEYAEBH2QM2+G5dR2EFJlZLUN2WISvSCKZrhwd2QLjG6tZYVZkGXzAsV0Wr+skly+Sz5WoqYuTTeVwfR9VUynmDFzPBQ9cz0WSJCzDwvNcItEQseoYxUKZQqaA53rY/TaCKBCKhikViviuh22ahKNh8MHIl3Fdh3AsTCQWwigaDGlppn5oPfl0HvDRBqoB8v1l8OG4OZM5/tCp3L7wdW5/8HkUTcMxTWLREGd+Yi53PfoqXV19FHM5tGgUSZaRRRFRECjl8kybPZ6v/viv5IsGLcPqiYQ0vvSpw0llCsiyxIlHTR+w+wHDsHAcl01tPTzw2MscfOAEFq/p4NlXV/OxI6dx4pEzthtf23a4/b6n8X2fT5146NuyLZJlicu/f9YOv+vsTvGDK67Gx2fe3P2BykrVS84/lfGjh77dX42AgICAfYYgAAvY53iltYvX23sBqImGGNuw/Sq0kmHx8sqKanxHZ5p0T5pwSKO2MUm+WBEonTqsDrNs05HrRRCFyopKUcT3fXRdR9MVFFWmp6MXx3aI10TxXR+jWMmICaKA7/gYxRICVCQlZAnDtHAdQJDQQzrhqE6qq59sXwbXcfAcl1KuQKYvg+f5iIJAVUM1ekhDEpPU1yV5/PllTBk3jGMOGEsqX2LJkjCvv7IMw7TYb3QTC46cwf2PvsQVv70Nx7KQNQ0tHMIslgD4179frKweANZvruiIPfrsUr57zpZaitcGtLvS2QKb2nv45e9uZ1N7L7fd/wxaIgnAtf98nOMP3R9F3uLbCPC32x7jrzc/AkAuX+a8L8x/V/f08mtup62z4k344qLV/OXX3yIeC9FYH6jaBwS8l7z88stcfvnlrF69moaGBs4555wdtrv77ru54YYbWLt2LbquM2fOHL73ve8xZMiWbPoZZ5xBOp3miiuu4H/+539Yvnw5tbW1nHvuuZx++ukAvPDCC5x55pkAXHrppVx66aUAXH755ZxyyimDfa1du5b//u//ZsmSJcTjcc4880zOPffcvTUM7wlBEX7APscbfo+CADFd3WEbSZZoqE8gihWzbHwolUz6+7YUc9fXJfBdF1EWkaTKNKJRMpAVGUEUyGULpPtyiJJMOBEGBEoFg3hNpcYLHxzLora5Dj0WQZJEQpGKoOobKyNd12XTqlY8zyNZX8WQlko2RxAFho5uRg+FGDWphWgiQrlkgCjRtrmbpavbuPPhF0lEdL78sYOoljxcy8K2K5kqgI8dPZNQPD4oxVHo3WIn5Hk+tVGV4+ZOQdcUBAEmj9vij+g4LlP2H8+YlmY+cfzBTN1v1KBZtyhAcsDep7mharvgCyp1WYM/F0rbff92sGyH6296mL/f9Ryhre5jVTLGuNHNQfAVEPAes2rVKs4++2xSqRTnn38+p5xyCtdccw2PPPLINu3+8Ic/cPHFFzNixAguueQSzjzzTJ577jk+97nPkcvltmmbzWb58pe/zKRJk/jud79LY2Mjl112GbfffjsAo0eP5oILKm4Wp512Gr/85S/55S9/ycyZM7fp45xzzmHChAlcfPHFtLS0cOWVV/Lkk0/u5RHZuwQZsIB9jilD66iO6GiKTG10x6beqiTS0JBk3NhG1qzrJhpSsEybaHUcRZaYO34oLiCpCqIkDiSLKsGa53mIXmU6r5gtEoqGiCejtK/ZDJJM58ZuErUJ4jVxHMukc30boigSrUpgWxY1tTGssknZcqmpTzJ0ZD0rXl4FCPSXegnHI4wYP4JQLEzjcIlUTwpRllE0jZ5NXZgDtWOKpg1ezzmfPY5CscyQhmrmzpq05TrDITzXo5hJI6sakiggCZBJZzn5U4dx8vxDOOuUwzAsm4aaxOB+tz/+Gvc9vxohVs0Jx87m9vue4ezPHsemtl5mTh9LbU2S5es6mDZhx7VXR83dn80dfUQjOud89rh3dB9vuXsht9zzNACTxg1jwTGz8Dyf7379k++ov4CAgHfH1Vdfje/7/OMf/6CpqSJTc9xxx3HiiScOtmlvb+eaa67hwgsv5Lzzzhvcfuyxx3LyySdz0003bbO9p6eHSy65hC9+8YtAJcg69dRT+dWvfsXHP/5xamtrOeyww7j66quZNm0aH//4x7c7r56eHn7xi1/wiU98AoBPfepTHHXUUdxxxx0cfvjhe2Mo3hOCACzgA81rm7pJl0wOahlCWN2iitX8FiviMoUymzvTtHUJOI7LzIPGIQqweEUHLmB4Hp7lEInqmKaFZdqDKx+tsonhGXiOhx7WcB0X13FJ1FWR60sTjkYRRAF8qB3agG3aeK6Hj4/vQS5nEk6ECSkOvZu7yaXzlSyVJCErlWso5Ep0tnYiKzKWaZNP5ZAkEd+HWG01+DBy2BaR0eFD6/nVf395u+uUVRWrbBCKV4IrVZG59eoL8NyKfAZAIhYm8ab93rDP8X2f3/3ffSxZsgZFlrjpDxcPmlkfXh3f4dj+59kl/NcvbsT3fS445+PveHXi1tIXtuNyyfmnvqN+AgIC3j2u6/L0009z9NFHDwZfUMlQzZ07dzDb9Mgjj+B5HieccAKpVGqwXW1tLSNGjOCFF17YJgCTZZnTTjtt8LOqqpx22mlcdtllLFu2jGnTpr3luYXD4W0CM1VVmTJlCps3b343l/y+EwRgAR9YOjIFFq6pCJh6vs+8iSPe9r7xiI5ZMhEkEXHAoloWxcFCfB/Yv2UIjy5ai6bLuI6Ladi4jovvUZGKkH0c28VxHNJ9WWRZRtZD2JZLMZfGc11ESURSFJpa6rEsC7NsUc6X8F0X13VwPUjUVyPLEoIoIkiVWrNcOo9RMFBDOrHqBNFkHMswEUWRdHc/VdUJDpu+a1kIz69YEOVcB8/1aapL8O2zTkASxV2K1AKceswMktEQ9TVx/njdnUAlCCoNyFTsipcXrxkUqX158WpOPenQt9xnR3zmE4fT3tnHprZOLvzyye+oj4CAgD1DKpXCMAxGjNj+OTtq1KjBAGzjxo34vs+xx+54JbMsbxtW1NfXbyeyPHLkSKCSTXs7AVhjY8X1ZGsSiQSrVq16y30/yAQBWMAHlrCqIIkCrucTD21b6+V6Huv7c4RVeTsfSAABgUljGqmpitDanmL16g7iYY1kVRjX9diczjNn/DAc2yOfyaLqasWv0baRVRHPcfGovBXKskQ0FsGybFRNwXU8qhqqUDWZTF8Wo2iyYek6ZEUiUp1AVmQcy8MomvieQzlnIggCzeNGYBk6sqxgGiaSLCMKAkbRQI9oKJpKf0cPtmmRyxf5211Pc95n5u10fERBQA+HSNRVYxkm7WtaGdFci+/7/PGfj7F2UzfnfvpIJoxu2m5fXVU46fCpAGyadyDX3/QwY0c10TKi8S3vy/x5M3l04WtYts3Hjz/4LdvvjHBI46LzPsGKFSsYNbzhHffzdujuzRAKqcSj26vtBwQEvH08z0MQBK677rpBR5Ct2ZGjxbtlR8f5MBAEYAEfWJJhjc8dtB95w2LYm6bDlnb2s6o3DcCRY4ZS96Y/rOlSmfUdKRataMOxXQA2lg3mzp5AX9GgO1Xg8SUb8PCIVkWxTZtCugCAILiIooTjOsiajIBAuWRglk0kWUJWKrZDhiyRrI6R8TycaATPc3FsG3wBWVOIJMJ4rkY+lccXBFzHRVFVfN+vTA+GfTzbxjUd8ikLSZbRQiEkWcYolnjqpVVYlsO5px45WKReKBnc8e+X2G9MMzOntDAqIvLs6yspF0ro4QgCsGZjF/c+sQiAv9/zDP/zrU/vcpzvfOBZiiWD15atZ8Wazew3bteaW/uNG859f78M3/MHpznfDX3pAutau5gyseVd97Ujbr3nKa7+891EwjpX/+y8QNYiIGAHVFdXo+s6ra2t2323YcOGwZ+HDx+O7/sMHTqUUaNGvWW/PT09lEqlbQKzjRs3AtDc3AywXXbro0KwCjLgA00yrG8XfEFl+m3Lz9vvp8sSU8Y1ccCUEYRUiWK2SFNdgtY1nVhlG9/3yaQLFNMFCqk8xXwRURLxXA9RlpBVmVAkhK5rhEIqkiwRioRQdRVBFFE0Bdu06djYST6dR1FVIrEIxXQeo1Ai25PGMEx8XyBRlyReFWXC+CZkWUQUBbJ9KcLhEMLAm53n2FiGgec4mMUyvueTzhV56KklPPzM64PXdce/X+KWB57np7+/C9f1iOoqZslEj0RxLBMEGFKfpHagLmvqTorot2bS+MqUQzIRGaz/eitkSRoMvpaubOXT5/6cr178221WR74drv/nI/z06nv56sW/57q/P7hb+75dHl1YCUaLJYPnXlqxV44RELCvI0kSc+fO5dFHH6Wjo2Nw+7p163j66acHPx977LFIksRvf/vbwVKEN/B9n3Q6vc02x3G45ZZbBj9blsUtt9xCdXU1kyZVFhSFQpXFVG9eQflhJ8iABeyTTBlSi6ZIRBSFhtiWN6t1XSmeX9POpGG12I5LV3+e0eOGMKy5hldeXsuCwyaztCeLD6QzBSRFrmS1RAVRFhBFAd8D23KwTRtXErFMCz2sgwCO5SApEq7tDk5bFjJ5HNsmVl1FrCpKNl3AKJYRPJ9sXxrXdghFw7z2/HIM08axPRB8TMPAcx1wPVRdAV/A9QWmjRqCb9ssXbMZ3/MZPWzL9NyEliZkSWS/0c1Iksh9j7yIYViY+TyRZJInX1zJITPG8ceffIlMrkhT/fYaaQAvL91AMhZmzIgGvn/BaZx4zCyaGmvo7kmjqQrhkLbD/XbEnfc/Q2d3is7uFE+/uIz582a+9U7Ak8++zi13b/G5XPj8Ms79/Alv+7g7w/d9PM8flNU49ogZLF+9iUhY55CZ+73r/gMCPqycf/75PPXUU3zuc5/j9NNPx3Vd/v73vzNmzJjBeqvhw4dz4YUX8r//+7+0t7dz9NFHE4lEaGtr49FHH+XUU0/l7LPPHuyzvr6e6667jvb2dkaOHMkDDzzAihUr+OlPf4oysChp+PDhxONxbr75ZiKRCOFwmKlTpzJs2LAdnueHhSAAC9gnkSWR/Rpqttv+rxdXkS2ZrO7o46iZY5BFgY1tfZQKNpGqKLKu8sY7m6pViu8FQcA2TfB8BEHEtV18z8MHrFIZPRrGtSt6YQBWyQQ81JBOMVMAH0RZItWdQhJAUGQ8xyJXLIMAoqzgCwJaNIKg2FQPqUYQJHrbesh0pzn8oAk8+uwyJFEkFNZ4dfEaAD4+7wA+edzMwWwWwEH7j+bO316ILEuYlk3ZsBAEASUcxvN9rrrhIZ5fvJYff+MUwjvRSLvtwRf4650LEQWBKy/+LBNGNzFt8mi++5M/89zLKxneXMdff/NttK1Wne6KQ2ZO5NGnFhGLhJg68a2nJN4gnSts8/nMTx/1tvfdGRs3d/PNH/6RYsngJ987g0Nm7senFszl8IOnENJVopEdy5YEBATAhAkTuP7667n88su5+uqraWxs5Pzzz6e3t3ebgvcvf/nLjBw5kv/7v//jd7/7HVAplJ8zZw5HHbXt/8eJRGJQiPXWW2+ltraWH/3oR5x66pZVz4qicMUVV/CrX/2Kyy67DMdxuPzyy4MALCDgvaQ7W2Dx5l6OHD908O1od6hPRMiWTCzb49mX15KMhbAdl95MAVEUeXFlG6GoTkMszBlHTOWFxeuRZYlILIRtuhUNMFFEVmUkScKNV7JrkiwjySK5Uo5oIkaqq49y0UDVNWRVoZDJoagq4USEaCKCUQxX1POrYmxa247vQbovh+fYRJIRcv15Up19uI7Dc69vpHHEEMyyiaKp5DMFBGDKuKHbBF9vIA8Io2qqgqrKWJZT8YO0bSKahr+DKdmt6Row+fZ8n+7+7GCR/qtLKsr4m9p76UvlaG7cPsDdEUcfNp0Dpo5B09S3zJzdePvjvL58A585+XDmz5vJmvVtrN/YxjfPOYUJ497+Kted8fCTr9Kfrojt3vXQc4MZr7qaNwtxBAQE7IiZM2dy5513brf9/PPP3+bzscceu9OVkG9m8uTJ3HzzzbtsM2/ePObN237R0Y033rjD9ldcccXbOvYHmSAAC/jAUDJtbnm58pa1sjvFBfMO2O0+Tp87iV/e9hSdmQJuWMdVFAwHFEUipqvYoojj+Sxf38kzVVH0mI5jOhRyJWSxooAfS0ZwXR9Vk8mnLRzHoVw0QKhk3gqZHJFkDMe2kCWRVFc/qq4jyTKmYVEulnEcm3AkTC5Xoq6pFrNsUcjmsQ2TjvWdGPniYP1EIZ0jWp0gFIuQ788AMHvaGA6ZMW6761u+tp1rbnyYcaMa+dZZJxAKh7CsPGooRLS2hppYiIu+tGtboM+dOAfTcqhKRJh7wPjB7ed+/nj+edeTHDpr0tsOvt6gKvnWWmBLV27k2r89AMCqdW3cfcOP+fpZH2PFihUMH1q3W8fbGQdOHcs/7/wPtuNy0IwJe6TPgICAgL1BEIAFfGDozRffdR+KJPHNjx/MCys3s7FUQlNlUpkSm9d0kBxSxYiRjaxu7yOXLmDaLp7jIasyoitiGzZqSKWQK6FqCvmSgSyLNDY1IkvQ1tqNrOmUSwZGsQy+j5qIUj2kjlKugFEqU1WfRBQFygWDQq6EZzsgCMRrEiRqq9HDKunuNAICRrFYEUxVVdKdfbiui6rI1NfESeeK9PTnqK/ZdgHCT3//L7L5Mq0dfRwwaRSRxiFI0RiKrlPOF+kql4m8RRaqOhnlO2d/bLvtn/nE4XzmE3tPVToS1ivWUJ5PbC/JQcyYOoZ/XnsJhmExctjelbYICAgIeDcEAVjAB4YRtUk0WcR0PJqTkV22dT2f1d0pIprC8DetkoyGNMYPq+PJx15DUyU6N/ciqxK+IHDOMTNYtGozqVyJI2aM5Z8Pv4yqqYiSiKIqmCUDUZRwXYdoNEypaLKptQtN17AdH8su4nugR3TKhTJGwcDzXMIRDdvx6N7YQTgWQQnrOKZJNJmgkM0RioYwyxau66PoGpZlI4gSqqYRViTUaBTLcdF1ha7WDnr6c/znxRWcesJB21zb1gKriiSR7+0jUl2FVTZQZImTjpqBKH4wl3SPGt7IlT8+h9dXbHzbhfo7wnFd7v338yxbtYkFx8xi2uRtBWsb63a88CAgICDgg0QQgAV8oPjK4dPfVrtn17WzaFM3AKfMGMfQN9VK6YqEJPpYloOkyHiegaHI/Gfxeo7Yf4velCAJeHiICAiigBbSMMsWmqZhWg6yIuNbPuV8ebA+zLNtJFlEFCXAJ6wpSLpGpr0HLRTC8XxiIYV4oolSvkSiuopSroyiyiSqo9iGhappSLKMY1pksgXG18Q46piZPPDyavRoCBk4eNqY7a574ugmnnl1DZIo8MLSdbieT7qzG0lV+cevvkHdTuyDPijMmj6eWdPHv3XDnWBaNl/53jWsXV9ZJv/UC8t46J8//cjqCAUEfJDZWf1WQIVAByzgA0XesFjVk8LxvF22685uma7sL5S3+z6ia7Su66Jrcy+5VJ5EdQyjbPHE4vXbtPM9H8EXkCUJTZNxbAdVr4iluo6LUTZQVAVFVyrBmO/jOA6lQhnLMFB1hXBNAtu0SNZXoYY0ItEw2d48/V0pfEFE0mQEPCzLpr87TTimIykigiAM1oGt3dhdEVPVFIa0DOPszx/HsCHb12GVDAuoZACffH4Fvu8jKQq+56HuAVHUDzrrWzsHgy+o1OQFwVdAQMC+yIf/iR2wz2A7Lg+t3IgPrOnNsGDSzpXRw9qWFZJhdftfY8uxsUoW1cPrkESwbQ/H9Ugmtp3aVGQFxIo5NlQ8IG3TrqyA9F1836dcKiMAru3geeDYLoLgEopFMIomvZu78X2faDKOrMhEYjqSJKBFNCLxGH0dvfS39yLJEq7jIikysqwgyuKgObfredzx2CuMmzGhEuTt5Lq/evrR/OPeZxk7ooHuviy33/8MsqLgOQ4PPbWE0+bPftvjXSqb3PP4q4xsrmP2DrJtH0SGN9fT1FhDR1c/iViY/73s3Pf7lAICAgLeEUEAFvCBwXDcQY0uw6nYB5mOyxNrN1O2HGaPbKQmHEKVJWaNGkLeMIlqKqNqk9v1VTIc4tUx0n1ZQhGdhuYaQrLM9FGNPPrqWg6fOoqedB4PD9dwEeWKAKtlmeCCJAn47oAemCegaCqu6CHLIMkhREkiFNbJ9mcRRRE1rIMgUMjkEWQRfLAzBtm+HI7toGgqtlnJXsVrEtTUVZPN5CurKwcoZAqkuvvRwzoJecfJ6aGN1Vx87oLK2Fg2dz38ApKiICkKN937LONHDWHa2zQt/9tdT3PP468iCgLfPfsEHnjkBebOmsSJxx6EYVro2o51xN5PImGd6391IWs3djC+pZlwWH+/TykgICDgHREEYAEfGGK6yqjqOJ25IpMHZBBSpTK5gWm3p9d3IAgCh49upi4a5rSZE3fal6bK1DVVUcoblAplXMfFLVnc/uQSfL+igWWVzYrAqlgJmKJVEYyigeCDoorYWRvPBUGCcqmMrIj4noBju4Q1jVBExzQsBFHEKJYGi/ntsoWiqSCA7wtEYhEMsYxtVrbr0Qh9PRk8z6v4KeoatmHi+z4bllamSIeIMHf/0Tu9PoDevizFdAY9FkNWVUzX5Q//fIxrf/KltzXe8VhocKz+cfvjLF/VyrMvreA/zy7hhVdXcejsyfzskjMr4/MBIhYNMX3yrscmICAg4INOEIAFfKCYObxxm8910TCNsTCpkonlVqYE1/VltzPffjOO61IsGDiuR1Vdgp7uDE7ZorY2Tq5oUpeIMLSlkZseeqkiBaErlVowRaaYKeC5CnpYI92bRg1pSCKIooBtukiyhKIpZPtzlPNF1JBOOBamlM2j6DqlYh7dDxOrTiAIPkgi4UQMRBFBEPEcb9BL0rItbMPc5txFQeDwWTsPLt+gsaEKWVUxcjkkRSFcVcXksVuMpgvFMrl8iaadaHqd/rGDGTdyCE31Se6872mWr2plaFMtL7xa0WJ76vmltHX2M7x5z2h0vV1WrtnMf/3yRuprEvzyR2cTCbJcAQEBH0I+WK+2b4M777yT8ePHb/fvyiuv3KbdbbfdxnHHHceUKVM46aSTeOKJJ7brK5/P8/3vf59Zs2Yxffp0LrjgAnp6erZr9+qrr3LaaacxdepUjjzySP70pz9tZ0IasGfxfZ/HVm/i/uUbGF2TZGgsgmE5mLaDbW+pkOrPl7j12eU8vWLTm3oQiMZCiAKkenM4hkN1YzV9PWlO2H8U08c0UVcVQ4/qSJqEYzvk0jnK+TLgU8wWKOTLhKJhPMfHLJl4jo/ruvg+5FJZcqkcju0CHiPGjyBem8S0TEJ6tFL7tbmbYraA73gUs3kKqSzFTA5JlogkImghFUmRqW6qR5K3vAvFojrDGrc1xV65ZjOf+9ov+d5Prsc0baASqIWTSWL19USqq7nye6fzjc8fA0Bff5bTz/sFp375cm67t+K3mMoU+OGvb+Oya+4kXywjCAIHTh5FU30V3b0VA91crjhoyD10SC31te+9gvz9j71EZ3eKxcs3sGjpuvf8+AEBAQHvBftsBuzPf/4zsdgW6YGGhi2ii/fffz//9V//xXnnncfs2bN54IEH+MY3vsE//vEPpk2bNtjuwgsvZO3atVx22WVomsZVV13Fueeeyx133IE88AextbWVs88+mzlz5nDhhReyatUqrrzySiRJ2sZwNGDPsqE/S3+pUh/1Sls3R44ZxuruFK7rMalpS0bmwUXrWNXRz+ubehjVkCSTLvLv51cwZngduUwR3/Worovjeh7hsEY5FubPtz3BzKktRDQFo2AiiiCIIo5vI7gCakhHC+v4rottuyiaiiTL+L5HLB7CKFlIsoikSIiiiBYOsW7pOiRFJVmTxDRMMr1pFE1FlmWKhRI1Q2rRwmHyqSy5/gyO42LkK16IxUx+m2vP5svc8fBLfP1zxwxuu+uh52ht66G1rYfFy9cza/p4RFFE8D18KvVq40YNGVwRuHZjJ+lspf+XXlvNp088lIeeXsKryzcC8MTzKzhp3ozB/o2B+jTH9fj9L77Oug2d7Dd++FvWgW3Y1IUsSwxr2nNZsnlz9+eRJxdRX5tgyoSRe6zfgICAgA8S+2wANmnSJKqrq3f43dVXX83HPvYxLrzwQgBmz57N6tWr+d3vfsd1110HwKJFi3j66ae5/vrrmTt3LgCjRo1i/vz5PPzww8yfX7Fzuf7666mqquJXv/oVqqpy8MEHk0ql+OMf/8gZZ5yBqn7wCpX3FXzfJ2tYRFUFWdqSjHU8jxU96cHPiZCG5bocNXEEjfFtVzHWxkKsAjRZIqZr/PJfD9ObKfDKqk0MGdmI7bgUMkWq6mJk+3N0rG8nnIjyl0deZUJdEiWkYJdtBDwkZARVQAupFPMl8EDRFRzDxiwVUTQNw6hkwFzHR8DHKBYpZnJEElEc00TXJKySgWs5MODZGKuOAz6eY2MbBoqmoOoqjqngWPYOx2a/AX/GNzhoxngefPxlErEIE8ZuMajN96fw3MqChev+/iBNjTW88OoqPvOJw5l36DQ2bu7mzE9X/NWmjB2GIktIksjEMdv2//0LTuPBx19mxtSx1FUnqKt+68zXHfc/w6+v/ReiKPDDb53OsYfPeMt9fN/fRjYinS3Q059j6wnXaZNH89A/f/qWfQUEBHw4KRaLnHDCCXR3d3P77bczZcoUAMrlMr///e954IEH6Ovro7GxkZNPPplzzjlnMGmyL7HvnfFbsHnzZjZu3Mh3v/vdbbbPnz+fX/7yl1iWhaqqLFy4kHg8zpw5cwbbtLS0MHHiRBYuXDgYgC1cuJBjjjlmm0Br/vz5XHvttSxatIiDDtpWqTzg7fNKWw/r+7MkdJVjx49AEAQyhsmyrj6KA4GJKons11DNY2s2AzBjaD1japMUTQtZFDl22mjGDKmmJhqi6DhE4iF6MwU0XaOULaNHNYr5MoV13RRyRWqH1lM7pJZspsiKooFne4iyiFUyEUQB0ZfI9mVxHadSUG9WsmNaNIxVNpA8F8OwiCWj1A1ppJArku3LYJTMio1RtoQoyYSTOqIoo0d0ZFki25vF93wSddWku/sQBGGX+lVPv7KakmFz/KFTkSSRxcs24LoeqUyejZu6mbrfKAAStVUUc0VEVeWmfz05uH97V4q/XXPRNn1OGT+Mv/3yPERRIBYJbfNdVTLGZ085crfu38LnXgfA83yeen7pWwZgP/rljTz57Ot89ayP8ZlPHE57Vz9fvPA3lMompqPyiflzdrl/QEDAR4Pf//73uAMvllvzk5/8hIcffphvf/vbjB49mtdee42rr76acrnMt771rffhTN8d+1wN2BssWLCAiRMnMm/ePK699trBm7V+fWUV2ahRo7ZpP3r0aGzbZvPmzYPtRo0atd0fwZaWlsE+SqUSnZ2dtLS0bNdGEITBdgHvjPTAFGPOsHA9H8/3Wd7Tj72VCKssipS3qvkqWTarOvr55V3P8b/3Ps/6rjQvr+vk9U09vLSpi6kHjmbyAS1MmjGKaFWYSCxEPBnBtmzCsTATm2sJWQ6trd28vrYD13nDD1IBATzHQdNVQtEQeiREVUM11fVVhGNhVE1HUlQi0Si+L5JJ58n0pfE9D0VXUbUQiZo4sUQE13bI9fbT395NLpVDC+nIqoysSjSNGY4e0fF9HyOXgwHxjeaGat74bXzutbX87h+P8K9HXwagvi4JgKrIVCWjADiOS6Y3hQ9YhQKN9VWIA2+BBWv7hxdAIhbeLvh6pxw1dxqCICCJIkfO2X+XbS3b4fGnF+N6Hg8/+SoArZu7KZUrCxBWrmvbI+cUEBCwb7Nu3Tpuuukmzj///G22e57Hgw8+yFlnncXnPvc5Zs+ezXnnnceJJ57I/fff/z6d7btjn8uA1dXVcf7557P//vsjCAKPP/44V111Fd3d3fzoRz/i/7N332F2VeXix7+773361MxMQnpPgBQ6oTcpVhRBBQUE0SsI13oRUe5V5NpARVAUG5Yrig1/ERFQFEVaaCkkpGcy/czpu5ffH3syYUykJQRD9ud5eMg5Z59z1lkzmbyz1rvet1KpAJDLjW3Jsu32tser1eqYHLJt8vk8y5cvB+Ik/Z29lqqqGIYx+lovl+M4o4GjZVlj/r8vmNuaY12pxri0gevYcfX5MEKRJXRFwvYCNEmkRZWY0ZzFCyMmZQ3+vGoLYRRhuT6/fPgZapbLii2DHDZ/P0RRZNKENlzboTcYxqzbqJqCqsnYpsNdf3yEQmsBpO2FXBVNIQwDRFXBrTuYdYsoCJA1lTAIcSw7zrcSRbKFLLIs0ajVaW5vIvQ9qsUKgigShj6CmkJWFFJAtpAj35rHrJoMbu3HtRwiQNUUREnAty1cy0LXFFqnTkIu5Dhl/6lgO9z1QLy69MyGXur1Om865RAmjW+lpSlLSyGNaZpYjoukKHiWhShJfPDC13PjL/5GGIR4jsONt/6GC845aadzvzucdPQBzJs5AVkWaW8tYJrm817/rjOP5a8PreDsNx6FaZrsP2cip5+4mM1b+njTKQe/4PMTu9e++DPn38muzr/jOIRhSBAEO10t2lv9z//8D2eddRaTJsX1DJ/7GX3fJ51Oj/m86XQ6/rfjJczBtkN0L/V52wRBQBiGWFbcom5nUqnnP6kPe2EAdtRRR3HUUUeN3l6yZAmapvGDH/yASy655FUc2Uu3LdB7ro0bN+75gbzCQlHCyxUQwhClVkZ4zgnSNFCvwKoe8IB+OYsiSTh+XHKiViqzvDFMgIBKyCPDRcQwIKVKmG5AOLJ6JIoCaqOMhED/UIMoiJPnhTDCbliIsoTvxduajZpFtkXDtRz0rIHv+3GAhUAEcWNuQycIAhqVOq7toMgyWkbHrNZAEImiiM1rNtPc0Yrv+gRBhO+HBJ6HpsoEokClWKFRrSOKIk0dLVg1E8e0aOlooXPKeIo9gzz7+DNI6TTZlgIAju9x/Pw2hisTeXrjMCu2DPPTpX9j0bRWdAkaVYc/r1/PA488S1d7AVnX0bNZAt9noG8rxU2bkVQNu17nfq/B4QsmsCcUB3tf8JqD53dy8PxOAFatWgXAyUfOBGbSqJVYtar0PM9OvFJeiz9z9ia7Mv+yLOM4zgtfuJe45557WLNmDf/7v//LM888A4Druth2vFvy+te/nh//+MfMnz+fKVOm8PTTT/Pb3/6Wiy66aPSal+Llzp3jOPi+/7y7YIsXL37B19nrArCdOfXUU/nud7/LqlWryOfj5OFarUZb2/aTWdVqFWD08VwuR19f3w6vValURq/ZtkK2bSVsG9d1sSxr9LqXa/78+WNWwDZu3MjkyZMxjN2zRfTvYmvDYmBk9aezdSpN/+JkXRCGbFnbg7OtCr4XEIgKW2SVMIroyhoM1yzQIdcUUt1SpOH7jJ/QgiZLGJks9z+xgZ7hGiIh47paqNcsBFkmlU1TK9XQMykUTUfV49Utq26Szqex6w4QYlbr5FoKRISEvoesKHGJiCjEMR0CRSKdz2DVbIIgpHddvKWtplNoskx9uE458PEsm0J7C4qhMbi5F7PaQBAFJEVhcOsQ5cEy+AGKrhP4AYNb+jhg7mTecdJimjIGA5bKmoHHAGhra2fOnO0NrL/84a+zeevg6G1BFInCkHlzZnHtJyZy43f/HxUp4j1nn8ycOTuvJ7bs6XXkc2mmTerY6eN7ymv5+/7fXTL3r65dnX/Hcejp6UHTNHR999TK832fnp4eurq69nhSu2VZfOUrX+Hyyy+ntbV1NO9aVdXRz3fNNddwzTXXcO65544+76KLLuK9733vS3qvKIpwHAdN0152L1lZlpk4cSKapr2s58NrJAB7rm35WuvXrx+Tu7V+/XoURWG//fYbve7BBx/c4VTWhg0bmDlzJhAvIXZ2du4Q5W7YsIEoinbIDXupdvaFMwzjRS1d7k3GiRJDtossCrRms2gjpwN35pTZk7jrmU04ro9pu+QMjXBkxSyItn+dRFGgtT1HaahGX2+JQBBZ3z3MttAuRKSvdxinbjFpWie9PcPkWgpIihL3dfQDFDXehnRND1EU8b2AdD5LGEb4nocoQOC5iJKMJMsj24wBjUoDLZMiCHwCSULTNdr26yCVNYjCkI0rNyBKMqW+IRBAVlV8xwUhDpbiyvn2mKXrxTO6+Ph7TgHi3K6tPUNMastxyAFTOePoA8acEg2C7c9782lH8Mjjazj2yAOYNzv+fjz8oHnP+/X4/s/u4Ts/vgtRFPj6597Pgc/Tc3NPeS1+3+8tkrl/db3c+RdFEVEUkSQJSfrXP1NfLN/3ufjii1mxYgXz5s3j1ltv3aNB2C233EJraytve9vbEARhtAPHts8I8KUvfYn777+fz372s0yePJknnniCb3zjGxQKhZcUhG1b+BAE4WXNnSTFJYgMw9il4Pc1EYAtXboUSZKYO3cubW1tTJ48mbvuuosTTzxxzDWHH374aFR99NFHc9NNN/Hggw9yxBFHAHFgtXLlyjFfyKOPPpp7772Xj370oygjjZOXLl1KLpdj4cKFe/BT7r1yusahEzoQiL/hi6bFs8UyeV1jdmvTmABYHQk0NFVGG2mybSgyggCyIjKxKcvGYgVZksilNA49agLrt5Z4dvMQLVmDs4+Yy5Prevndg6toac3jN2cZLNaQFAlFlGiUa6TyGcIwpF6ux82xZTFusu37hEGAljIwMjqBGyAIApl8Btu0QVDwHAfP9XAaFqlsGtdxQRTo2dBN6PujP7DUlIZm5HBqFv7IX3Y9nUZPp/AcF9eKl8tFQeDdbz6Kt77ukNE5uP/hVfzyj3Hy/dzJ7WOCL4D//vi5/OzXf2HerImcecaSl/z12LA5XvkNw4gNW/r/LQKwRCLx6urp6WHFihUArFixgp6eHiZOnLhH3nvr1q1897vf5Rvf+MbojtO2nFDTNGk0GqPX3HzzzRx//PEAHHzwwfi+z1e/+lXOPvtsMpnMHhnv7rLXBWAXXnghhx56KLNmxVsy9957L7fffjvnnXfe6JbjpZdeykc+8hEmTpzIoYceytKlS3nqqaf40Y9+NPo6CxcuZMmSJVx55ZV8/OMfR9M0rr/+embNmsXJJ5885v3uvPNOPvzhD3POOeewZs0abr31Vq644oqkBthLID4nyBpoWARRxLBl4wbhmBUxL9yxw0BHLo0bxUFMe8bgyTVb6Ruu4bs+Xc1ZFk4dx6nzp5BP6aiyRMdBWbb0D/PE+j4i4sDNaphYdQdRlqkOx3/Bs81ZhrYOEoVyXAdMFBGiCN9xcBohqqYiiDLloSqiCIqmk23OYzUsPNulUamjqCqEIYHjkm9rxnNcfN/Hd+NVNUEWwffRUjp2vYFdbwCgKhITOpo5+uDZ6LpC3bRHTyeKoogoCIRRxIRxO9a6mzVtAld/+B0ADA1X+cejq1h0wPR/2XLon51/9kkMl2s0F7KccuwL1+5KJBKvfV1dXcybN290Bayrq+uFn7SbdHd343keF1988Q6PnXfeeRx44IG85z3vAdghrWLu3Lm4rkt/f38SgL3SpkyZwh133EFfXx9hGDJ58mSuvPLKMXvCZ5xxBpZl8e1vf5tbbrmFKVOmcOONN+6wYnXDDTfw+c9/nquvvhrf91myZAlXXXXVmGXXSZMmceutt3Lddddx8cUX09zczGWXXcYFF7y4hseJHXVl09i+T05Td9iOzKgKU5tzbK00CEa26NozBkXLxg9D2tIpGrbLwECc0/fXxzfwliPn0tYxtkBrWyGD43iEQRAHSYg0tTWNBl8A5cEyiqES+RGRICKO9IIMwwiEANdxIAJJlrHteOVLVCFwA3zXQ1FVzHoDURDiwK5YRlJk9JSOqmtUimWiIKBpXCuqodG7bguiKNBSyDA4XGP9lkHWb4lzuf7x+Fo+959nsaF7gOu//3vCKOKsUw/luMPmPu9cnnXx53FHgr0/3v45NFV53usBJu83jq9/7v0veB2A43ho2gu/ZiKR2LvJssytt976quSAzZkzhx/+8Idj7lu1ahWf//znueaaa9h///3x/bgc0YoVK+js7By9bvny5QiCsEcDxt1lrwvArrrqqhd13dve9jbe9ra3Pe812WyWa6+9lmuvvfZ5r1u0aBG33377ix5j4vnldY2Fne07fWzV4DCNwMd5ztHgNQMlJuazzOyMtytnTmoHUcCyfZoLKeZNaI2v6x7kj8vWcsDUTvqKVdJpFUVRsW0XWZUI/AgEYfQIsl1rgCiipw1kWSEMQlzbRVLipHtZUQkDHyNjkClkMasNPNOL8wYUiUiIMDJpQt/Hc120tEEqlyXwPMy6Sej5CIKAWWvQGGkLFIYRw+X6Dp/7mbVb2LC5j6GKiT+S4/VC3UbXbezFHamRFoYhF33ka3zwPWdwyKJZL/DMFxYEIR+55js88sQa3nXm8Vzy7tN2+TUTicS/t22J5XtaLpf7l0XN582bx7x58wiCgPnz5/PpT3+aYrHIxIkTeeqpp7jllls488wz98qDJHtdAJbYO3hByOqhYYIoYlZrE/qL+G3K8QNKtjMmJ0wANgyUWdU9hOV6LJg4juNnTWSoYuKkA6p1i8/96D7OPWkxt//5SQbKDVZtGmBCcwqz7qDqIYIg0qg08ByfwI/zunzPQ0sZqIYabydW60BIFIJtW8iyhCxL+EFAZbBEGAYIooieSSEgEvgBgRfX4RGE+BQigkitVAEifMdDUmX0lEG9VB3zOYMwoimXIlRVWrta6dvYQ9+6TZz7wS9xwjGLeOfrj6BYrvO25+SF7UxLUxY9k8F3XSRVZf3GXj58zXdY+uP/JpvZtR9GQ8NVHnliDQC//9OjSQCWSCReVZIk8c1vfpOvfvWrfOtb36JYLNLR0cF73/teLrroold7eC9LEoAlXhHDlk1lpMHzYMNiv/yORW//mR+GVC0XQ5XJagoHdrWhSiI/fSiuGbWlWmeG28RdT6xjoGqi6wqaoRGIIrf+cRlTWnMMlBu05NO0NafZUozzrcxqg3qpRuAHqLqGIEnIIwcqAi/E90M0Q8O3XdAkcikdQRBwLBfPaSDrKkIEYRAHaGHoYaQNfC/Acx1S2SxRFB9tVrT4te2GhVmt4ykKasrAs504SBvxpY+/g4987dd0r92KY5qjj/390VU8s6VIw3JYMGcSRx88e8wcrVjbzbjmPK3NWQr5DHLkEwgCbiP+rFEUUa01djkAa2vJcewR+/PAwyt5y2lH7NJrJRKJxEt16KGHsnr16jH3tbW18dnPfvZVGtHulwRgiVdEXldRJZEwimgyXtwx3bSqMDGfpbfaYP/OVp7pKTJYtzh8xnj6ag0KGZ1nh8r01S1c10fTZIIgxLZcUlmd6ZPGkTFUnl7fx1NrGxgpGU2R8V2XMAxIF7JEQUQkRERBFNflUkVkLUWxfwj8AFmRsRHwPA/PtEAQ8H2fVC6L3aiCbcfBmWmjaCpRBK7jEgUBru0iyiKiaEMkIMsKnu0S+v4On/XrP/ojQRiNlrdQDIPQ9yk0F6g14hOSDz21bkwA9pt7H+Nb/3cf2bTOdz53Edm0Tmd7E8+u7xm95ujD5jO+s3UXv3rxQYDPfuLdu/w6iUQikdi5JABLvCJ0WeagrnEAL6nQ3byOFjRR5PFN/WwYils9GYpEPm8QhBGeH9LanEZVJFRRAC+gmEuhKBKrBobZuK4PzwsIAh/fDPFVcCyPbFMe3wsIoxCe0zkicEM8xyKdNpBkNW554fmIooBiaHiWgyCKmOXt24iiIqOoCmEYoWoaWlpHFEUyogAReI6HWa0hawp2feftdZ5YtYl8eyuqoaMbGtWBQURJYnigyJQZU3A8n9OOGdtfsVwdOZZtu6O5X1+55mK+dPMvWbl6E28+9QgOXTyL23/7V04+dhGFXHqH900kEonEv4ckAEu8YoIoirflXkKhu2f6ity9YiMQ539FgCSJ9Ffi4CMlS1TrDrbjsblYZ3xLFlESSWc0RFEgX0hTHq6T0XTqro/reKhZDUIBt1SLi/sJEAURnuNi1uvkClksy8EyqwhBRCSJhK43OqYoCLcPhvhUpOu4hJ6PZztY9ZEEe38kTyxlkG9rJgqDMQGYnk3hWQ7BSKX/RrmCrKo4ZtzLMXBdAqAtLfP5T+6Y03D26YeRz6aYPL6VlpGG3E35DJ/7xHkA1BsWb77gs1iWw0PLnuHLn7mIX//+7/T0DXPeWSeQ2U1NuBOJRCKx68QXviSReOkarscjW/t5ZGs/FfvF9duyPJ9HtvSzbcFMlkTec8R8Fk4cN3pNFEGtYTFQjIMeQRLQZBHPi4OalrYc7zx5EbouQBghKxL5bAazakIY53HlmrK0dMQnKlPpFLVKncALCIOQUABJFCl0tJBrbULW41pvgiySGllRck0rDsqAKAwJ/WAksBMwsmkQRQa39DLU3T867uMOnYPk2Piuh++6pJsLyKpK4HlkUxpGPo8oSQgCHHXY/J3Oj6YqvOnExSyYM2nsvNkOy55ei2k5hCPj8oOQFas38aWbf8lPfvVnfvjze1/U1yCRSCQSe0ayApbYLYYbNkM1k6ntBWRRpOF6oy2Eaq5LXn/hflmeHyCJAvpILStBiFg5UMTQFGzTobu/gu36TJ/YgixJiKLA5p4SfhDS2pYD4iT0/7fsWcRQIIxCfDvAdV0EATL5NEEQMtw3jO/5CKKAVW+QzWfxXJ/A9RAAz3aoDUcouoxuaNhEhH6IIMmj25LPTagH4rpguobnuKi6hqRIBO723K8/P7QKLXSoDZZJt7TETbsNnf3nTaYtb/Crux8l3dKCKAqcdsLBO8zN8mc28tnr/4/Occ187r/eTcqI5/PPf3+KL950B5VqgwXzp3LD/7yPx59ex+knHYzn+Ri6imW7jO/Y9bywRCKRSOw+SQCW2GW25/OzR1bhBSHzy60cP3sSLSmdimMQRhHj0jvPRQqjiJJpk9NVwgj6qg0c10cU4jQty/QIBKi7Hn4YYTlxQNPdX8H1QqIwwrJcPM+nKEA6rRFGoCsy/TUHq26BEG9hQpws79oeRlpHEMCyXPRcBkFScD0TNa0hIOLaDkQhdtVETetEQRxINipVCCNERRrNIwtH6pXJmjraX9J3XAJvbOJ9BJQb8alQ0XexqnXchskDg0VSxsgqmyDQ3lLY6Vz9/M4H6O4dort3iKX3PMJbX7+EvoFhrv7CbXHhWOCplRtYv6mP8846YfR5t934EUqVOnNm7PnaPolEIpH415IALLHLgjAarVrvjuQ3iYJASlEIowhJ3J6EX7YcNFlCkyX+un4r/TWTIAhRZQkvCLFdnyiIKJYaGLqCH4TIkkhLwaBhZXC9gErNYmRxjYiIMAiplhtsWdeDkdI5/JCZNBoWlu8TBhFRENf+kmSJKHLo39xDtrkJUZKwy3VcVY6bdEfx6peAAEJE8/g2asNVgiBEEEDVdBRdRZIk6qXKaPCFEOd/hUGAR0Q6n0PWdRql8ph50rNZtHQaTVNwvSB+HyJMKw7MutqbuPma83c6x0cePJd7//oEAN/43p0sOnA69YY9GnxBXOT1ltuW8sbXHTZ6X0d7Mx3tO7YzSiQSicSrKwnAErssrSm8YcEM+ioN9h8f9+McNC02jpwcFASBCbkMqwdKPNkziCwKdOUz9NfiBHVRFPCCEFEUyBgatYZNLmeQz2hs7K+QNhQIIsIIylULgMAP8Fwf1/ZAgHTGIApDFFmic1wBxZDp7x1ECCNc38fzIjzHx6zUyDY3IckyelqnUakQ+T4BEb7tMRrZAaX+IqlMGqKIQnszVs3EqptEUUgURRjZNKphYNUauFY8rtAPKPX2I4gCk+fPZOuzm0bysiLCMO4ziRCHXld/8E3Yjs8Dj65mxdpu3vOWo1DknR9YOPnYRdzxuwdYsWYznh+wuXuAyRM70DIZPNsmCkOiMOSwxbN3+vxEIpFI/HtJArDEbjGxOcfE5tzobWlMNfuI3mqdVf1FAPwwYtiMa135QUjDcpnSkiOb0nh4zRZMO8D3fcrDdTq7Chi6Qqlq0t6SIZNSsG2PctWipxQn4quqjJHSSGd0PC+gZ30fA6aFbqSpV018N0RTZGrlOkY2jZbSUBSF3g1bSeXTNMo1NE1HSkmEYUgYBIRegCzHZSQUw8BuOAiSTKaQw3PjZHer1sA2rZFaXnGLozAMSTcVkBWZ/o09o/GcKMtEjgNRhCAIhEFAV1uB8R0tHHXQi2sd9MEL38DXvvMbJk5o58iD51KpmYRBgJ7N4tk2133snbulDVEikUgkXnnJKcjEK8INtieply2Hx3sGx9w3q7WJjKrg+wGTWnKcOGcyk5tytLfmyaVVfC9AVmU8L8C0XAaKdVat7WdzTxmz4TJtv2baxuXJN2UI/BDHctB1hf4tg9z3j9WsWbuVYl+JwPfjgqmyRKG9hY5J46gOVRAEgbb9OghDkDUN17FxGhaZXJpMPoOeTSPJccsh17TifLNqHbthEnjby0tEQYjvuERhFDfulmRcy47Lb8gSRBGiJJJraaZ1QhcdrQUix+aoBVPJZdM8+Uy8ogXw9Oot/OGvT2E7Hjuz/5zJfPvLH+JTV5yDosi0Nud4/ztPplmXmLFfG7qhvaSaa4lEIvHv4Je//CWzZs3a4b8vfelLO73+nnvuYdasWZxxxhl7eKS7V7IClnhFGMr2by0/GttWuj1jMK2tQNlzyGfi03xuEJBWFeqWSz6fJpdNEYURg6U6rh2vdIlCnOdUtVye3VQkk9Wp1RwEIGWoDPaWMesWqq5ilqsYhQyCIOJaLkRg+Q36N3ajZzJUS7XRkg2hHyDJAqKsUeofRtU1EOP+jqIkEQYB9VI53jqUJALHQVYVfNeL636lUwx3b0XRddLNTSCA73lYlSp6OoPnuTQqVfIZg6LpoqTTfOz9b+Hsy7+O5fpM7GjiknecxCevv50ogkeeXs9VH3gTq57dzEc+8x1kWeIr11zMtMmdO8zzuo09dPcOQS985JrvcOcPP42uqa/MFzWRSCReQd/5znfIZre3rRs3btwO19i2zbXXXktr695/sjsJwBKviIKucWBHa5y3ZdkMiA1kUcAPI/bvbMUNAiTi1ZqcpqKIIqEYokgipuUiilCtOTiuT2tThtYWibQi8ecH15DNGUyfOp5q3aY4UCOdS7F18xCqrtLU3oRjOfheGPd7DCJkWUIQwXPiIqiNahVVVQiCkJC4HVDo+URigCiJBEGcSxYJIqEvxEFYGEAU4TQaiJJIKpOhUY7vsxsmRj4PgF2r47kuke+jZzNImoIki4xrzbNw5gR+fc9jNDdned8XfobpeAiCwMbuQZ5as2V0u3JLb7xVe9d9j1EZyZO75y+P7zQA+3/3PDL65zCMc9MSiURibzRv3jyam5//0NC3vvUturq6mDBhAsuXL99DI3tlJFuQid2u2LDoLtdIKwopRWZcJsX01iamthY4btoEWtIGD2/qY81AmYFKg5nNBQRBYNi0qJkOIRG1hsPEcXmmTGjGdj3yaY1c1uCoQ2ag6ArrtxYZrlkUmtPxSUU/JApC7LqFWTVRszpOzUYUiZtm2wGOZaOldDTDIAxBS6dRVQVZlpBUFQQRQZJAAMe0cEwbBAFZVUebdwsAEdSHq4iyFOd9BQFOo4Fnm6Sb8rSM76Bl4gSyLc1ohoFrWoxvyY1uLabGtaGmdFwzTt7vKKT442PrkFWFdErnwrcdC8CSQ+ahKjK6pjBj2gQ+9sWf8tUf/mHMycfnbjl+7hPnYbyIemuJRCKxN9q8eTPf+973uOqqq17toewWyQpYYrcqmTb3PbuFCGhKaaR0BVGA+e2tTGnOj14XjAQRXhDxVO8QB0/soCOXIQgigtAnApav7SUKQsZ1NLFmS5FKxaKrPUc2YzA4UCGd1igOVHAdH6thYTWs0Sr6UiRi5OPWO6qm4HkOiiKBEG8pirKIVakSRRGpphxh5CEKIr7tIisyoqqAIBD6QVw0Na2DIODZ8fajIAg0SiUUw0AQRLR0mlQ+S6YpR+AH2DWTEChv7UWUZf7++LN0drYAUC9VyTbneetZJ3HwlHE0NRf41Lf+H5mmAgfNmcghB0wD4KAFM/j1969GEAR++cdHWb6mm+VrunnD8YuYMiE+bSqKAsFInbJDFyUnIBOJxN7rjDPOoFQq0dXVxVlnncV73/tepOe0svvc5z7HG9/4RmbPfm38rEsCsMRu5QXhtpaJeCO1wcIIqo5LVlOxPJ/VAyU6c2lKlo0bhGwYrnJAVxuD1QbDwzWCEGzTQZQE0hkd1w9G+ydKgoAmgKIpDJcaeEFEKpeiUY/LQJjlKrKmMfPAyaxfvRVFFvHcEKdhI+k6geNAGOK5HoIkEvkBbsMiEgSiIC7l4DkuiAKaoSOnNGQ5XigOAwtF14iiiMDzsWt19EyGVD5Po1rFrNSw6w2iCERRJPA8REWJ2xQBgaYjSiJD3f00iiWuv+R01JFcufefeRTre4Y4Y8l8evqKXPrJmzEthy9e/V7mz57EksUz+eujzzB+XDMTOuIl+iiKCJ5zsKF/qExHW9Mr/jVOJBKJ3amtrY1LL72UAw88EEEQuO+++7jhhhvo7+/n6quvBuC+++7j8ccf56677nqVR7v7JAFYYrfYVKwyUGswr6uVg/YbR9V2sUOPMIKMqtKeTgHwxNYBtpTjpPqpLXnWFysUdBWiiDCKaG3NUirVUQspXNenoy1PRESx4eC6Puu7i0wd34RKhCSAJMQrXK2dzdiWi1WtUS9XePrBleRamohCgUalSro5SyaXodxXJAwhlTeQJAmrViMII0LPG6lyL2OkdHw/wGlYgIWkKiiKjJ4xsKomge/HNccMHdUwEEQBRVVxLXs0sd+2LOxKBUlVMXI5JEXGSOt0Tp1AiyLynjccORp8ARy1cBpHLYxXvu544An6B8sA3PfAE8yfPYlpE8fxnc+NbdAtCAL5bJpKrYGmKrS35EkkEomXa+PGjSxbtoxFixYxefLkPfa+Rx11FEcdddTo7SVLlqBpGj/4wQ+45JJLyOfzXHvttVx66aUvmCO2N0kCsMQuG6qZ/PaJZ4mAzcUqZy7eXosqGql7tY0yspwsCjC7vYne4RrPbC0yVDF508LpWJZHNmPQlDMwTZe0oVKpW2iGQnGoShRBJaPR3JYn15rDtlyWL1uHqitohk7X1AlsXrWeSADXdUilU2Sb85T6B6kOlSGIRla54oKooihCECIrMlEYEng+nuvhj7QS0lLxNqYkS9gNB0XT8BwHUZLQs3Fg1b9uw2iumGrE18uqiijL8clJUaC1kEEO49y2TX7An/72BLOnde10PpsLmdE/Z9PG8879nbd9muXPbGLuzImjK22JRCLxUm3cuJF3vOMduK6Lqqr85Cc/2aNB2D879dRT+e53v8uqVatYvXo1oihy+umnU63GBb49zyMMQ6rVKrquo6p73+nvJABL7DLHD0a3HR0/GBN0bfu/5fk83TOEpkgcvN84VFlCV2SGG3FB1uGGTd3xmDOlHdPxCMKIKILhcp1qw8E0PbrGtyBKAgNDdQp+iGm7bFrbg6wq6CkjTogHJu8/jeG+Iooaf3t7nk8mn0OUZWrD5fikYBiSymcJfA/bcUfywiTSzVlCL8C1nPjzmBapQgbfD3HqddSUgaprBL6PXatx+OLZrBRF+jZswnccZE1DFEV8x0HRdWRNAwQGilUqpoeWNmiUyvzkl6s4/+0noWvKDvNZrVmjfzZt53nn/gvf+AW/++PDHHnIXK775PlJHbBEIvGyLFu2DNeN26K5rsuyZcte1QDsudavX8+mTZs4/PDDd3js4IMP5jOf+QznnHPOqzCyXZMEYIldNr4py5LpE+ir1NFTCn/f0su0pjwd2e1NuB/fOkD3yNZjOoootGTprTc4bvZElm8dYkZ7E7osM1QxQYh7SqZUhVRaJ0IYzXWyLA9Zldm0aRBZkcg2ZQEBQ1ew7PiUYRgJ5NoKlPorQEAY+GRyBuXBKqEfxK2L8iPJ8nUbPZvGbpikMga+4+H7IaIsxdcCjXINVdeR9e1bjla1jpHL8cTT66jW6rRP3g8EKPcOImpxgBb6/kgAFnMsi8CsUR4cJpXLIoo7D5ZOOW4RK9dspmHanPOmY5937u/602MA/O3hlbz+3Gt411uP4+w3HfNyvoyJRGIftmjRIlRVHV0BW7Ro0as6nqVLlyJJEnPnzmXChAm8+c1vHvP4LbfcwoYNG/j85z//bxMovlRJAJbYLRZNGkdvNc36kf6PW2v10QBs03B1NPgKgpDhukmhJYsTBLRlU5y2/1QA7n1mI739FSaOLxCEAg0rbvnTsFyiIKRvoELgx4GYkdZRVAnX9pg2rYN0SuXRR9ZSq9SQZZnI9yESCIIAz/GoFgN810NPG+TbmvE8n0a5Ftf2Mi1kWcJqmIiSjO96qIZKIEAw0jTbtWxEUcRuNOIm2lEEgkDDdlB1neLWPpx6HXkk+NLSaQLHoV4skmttYcnBczho/lRkAX7y2wc47dgFY3LAnkvXVP7rsrNe1LzPmjaBFas3AVCu1vnxHX9KArBEIvGSTZ48mZ/85CevSg7YhRdeyKGHHsqsWXH6yr333svtt9/OeeedR1tbG21tbUybNm3Mc371q1/R39/PoYceusfGubslAVhitykYGkIZIqDZ0AHoqzZ4aHMfAKuXb2DlUxvQFInO804km9ZRpZETgmFIf91CFKC7p0IQBqTTOqbtQhSRyRp4XoDnxSUqREmiXmlgmzbDQ1U21Sws06JeqpJvzmGZdSQtDVGIKAhY9QaaYWDbDuFAkbbx4/AsGyPTSnlgCD8IEUQRz7HR0wa+64+ugEG8lRoJoKg6nm3jOk6cczWy7SnEF6FoGpIsYZZLEIGWShEJIpsrFpU/P8r6jT30DpQYHizyllN3XE5/qTZu6R9zOyI+GSlJST5YIpF4aSZPnvyqrCZNmTKFO+64g76+PsIwZPLkyVx55ZWce+65e3wse1ISgCV2G0NRWNw1Di8MyIwkRK7oK44+Pm3WRCw/xEjrhEJcFd8NQgxRRBJFxmVTbBVK2K5POqPjBwFCBJIo4fkB1YqJosqkUnFR1tamNBs39FOp2/Rs6kcUIrRUigkzJrJh1WaiyAchXgWTVAVBkii0tSCKIvVKHatuEgGyqowk4AdoaSNulv2c4GubwHGJ/ADfdQk9D6OQxx+5rimfYsB18Wwbj7gnpJbNIooimaYcoqHz8GNP443kdHV0tPAf13yft77uEI47dO7LnvOWpiyNkcbmAOVKg2rdpCmfeZ5nJRKJxL+Pl1NY9brrrnsFRrJnJb8mJ3YrTZZGgy+A/Qrb+3odNqWTU4+Yz8yJHViWx4atwwjP6Zwzr70JWZPJ5w1kAWRJIqWrNOcNJFEkldZGA57mphShH5DOGtgNi0JrHj2VYtx+4yj2lwhCn3AkhooQEAQBI21QL5apDBRplKv4rkfgekRhRDBScNWpNXDMuJn2c9v6eLaNWS5jNxoEvo9rWVQGBonCEN+26e8rksrlUA2D0B8J/FwXs1xCFKF3zQY82yFlaNz9s88yUHfZ0D3IT+78+y7Nd3fv0Jjbxx95YBJ8JRKJxF4gWQFLvKJmtjfRlU8jCgK9tQa9psXWYpVSNd5u9BYE6CPfhltLNcY1pXC8kO7eElbDoqOzmRXPdBP4IZquEEURPZsHiMIIRKjXbBAlnLqFrMqUBsqEYYgkyggKCCHkmwtIMhR7hghGykuomoqeTREGEa5poaY0xFwW37KpD5eQZBlFj7dREQSyrU10zpxMdbCM0zARJQm30YhbEFkjRWArFbRMBjWTIduco9TTT+B6vOmw2dzz18cZBEzLIYrgxA5hAIgAAFfdSURBVMPns/QvT3LC4fN2aX4PWTiTfzy2muZCli99+kJmTpuwS6+XSCQSiT0jCcASr7iMplJ3XJaPNJke155jcmuemZ3NZPTtq2XFhk3/QI0oDLEbNrqhMzhUR1EU8oW4In198xAzZnUx1F+ibnpIkoQkifHJxLqFJEsEbpwnJiERRCF2cRgQaGprIooC7IZNJAikclmKPQMUxrUSjTTV9l0vbqwdxfXCAPSUgWPalLauRpDluMq965JubYkDwZGyFoYmY9VrdLY34TbqTOps4UPvfSOLDpjO9MmdfPvHd3HkwXNJp3QuOecELjnnhF2e28FifOgBASZP7Njl10skEonEnpEEYIndqmTZ2H5ASypePVJHCq+uHijhjGwfdubT5BSF+9Zs4ZEt/Rwzez+mNhdoz6ewJrVSa7i0t+dZu6VISISW0vB8Hz8USOXSbNg4iGu5hGGIntKRFIl0Pk06n6YyWKJWLAHQ3NWGrupY1TqiBI7tUBuuIikykizjuwGSplIbLiOIELgBYRhAGCBKMlEU4btxb0hFlYjCgFQ6h5E1aFQa6KkUVq2OpKq0tzexeW18GnFz9wCXXfgGjjxkLt/43u947Km1XPSu17H4wBm7fb6lkeKr9YbF8Wd+gre9/ig+dNEbd/v7JBKJRGL3SnLAErtNw/VYOTjM+lKFh7v7eLi7j98/s4GK5dA6UtFdEgSGGjbLNg8AULNcNpaqhFGEEAqYtg8EDA7XEcMQkQjb9ujZNMTmNb3YloMgCKi6SqaQwTFtZElCEkQ8y43zrwBBFKlXatTLdcIgQBBEQKB1QjvtXS24to1jmoybMI5MUw7f8ePejaKEKEoIkohAhADYDRPPC0g1NeNYNn1rN1EbHGJw4ybMchlBEDhiwfQxc6GqCt/96d385R/L+cHt9/D48nWvyJxfd9X5zJjahevGn/vXv9+1nLJEIpFI7BlJAJbYLZb3D/F0/1C8HUdctkEQBIIoYmV/kc58mlNmT6I1EwdiuiZjqDJtuRQT8llEQaB/uEwYhazfWGRrzzCu62OkNHRNpmtSG1PnTMAwVDK5FKqmoOsaTe0FPNvBbDRo7Wpm5gHT6JjYQbopRzhSskLRVPSUTiqfRpYlFF2FkdIUW9dsojI4DAJo6RSdU7pQDQ3fcbHqIzletk1oNtAMndaJE+IWQxCXoPB9jjhgCjP2ax8zH7//yxMM1+LTiYIocv0P/4Blu7t93v/wp8d4dn3P6G0/CAjD8HmekUgkEol/B8kWZGKXDTVMKk4cXPhhSM3y4lpdAtQtl7yq8tvl65FEgYwsI4sCU9oKHDG5c3QLDWCg1GBNXxk9pUJdIJIkajWLWsVCkSVcLxjJ1bLRDBXf9eJ4TxBwLZ8NKzfjWjauZTFtwUzWPLqKKGgQCGBk4ubbxZ5BHNOO63pFIMgSAhD6AZ7j0rthK77nY2RScUHXKGL8zEnIisymletwHZcoiLdS02mDgw6cwaUXvJ5CPsPKZzdz/9+fZrhqsnmgiiCKzDtgNpt7iwyVGhTLdSZ07N5Gsnf+8eHRP+uawvlnn5z0hEwkEom9QBKAJXaJF4SsLpZHb4ch1CyHSs0miCKmthfQFJkwigiDiPXlCo7rk9EV1hfLzGh7TkAiCzQsFyQJzVARAFmSSWV0Umkdy3So1yyMtEYqY9CoWTQqDYyUhiAJbGuDmCrkGO4bprmzlTCI8DwXx7Qp9w8DkG9rQhBEBMemVGkQAel8GhAw6yZSBJ7jIQgCvuvGTbslieaONkTbYkbnbJY/242o6zRCkdaWPABXXPxmPC/grr8+hSCKRFGEWatzyIHTmDttArIkcNvP7+XghbOYPX33nFZ8+xuO4kd3/InTTjiYi971ut3ymolEIpF45SUBWGKXVJ3tzaKjKGKwZiFJEhPb8hwyqZM/rd1CbbiKEIHpejgjuUqCIDBg2ax88lkW7DeO5pTGplKdXCFF5IcYKY1q1USRJRo1G7MRr1rJskTow/BAmSiCpqYs6YxKqWJRtV1SuRR62sA2LRzLIQzBskyECBRdw7MdKoNxkr6sKujZFHbNpDJUQtVUAs9HkmXaJnZSK5ao9PXRvWod2ZYmrLrJ+LY8jz25mkxLC4Ig0NlWGDMfJyw5kLv//BhurYrn+WwY8Dho4Sy6WjK88/1fwHE9bvvFfdz5w8+g7aQR90t15hlLOPOMJbv8OolEIpHYs5IALLFLmnQNWRDwwpByzSIMI0RRoGw5LO8bYlspU0USsR2PlCYzrilDSlPw/IDu4RpmEGAoMoau4jo+kirTaDioioCiSUyc1EqxWMP3A0I/pF6p4bs+hbYmLMfDHHLI5FNUhLjoahRGBF6ArKm4loMkSsiqimfZSLJMRERzRxv1UhUiAVGRkEI5DtbqDbItLQxu6cc1TURFoTY4RD6b4sDp41k4ZyL9W3ooDg9z7JEL+M/3xKtOd979ELWGxVmvP4qlP/kfVq7ezBWf+TZyKsXfn9nKPfc9jON62ydu5324E4lEIrGPSAKwxC4RRZFD9+vk/uUbeGZ9Py2tOURJJJ9SGahbo9dlDRU/StGc0bFdn62DVUoNG1WREQUBLwgpZDQGHI+hYh0xiMg0GTTMgBAfRRRobSvQ019GkhWaCln8IMSum7i2i1W3SKVTmHWLoe4BXNtGNhRkUSEMQgLfQ08Z+I4Tr3qZFnbDREsZCIjIqoJnOyiqitNooGgaoiwjKwpyOk214bBs1SYeW7EBRJUTjzuYT1zyRuqWw7PL1/G/N/4cAFWReesZS1gwfyrzDzqQYj1OxK+NtAtqbspy3SfPR1N3ffUrkUgkXkt+9atf8YMf/IB169aRSqXYf//9ufHGG9FHimLfd9993HDDDWzYsIGuri4uvvhizjzzzFd51C9fEoAldlnNdtlqO6SyKQQBVFmkNW3QUzUBkAWBYsOmr1hjoNRgXFOaMIrIpDQUWcJQZVKajAI0bJ96zcbyXIrDdURRRJZkJE1meLiKXbdQDIVKtUE6myaTS1MXRDL5NJ7rEUURiq4ShD6+5YEuoGgKRjqFY9lkW5vQ0wZhEKIIIqWRmmEQNwSXFIXQ9/FdF0GS0LNZZEkkCMJ4NW/kdGelYXPJ1d+lv1jh9KPmj77Gc/syfvK9p3LlDXfQ0zuABNz0pUuZPmU8qrL7/to1TJsVqzcza9p48rn0bnvdRCKR2JNuvvlmvv3tb3PJJZewYMECSqUSDz74IMHIoadHH32UD37wg7z1rW/lyiuv5B//+Aef/OQnSafTvO51e2f+axKAJXbZUN1ElkWa86k4iJEkeqom7ZkUEI2uhKmyhOsHbB2qIQqQNuIAzLRdanWbzT3DRERohoZuaCiSxGCxEp98dAKKg1UURcazXPRMCj8M8byAwA+wTYdGpUYqn8GqRaQLeQgDJFnBtiyqxWEKrS0Evk+xZ5DQD1AkAdVQcB0fQRBRDR2rWsO3LaIwIt3czNwJzTyzZYgQgcDzCDwPSZZ4y0kH8blv/haAjT3Do3MhCgLdfUW+d/ufeOSxlcyY0sWZ5xzPrGkTmD6la7fOu+v5vP1911Gu1DF0jTu++0lymdRufY9EIpF4pa1fv54bb7yRm266iWOOOWb0/lNOOWX0zzfffDMHHHAA//3f/w3AYYcdxpYtW/ja17621wZgyXn1xC7rKmRxXR9vpNL9dhGDI8FXFEWoikQho9OaN8hnDEzbZWC4jhdEiLJEU1OKIAyAiGKxTk/vEJmMThiB53momkIURnhOQKNmYjcc8hmN5kKKYk8/reNbaZSqEEV4josgiNi2he95dEzZj8K4ZuqlKk7DxLVttFwG1/IgjFAUmXQ+hwCoqTR6NotZLvPQ46sJhfiviaQoCKKIU6vxv1/9PxbO2o9CNkWpanHkIfM49oj9mT19Ahd89Bvc98ATDJeqPLTsGZrymdHgy3E9lj+zEfM5K2Uv1+BQmXKlDoBlO/zm9w/ijxSiTSQSib3FL3/5SyZMmDAm+Hou13V56KGHdgi0TjvtNNatW0d3d/eeGOZulwRgiV2myRJHTBuPpsoosjR6f9V2R5PwARRZRJZEdFVBU2Va8ikQIizHQ1UkVFHAcXxkUUDTRERBYGiwhtmw8RwfUZKQFYkgDJBEAUkSGSrVKVcs2vfrZGBzP1EUF17VdA3btLHKdSRJwqw0qJWrhEGIljbIt7WQbcmDKCIpMrKmYlUrcX2wMCRwHULfJwrDeDtSEGjL6UztKBAEIcPlGsuXP0u5ZrJ1oIQVSbz/PWfw2Rv+D9/zkTUNgJamHHNm7Dc6Bx+55jtc8rEbed/Hvo4f/HPA+tJ0tDczd+ZEAERR4Fu3/Z7zL79hl14zkUgk9rQnn3ySmTNnctNNN3H44Yczf/58zj77bJ588kkANm/ejOd5TJ06dczzpk2bBsQraHujZAsysctcP9ghmBCAlCphj6yKCYIwmnjuhxFRFKFJIrIoYjkeDdOhtSnL2s1FQCAMIBIEJFnE93ysuo0oC0iKgiiJuJaD7wV4toeR1akOl7FqDSbMmkIURZQGigRhgKLr2DUTRVUp98d9IAVRpLWzmSCE0POIAhHPcdHTKdRURBAEvPOMw1m1bis9PQOsW9fNhPHtfPcL/0Gl1uB9H/06fQMlZF3HG/nY7S05/vbwSoqlGgCHHDyPd77lXSyYPQlJ2v57ztOrNgKwYXM/9YZNYRfytiRJ5Jtf+CDDpRpvu+hawjCgVK697NdLJBKJV8Pg4CDLly9nzZo1fPrTn8YwDL75zW9ywQUXcPfdd1OpVADI5XJjnrft9rbH9zZJAJbYJV4Q8tOHV2H7Ph3NGRw/boMTAcPm9tY7URQhCGNrL+iawpSOJgbKDXIplWUrNiFJIqWhCoIk09ySpV6zcR0PRVORFYkoipAkiXQhg6IpOJZDsWcQs2ahaBqVYhnfcfFshzAMUTWNCJXAD4iCEN/3CByH9U+vJZPWkGSJMIxbClm1OqIkYZVKbNwywOzp+/HmUw4l9DzmzpxIRMTbL74OL4zomjMLWVGY0ZrlkLkTed1RB/DFm34x+tk6W7JM7mrh67f+lsn7tfOmU48A4IMXvJ47/t/fOPGoBbsUfG0jinEh2P/91AX8/M4HuOgdp7zwkxKJROKfRFHE0qVLWbZsGYsWLeK0007b4Wf2K/nepmny1a9+ldmzZwNw4IEHcvzxx/OjH/2IJUtem7UOkwAssUsajkvFclBkkeaMAULcYLtub6955fkBw1UTWRIhAlmOTxVWajbjmtLk0xoZVaVheYhAww4QpADX93Adn5QqUa6aRJGMJImYlQaVYpmUoSHrcV5WEPpks3kiwKw1kGWZlKFjWzZ62iAKQ1ontFHqHcZ1XCAirWuUSzVS2RS+KmGbDm6lgpZO88CyNfxj+UYEQeBn13+QTFqnb7CE7cSV8QPPQ1EUTj9mAVPG5dm4pZ9HHl8z+pn/9vBKbMfjD396DICZ0yYwd+ZE3nrGEt66Gwunfv3W3/KrpX/nuCUH8oVPXbDHfmAmEonXlqVLl/LpT38aSZL4zW9+A8Dpp5++R947l8tRKBRGgy+AQqHA3LlzWbt27eg4arWxK/zVahWAfD6/R8a5uyU5YIldUkjpLJ40DlWSWLVliO7B6pjgC0CWRHIpjTCI8IMQx/VpzaVI6TKbBir0DddpUhSyWQ1JkWhqTaMpEo7tEYURw+UG1khja8/1MHIGHfu1IWtxb0dRksjksxBFBK4br3R5HophYGRzOJZLhEBpoIT+nFOCfUMVXMuiUW1gVRuIokCmrRWrWkWU4ly2KIqo1ONyGh1tTew/ZzJEEf1r1+P2bSWvibzrg1/k4o98jc727W2VXn/SIfT0FUdvO87ub8TtOB4/+81fcD2fP/zpMfqHyrv9PRKJxL5h2bJlSJJEEARIksSyZcv22HtPnz79Xz7mOA4TJ05EUZQdcr223f7n3LC9RRKAJXaJ64esGywza78WDFWm0nAIgnD08ZyhkE+p+EFIIauT0mWCMGKwapLSVGaOb8b2Au587FmKgzXCCKIgolo2EUUBSZRIp3VyTRkUIqyGg2t5OJaL50V0TBlPKpsiCqFerlAvVZEUiWn7zxhpR9TAc108N0DTdarP6VsJkG4q4DsOXVPHU2jOUy8Oo2WzhEHc+HvGpHHc+Yd/sGL1JoIwxJPjAq0Arzv+IFY9uwV/JM9t1doto69bN20MXR29LUkSu5umKSyYH//gmT6li5ZCdre/RyKR2DcsWrRoNPgKgoBFixbtsfc+7rjjKJfLrFq1avS+UqnEihUrmDdvHqqqcuihh/KHP/xhzPOWLl3KtGnTmDBh9/TW3dOSLcjELumr1KhaLrbrM7WziYrpULc9PD/AHlkJ87yAhu3RGLktCAKeH2K7Lj3FGooskklrOG6GynANSRJIpTVEScLQFXRDo2fLEJYboqd0VF3BdTxkJcBqOBBF2HUTNaWjpkRUTWOwZwhVlRFTGmFYR5JFRFlBkmWC55RqEESJVCHHUE8Rz3VRNA1JVSGKCIOArRu38NjDT/GrpX/n57d+kp6BMunmZlpyKS58xymUKnX+3z0P09M3HG9Pjvj5nQ8gCgKHLZ7NAXOmYHkhF3/qVg5fMJ3zz9z5UeuX4/prLmbjln4mjm9H2Y0FXhOJxL7ltNNOAxiTA7annHjiiey///5cdtllXHHFFWiaxi233IKqqrzjHe8A4P3vfz/nnXcen/nMZzj11FN56KGH+N3vfsf111+/x8a5uyU/sRO7ZEJTFl2RWbl5CEkUyKU1QMByPLKpuBRDNqVSbdh4QYgoCMiSwPiWHIYmU7c9DE0h8ELwXAxDpWHayKKI63pousKWjf00qhaREEEE5QEHRVMJwxC7YaGndFKFLJ7tkMml8EZqklmVKmpKRxRFfNuFiDHBF1FEGAaIgghCiFOvk25qigu/VquoskimvQDEBwZ0VcauVpFUlYyaAWBwqMKGzf1xBX5FwvO2nwYNo4i3v+FoDl44k//68s/o7hvm53c9zLvecORuC5YURWbG1PG75bUSicS+SxAETj/99D2W9/Vcoihyyy238PnPf56rr74az/M46KCD+PGPf0xbWxsABx10EF//+te54YYb+MUvfkFXVxef/exnOfXUU/f4eHeXJABL7BJRFDl65n48tKmXlCYjiwK9QzWQBHw/QIwivDCiozlNz3CdXEojo6u4XsDaniKWGa+W7deSI1PIsHZVN47lEo5sY9bKDerFMoahMn/BdB5/aBWe6+O7HrmWPGEQQBjQMbmL4YFhhvuGEaW4rESmtQlZkogiEGWR+nCFdCGPY1n4jku9NEwqn0fSdQRRRBAFrFoNRdPiemCKxpvPOJrQ8zh4wUxUReEjF7+Bv/5jOe9++0kAo5X6Adqa8/T0x1XxZ02bwBknHcLBC2cCcMqSA9i0dYjDFkxPVqoSiUTinzQ3N/PFL37xea854YQTOOGEE/bQiF55yb8EiV3m+h4pXaGjEJdVcN2AUt1GFgUmtMenUzb1lcmlNDRVwQsjNnQX8b0A241XpLIZnb8+uBzHHFvJ3aw0sBsWdsOiv2cISVHwanFSvGsbiKLI+KldpHNpup/dTOD7BD7IuookSsQVySKiIELXFNpzOqsHBrGrVRRdRxDiOmNmuUzgeoCHoqoY+XxcQb+9mXzG4M4/P8Exh8zhtBMO5rQTDh4dn6Jsz+06cO5UHM9HEkXeceaxzJ6+vQDrsYfO4dhD57wCs59IJBKJvdFel4T/+9//nve///0cffTRLFiwgDe+8Y384he/GF2FADj33HOZNWvWDv+tW7duzGvVajWuvPJKDjnkEBYuXMhll13GwMDADu+5bNky3v72t3PAAQdw3HHHccstt4x5v31VX73BU32DrOwbJoqi0TlxvQDXCwgj4hpbYUQEbJuyIIxPQgYjd4iiQE+lThCFiNLYb0lZlRHEuLTCuM5mdGN7Yrua0vBdD3ukrU86H28LKrqKpilEYbyKFvg+oiQiSRLvev2RyKpKuqWFts42Ai/OSxOfkyQvjPxZFEUEIj5z4y+580+P85mv/3KHOTjowBmc8+ZjOOmYhXzg/NP51BXncPqJB/PpL/yIcz/4Rbp7hnZpjhOJRCLx2rTXrYB9//vfZ/z48XziE5+gqamJv//973zqU5+ir6+PD37wg6PXLVq0iI9//ONjnvvPJyUuv/xy1q5dy2c+8xk0TeOGG27goosu4o477kAeOem2adMmLrzwQo488kguv/xyVq9ezZe+9CUkSeLCCy985T/wv6koilg/XMELQgIBfM+ne6iKKorULZcpnQWKFZPVm4fQtDiIqtYdKnWbWs1GkkTSaZVq1SKdirf8dE0lVASiKCIIfVRFJQgi9JSGYagMDtcJBREjl0FWFTzLw8hlGNg6iFU3iaKI5s42sk15ejZsIaWq2PUGRiaN57gUu3v43h33AXG+gyrL5DWJiuuSbm5Cz6RpL2QpVmq4vh+vro1rJpcxqNYtsml9h3kQRZH/OP/1APzq93/nyzdvD9Jc16dSazCB1j3zRUkkEonEXmOvC8Buvvlmmpu311s6/PDDKZfLfO973+MDH/gAohivoORyORYsWPAvX+fxxx/ngQce4NZbbx2tsjtlyhROO+007r777tETILfeeitNTU185StfQVVVDj/8cIaHh/nmN7/Jueeei6qq//I9XssEQaCgawxbNilVwXI9XD8gn9KZ2KVSrJhUbRdJFHFNGz8kXgITBDJZHRGo1Gws00XXFRRAy+jgCUgKlIt1XNcD10cQIwa6K2iGjh/4KKpCEATIuowkS+gpnVqpRuAFaGmD/i29qKpGrVIj9ALCKMQc6QO55tkt6Nm4XEMhazC1q4U/PfA4nmWhZbOULZsbP3Mh9/3tSRbvP43xHc1c+59n8djyDSyeN+V55+Su+x4d/fP4jhYufMcpzJs1acw1X/7mL7nzD/9g1vQJfO4T76G1JffPL5NIJBKJfcBetwX53OBrmzlz5lCv1zFN80W/zl/+8hdyuRxHHnnk6H1Tp05lzpw5/OUvfxlz3QknnDAm0DrttNOoVqs8/vjjL/NTvDbMaWtm2bKNCERx/lcEVcvBcXzKdZswgs7mNIW0EdfKEgTSmkI+pZHWFHw/IAhC+nvLVCsmgh9RrdRo1CxsyyawXQRZIt9cINWUxQtDPNsnDCMEQcSuN/BME7NSx6w2cCyb6lCJwHGplcpIgkC+rQnPtrFrNVzTxDVNAscCYO3mAY46dA6tbU3ImoYoirhuwKq1Wzj/rBM4YM5kAFqbspxy1AG0Nj9/na1Zz835OnJ/Tj52bB2dUqXOr5b+HT8IWbF6Mxf+5/W4nv/PL5NIJBKJfcBetwK2M4899hjjxo0jk8mM3vfwww+zYMECgiDgwAMP5EMf+hAHH7w9eXr9+vVMmTJlh9YtU6dOHa2ua5omvb29O1TZnTp1KoIgsH79eg499NBX8JP9ezE9j95agyZDp9nQEQSBuu1y/4NrWLhgMq05g4bjUaxaSKKAiEDPcAOArtYsKU3B90MatkfV8WhqSpPJaBBCcyGFUyvjBWnq5SoiIn4IkeMy0FvEdTxERUKURXzPIwwCmsc14zoeQWCBIEAUccbxi3hgxRZk06IyMEi5byBeeYu2F4e1ag0ymgHAbb9+gLrl4TQaCKJI6Ptcf/MdHLF4FrnnVM1/Md7/7tMwdBVRFHnPWSfu8Hg2YzChq3U0L6xYqlGtmbQ2J6tgiUQisa/Z6wOwRx99lKVLl47J9zr44IN54xvfyOTJkxkYGODWW2/l/PPP57bbbmPhwoVA3EMqm91xRSOfz7N8+XJge9+pf+7ArqoqhmHscgd2x3EIgrhulGVZY/7/72h1uYbpB/TXTdo1lS2VBofNn8Cv/rKKZ5/to6kpTWtzGtPxUGQJRRaQRYFKxebRtb005VIcsXgqYRiyekOVfN7Atj1kScJxfXLNBdatW4sItI1vRtdVejb1EwUBiiqjpnRCPaRRriMKIpXhGplcinGTOhjY0o9AxCNr++hqy9PdF5Af14ZVrceHA1ybE4+Yxx/ufxJBN0Y/k4CApChkWlowy2V8x0FVZOr1BvLLWB9+99uOAyAIPEzT2+HxL37qPZzz/i+N3haF8CWt3L7W7A3f969Vydy/unZ1/h3HIQxDgiAY/Xck8eJsOzAWRdHLmrsgCAjDEMuyCMNwp9ekUi/8C/xeHYD19fVxxRVXcOihh3LeeeeN3n/ZZZeNue7YY4/ljDPO4KabbuLb3/72nh7mv7Qt0HuujRs37vmBvEhurgk0nSgIWNZTBEHAcT1ed/x8wjCgWLVxvICmrE6lYePZYNsOZt1hxvQOUoZKX7HGhu64VtbgQJWWliyGrrC1rwJE5PIpXD8g8DwGKw38IESSJDzfhzAkm1KpFf2RivYBlWKFaHCYTCGHouk4tssRMwsIMwvccscjcT2vMKRervJkb535B85kzaYBoiDEMFROXzKNH/7uCRzXI/A8JFHgwrcfSe/WzfRu3f1zGEURne15egcqdLbnWb9ubdJAm3/v7/vXumTuX127Mv+yLOM4zu4bzD7m5c6d4zj4vr9Db8rnWrx48Qu+zl4bgFWrVS666CIKhQJf//rXR5PvdyaVSnHMMceM6SOVy+Xo6+vb4dpKpTLaWX3bCtk/d2B3XRfLsna5A/v8+fPHrIBt3LiRyZMnYxjGCzxz1wVhhOP7pFTlxT8niqi6HmlZZmsl/q1NkSU2D1RIaXGOXBiElGo2ESCJIrqmkk5pOEGEW3do1B0MQ8X3A3KtWQb7K0SCgKarDA8MgyQiuD7Vkonnxkn85aEiiqah6Sqm7SOrKoEf4JoWRBGpXBrNMPC9AM926KnC+NYcsiJjVuPcLy2Txg8iNveWIIwQJYnAC+jq6KAyMDDavzIA/vCXVdz2q4eYOqmDgxfMYOG8qcycFlebf2rlBh57eh2nn3Aw7a15SpU6tbrFxPFtVKoN/uO/vslQqUpLU47//eS7mdC14wnIm66byjNru5k9fQLp1I4nK/cle/r7PrFdMvevrl2df8dx6OnpQdM0dH3f/jnyUkVRhOM4aCNFt18OWZaZOHEimqa97HHslQGYbdu8733vo1ar8bOf/WynW4kvZOrUqTz44INEUTTmC7BhwwZmzoyrl6dSKTo7O3eIcjds2EAURbvcgX1nXzjDMF7U0uWu8IOQ/3tkFcMNmyUzJrBwv3aWDxTxw5A5rc3oz1OpPRvXWkWRRLwgRJPj9js9lTJTupqRJAGcgFrVQtQkIiHO5epqSlMxXTKajKHKqHqcD5bJaAwOxicUwyiiXCyTShl4rg+CgKQptHS2UytVKA+UyDRlkRUZx7KQVBlJEAmCAE2X8WwbiPj705sQiDCyWRRDxypXMfLx94jnxM3ChZHl46988zdjmocDrN8c14J7auVGnlq5EV1T+Pl3PklK1/jkdT/CcT1WrunmrWccyf/e+HPqDZtjDt+fp1aup1SJc94GixX+9ugznH/2yTvMYSqVoq11x8Mk+7I98X2f2Llk7l9dL3f+RVFEFOP6htJz6hjuzX71q1/xgx/8gHXr1pFKpdh///258cYbRwNMx3H45je/yW9+8xsGBgZobW3l1FNP3aHk1AvZtvAhCMLLmjtJkhBFEcMwdin43esCMN/3ufzyy1m/fj0//vGPGTdu3As+xzRN/vznP7P//vuP3nf00Udz00038eCDD3LEEUcAcWC1cuVK3vve94657t577+WjH/0oihKvFi1dupRcLjeaT7a3MV2P4UZcvLR7uEpz1qA60kh6TbHEAR1tO32eH4asL1boyqaRBAEPsL2AtKHSkjPwg7gAqyQKdIzLUTddbC8+6biup4SqyshCBGGEazrIggARpLMp2tqzDPYHNKoqoiTR1JqjWqljVk0828UPAoQoIvA8FF1HSxloKR1FU6kP19i0aiPtEzsxcgq+6xMJAvVSGdXQybQ0MbhxE4HnE4UhoiwjiCKB69L/In77cVwfx3HJpg2yGQNn2GPF6k08uWJ7YH7/g0/vsAp78IKZL/MrlEgkEvuWm2++mW9/+9tccsklLFiwgFKpxIMPPjgaLIVhyAc+8AG2bNnCBz/4QSZMmEBPTw8bNmx4lUf+8u11Adg111zDn/70Jz7xiU9Qr9d54oknRh+bO3cuTz31FN/5znc46aSTGD9+PAMDA3zve99jcHCQr371q6PXLly4kCVLlnDllVfy8Y9/HE3TuP7665k1axYnn7x91eLCCy/kzjvv5MMf/jDnnHMOa9as4dZbb+WKK67Ya2uA5QyNw6Z2sbVc47CpXZjPaVAdhP+6wv8fntlEw/V4kkGOn7Efv31qHZbj0dWSZaBcRxQEWrIGg6U6DTcuF9Fo2BiGShRFbN0yhChK5NIatbpFveGQyRkoqkK97rB57SBGWsKsm5hhhCjJ+J5LKqOh6Rqm5REGIWatgVM3Mcvx1rCiKbSOb6fQVqBRswj9gHH7tTG0uRtRlpBVlVRTAcVzKRbLhM/5vHo6RSiIOP+0zbzNfp2tnHzcYjra4xWrW750Gb+/9xG+/eN4Ozud0mmMVOI/cN5knli+niiCaz76LubPnrxLX6dEIpHYF6xfv54bb7yRm266iWOOOWb0/lNOOWX0z3fccQdPPvkkS5cupb29/dUY5m631wVgf/vb3wC47rrrdnjs3nvvpa2tDc/zuP766ymXyxiGwcKFC7nmmms44IADxlx/ww03jHZf932fJUuWcNVVV41WwQeYNGkSt956K9dddx0XX3wxzc3NXHbZZVxwwQWv7Ad9hR0ypRPoBGBDaftpTlH81ytCphuf6osATRKRJRFRFNgyWCGlyrh+wKb+Mrbjo6oyiiSSz+pEUUTVdslkDRRVxvN8TNsjm1aZOqmNdEpjU3eRjklt9G8aJJtNU62YeI5Hoa0Z27SpVSzCKMRzPKIwQNFVZFWGSMRzXYb7hlBTBsO9RRRdpTpcZfLsKWxdu4lytYpipNBzOaakdTZs7kNNpRBEkUxaw44kFE2DMAS7QSZt0DdYBmBL7xC3/+YvvPusExBFkfbWAue+7QQGh6usXtvNJe8+nZWrNzFcrvOet59IPpd+pb5kiUQi8Zr0y1/+kgkTJowJvv7Zz3/+c173ute9ZoIv2AsDsPvuu+8Fr7n11ltf1Gtls1muvfZarr322ue9btGiRdx+++0v6jX3RhPzWSq2gx9GTG8u/MvrcrpKxXYRgGdLFZoyOpoiYbkepukiiKCrCrosYTk+zc0GQRCxfksRSRRRZYlqxcS2PXzPJzIUVqzqRlYURFGgPFShUa3iuS6yEm9F2nUTSVZQshKe5yFEIUgqiiLhewGyKhMRV9gP/IBUNs20cTmOO2gGV33uewAY+TySKPK2Uw/lvj8/iqFrWCOlH8ZNaGH5M5vGfE7L8dBUBWck4FRVecz2oiiKfOT9Z47eXnzA9N30lUgkEol9z5NPPsnMmTO56aabuO2226jVasyfP5//+q//4sADD8TzPFauXMmxxx7Lxz72Me6++24EQeDoo4/mqquuoq1t52kz/+72ukr4id0vDEJ+dMtv+cYXfkx9JIl8Z46cMp6ZbU0cPrkTxw9oyug0Z3RKQzWGhqqYdQfLtHEDH0OXGCqZ9PXHq2OtLRnMco16pYHneCiKTMN0kRWFKAqoleukMmnUtIaiakhKvLrWqJkM9w5SLVVRVB1BkrAqdapDFcxKnUa1hmvZKIqMXbdwG3Xu/cMDfP8n20+8WpUKbzh6HhPa8jy1cgOW7ZDPppk0oZ2PffBtHHvE2JVRSRQ5dPFsRFFg2uROvvmFS1+xuU8kEol93eDgIA888AC/+c1v+PSnP803vvENBEHgggsuoFgsUi6X8TyPb3/725TLZW688UauueYali1bxqWX7r0/n/e6FbDE7tfbP8w/HnsGgCeWr+OU43ZevySjKSwY38ZTfYMEI4XstgyUUVMa45sy1E0H23ZRRJlawyUIQiZ2NVGtO9iWhxMKyJqCIokMD5ZJZVLIkoBqpPC8gEalgWd6hFpERk1Rq9bitkOiQOiHCLJIFISksmkK45oRRYHacI10c47A8+nfuBW7UgWgWKqOGfuKjUOc86ZjmT6li619Ra76z7M5fPEcvvTtO3lsbR+KYZDRFVoLGZ7d0MNfHnyaL3zqAg5bPPt5S5wkEonEa4Ft23zta1/jiSeeYMGCBVx22WV7rLxFFEWYpslXv/pVZs+eDcCBBx7I8ccfz49+9CPOPvtsANLpNDfeeONo/nVrayvnn38+Dz74IIcffvgeGevulARgCSZOaOeid72O4nCVY47Y/wWvVyQJ8AjCkKmdTTzbWxrZVgzQNJnQD5AlgUbDY2N3ES8I8NwAUQCRiDCMmDy9C9fzyWZSlMt1VFXBliUQRRRZxbY8Cm1N+EEw8n6QyafRVIXqcI2BzX1k8lnMuoXVsPBdj472Fk478ziGBwc5YO4UPvrf3x099ThUqpHNGHz1f97Hf137fb5y86/wg19gRiKSomLkcliWhTVyGhTgY//zXfafM5kbr/0AkpQEYYlE4rXra1/7Gr/4xS8Iw5C1a9cC8LGPfWyPvHcul6NQKIwGXwCFQoG5c+eydu1acrkcgiCwaNGiMYffDjnkECRJYu3atUkAlth7vXsnvQv/lZktTfx82TOIkkjdchEFAUOXUWQRx3YRJRFNlsh3Glieh+0FOLaLI0txPpUkoSgi5ZJNf88wmXwGz/PRUxrpTApFU7AbJpIY4TRcLNdHkhVK/UV8LyCKQohAkERUQ8NpWMyY0sH1H3/HmHF+9D/exg233okgy6RHvtPve+BJnlq5/diyouvoubi8iG/btExoGe3VCPD0qo3UGhaFJLk+kUi8hj3xxBOjbXXCMBxTYeCVNn36dDZv3rzTxxzHwTAMxo8f/y+fv7d2A0h+rU/soGTa/G7Feu5+ZhO25+/w+AMbt2I6PoPDdXRJIPB8GpaHKIDv+ZQrDWw/oFQz6d5aoq+3RKVsUhqsUqta+H7AcLFB5PrsN6GVtC4T+iGeF1ArVaiWqoiygh+BrMpIIriWhZZJkcplyRTypJryVIbKuJaNauj0VR2K5Th/reG4rNgyyIHzpuBZFk61ilmvAzB/9iR0bXv1f8+2qQ8NUR8cxHddnt3QM/qYKAi88y3HJsFXIpF4zVuwYMFouoUoiixYsGCPvfdxxx1HuVxm1apVo/eVSiVWrFjBvHnzRq9ZtmzZmGDrH//4B0EQjF6zt0lWwPZhURQRRhHSP+U4bSrVMD0f0/Ppq5lMbo6bkYdRxFDDYqBmkklr5DI69YZFdaSoqh2FGGmNSBTxwojNmwYIAmhqydGS1ylKdTQt3kIUFQlRk9m0cQBFlcnlUlSqJrKuE/o+kiwgCyLlhg0RtHa1kWnKUivXCfwAWZZIZQw824ORfo8/v+sf3P3A08w/fH8iScK3HaIoQpJETjn2IABmTB3PrV+5nJ6+Ya6/5Vf09A8TPaeZ6snHLOLXdz1Ie2uBL3/mvUyZ2LHnviCJRCLxKtnWQ/m5OWB7yoknnsj+++/PZZddxhVXXIGmadxyyy2oqso73hHvbFx44YX85je/4QMf+ADnnXcew8PDfPnLX2bx4sUcdthhe2ysu1MSgO2jgjDkqf4hTM9nRnOB9sz2Vhg5PV4hEoAVfUNsrdQ5bFIHj27pZ1OpRlqTMR0fXZVoWAKKohCGAZIsMTBYpVYxERQRPaVAJBH6PqbjUy6bOI6LosoIXogsSYzvbGbL1iGKfjDaFiIKQxqVBlEYoad19EyKMAypFqvUSlV838N3/Tg3TADP9QnDkD8/ZGG7HoEgIAKiqiBKIkEQ8tu7/8G5bzueLT2DvO9jN1JvWDvMyaxpXXzkA2dy6XvfgKrISZPsRCKxz9B1fY/lfP0zURS55ZZbRutyep7HQQcdxI9//OPREhOdnZ388Ic/5Nprr+XSSy/FMAxOOOEEPvGJT+y1P6uTAGwfZfsB5sj24rBtjwnAKlaciB4BDden4dYpNmyGRtoX+WGEPBLYgEAho1EsNejtK5NKa3TmWvD8EMt08YMIy7ShbqIbMp7jQhhRKVWIwoiqoZLKGPieH5fACENkWUSURey6jWu6aEaK6lCZiAg9nUaSFXy7gpzWESUJVbKY3NXKjMnj+OXdjxKWqkycPoE/Ln2AcKTP48L50wBYsXrzToMvgBOWHAiA9hIalCcSiURi1zU3N/PFL37xea+ZM2cOt9122x4a0SsvCcD2USlFJqepWJ5Pe8oY81jE2HZEAlB3vNFK+LbrIwgCQRAShiHFSgNVUWhpzeE4LmbdQZVliELqlRpBEBFqCr4bomoyjuOhpzQUVaJetSgNlEffKwx9NEPHtV1UTcOxHRzTItfahO/7WHUT33GRVQVZkUlrCj3FYZ5es4XxLRmc0jCP3P8wk3Mql559PD/91Z85+03HcPRh8enOIw6aQ3trnlrdor21wKbuuPH2jEntnHHSIa/chCcSiUQi8RxJEv4+qLu/xD2PraHquHhhyIA5dkUop6vIz2lJFAEr+4tjwrJazaJ3sELgh4RBXIleEgQajbgB98BQDdf1aWlvIt+UhSCiWqpRKTdIZVOIoki13AAxTrRvas/RPqEFBBFC8L2AIPBRFAVRBM92iMIQ17LxbAff8wABz4rHntJVbv/N/Tiuh2273Pbz+/jmD5ay/JnN3PmHh0eTS3/483sZGKpg2e5o8AXw7KYBbv3pH1+pKU8kEolEYowkANsHffG2e/npXY8S+HGXeVXY/m3w7ECJZd2D+GHEc3fVt52GDIKQ/sEakixRyGhkUypm3ca1XYaGa9QqJuVijQCPRt2mp3uI4aEajuuhGSqKLOPYcQ2xKIwgBEWVcSyX0kAZVZXxwwg9Y6Cn0+hpA8t0qFdqRFGEntLRUgbpQh7PcRgsVjjpsDkMbu2BaHuIuP+cSWwZKSfx0OOrsez45Mwjj6/5l/OyYvXOj0EnEolEIrG7JQHYPqirPY9te1hDDR55fAPX/99feHJdL33VBo/3DI5e99xVsG3nBEVRIJ1WKWQ0MkbcaDuIYKC/wtBgBdv2SGdVzIpNo2aSThkomkR5oIxjuWhpFUkS0dM6TS05mvIp7IZFaaBEpViJtzDLVVzHIfBcIt9D8H2OPmgWKUPHyKYJXJfilq00KlUMTWH9+i2jweQ733Is9/7i81xy3mljPvO2FbD6SA/InTnr9Ut20wwnEolEIvH8khywfdBH33UCNdOharn89qHVADy1sY/USK0sgI5smkrDwgoCZElEEEASBCIEMimNhuNTqVqsXNlNocnAdV3CAFras5QGSziei65rhL6HLIBuqPh+ROiFmGYDBAFRgKGeIfRMCkmWUXWd0PfQW3XCEOqlKqHvk0lrPPbUWio1c3SRy7dt7GoVN5Ph2MUHs3ZDD9m0wazpE9BUhQPmTuWkYxby90dXcfYbjh5NrDd0badzosgSUyaNe2UnPpFIJBKJEckK2D5IFEXyGYP92vKcvHgG+0/pYN70jtH+jnld5cDxrZRMh6Fyg6Fyg+a0xrhCmvacgYBAFEb4fsC4rhym7eB5EZohUx6uoek6qZSBKArYjk+lZhMJAqIk4NlxAr3r+Ni2T661CVlRUVQVu96gUTcpD5SoFUuEfrzt6SFSrm4PvqaOb0VXZSRFQTEMZs2cyH5dbfT0D/OZL/2YgaEygiDwiUvP4hvXfoB3v317lf+3vf6oMXOx7fiy5wcUh8f2j0wkEolE4pWSrIDt4954xFwAHD+g5gX4UchhkzoZaJjk0iqCKCCJAmXTJRNGOF6A6/uoqkxbS5YN63pQdI1ACREFkCUZQZJwbQ/P9pFVCVmV4/ZCpoue0fAcj6bWHLWKSeAFVIsloiBANTRyWQPLdIEQx3JRdIVULo1VrSOO9IQ84qBZ/Pflb+On/+9BWgoZTjh8Hnff8xAAmqaOrnZ9+DPf5onl62lvLfCx/3grhy2eTUtTbvtnP+UwLjr3VO78w4NUysMcMHfKnp38RCKRSOyzkgAsAYAmSxwzfcLo7ZZIpyljIAgCjh8ShBEVM64PNlSsoWsKg8N1FMOg2D9MKpPC8nxEASrDFfwgRJQkQiJAoFKtE4URTtFDUiRCRHzXx7NtjHQKQRKRVQW7VifbkiUMRUSlDhEM9wxi12qoqsJZbzyat596GJIk8h/vPGl0vJ/5yDu574EnmT97EvmR1kHrNvYCMDBU5uov3MbdP/schx00mzNPP5I///0pVq3dguf5nHn6EWNaYCQSiUQi8UpLtiATO5XTNAqGSnNGJ6tvL0wqCDC+o4lMRidfSJHPG8iKhOvY1KtVwihA0VUIBVRFJJ1J4VgOsixDBLIiky+kiQKf8dM6yLfk8D0PSYTOSe1YdZPh3iKlvkGsaoPAdZk8vpXO/br48tUX8t6zjkeSdvy2zaQN3nDKYUyd1Dl6339e8pbRk5y5bFxoVpYkTjx6IcVSjTXrtvLgo0nglUgkEok9L1kBS+ygZNmULJu8qlKu29RsD9vxSOtKXPcLSKsKpigyaXwL/f3DBB4YREQBhAHIqkQYhoS+iyQI+I5H5PvIaZ2hvhKSIPD2w+aS0xW++bM/0QjhyGnjkUpVVjy7BVVVaB3XwWXnHMf+07te1uc46eiF5LMpnlyxgVOOWzx6/5wZ+/G64xZTqTU4+vD9d9OsJRKJRCLx4iUBWAI/DFnfO8zNd/6DCZ1NHLYwzoUaqJh4I618dE0hrUpUIwj9AC+KyOZS3P3gM5T6yqQzOiecvICG6bKxezh+XT9g67pe/JEaYoIoM9Q9gDdSk+vGX9zPVRecymGHz+f+pzYwUDPZOFCh0tcPgFur4TQOIYqil93r65CFszhk4awx98myxFVXnDN623ye0hSJRCKReGWde+65PPzwwzt97Ctf+QrHHHMM3/ve97j//vvZuHEjqqpywAEHcMUVVzBr1qydPm9vkARg+7gh02T1YIk//HUVrhcgy/96V3pbEBSG8XFE348T70VJxLE9bNtDVbd/SwWej6xIowFYFEWEQTD6eAR85Rd/Zdr4VgA29A6DICAIQlxfDLj8U9/iHW85lg+854wxY9mwuQ/D0Ohoa9od05BIJBKJV8mnP/1p6s8pgwTwgx/8gLvvvpvDDz+cnp4efvazn3HmmWdy+eWX4zgO3/3ud3n729/OHXfcwbRp016lke+aJADbhz0zWKSnaqIpEm3NGYqlBms3DLJfZxPjWnM0ZzSKVYsIMFQZQRLRZBEhFIn8gEbDJpdL4/sRURjx9wefQVMVFF3B8wMqg1UkSUSSIAjiLkP5tibqpSoIAqlcBtfxqBbLTOlqZrhu4pgW46ZPIfR9fD+AUoXN3YNjxv27ux/iuht/jqrIfOO6DzBnxkS+/p3fcsfSvzGhs5Uffv3DPPz4Gpbe+whnnn4kB86b+upMcCKRSCRe0PTp03e478Mf/jBHHnkkzc3N6LrOH//4Rwxje9/iww47jOOPP56f/OQnfOpTn9qTw91tkgBsHzXUMClaDpIoYLk+82ePR1IkNFkik9YwnbjXYj6l0XDi04/lukMUBPQO1RFEgXKlgR+EVAYrSKpE4AbUCYmiEM8NUTUVD58oiAhDEGUR1/ZRVAXPcRjuKeJ7Hj3P1ll0/EFImsbk2RN59sm1ALiNBpqmsOTQuWPG/tSqjfHjns8zz3YzZ8ZEfvbbvwCwcUs/d/zub/z0139mYKjCpu4BfvC1D7+oOanWTH5/3zLaWgscfdj83TPRiUQikXhJli1bRnd3N5dffjkAqVRqh2vS6TQTJ05kYGBgh8f2FskpyH3UyC4isiTGdb7qNq1teZpbc5heQNV0CMKQYs0kjCLKNQsvCPFDgXxGpVazMHQVXVcotGURBAEjq6FqClEkghDh2Ba+GyJKMpIUEYYhERG+6xMEEfVyGatWj8tPmHFeWLVYHh2jpKo4jsef/vbUmLGf/aajmdDZytxZEznx6IV4I1uc2zRMm8UHzABg8QE7/ma1M0EQ8uFrbuX6W37Nldd+n//79f0vc2YTiUQisSt+97vfkUqlOOGEE/7lNdVqlWeffZapU/feHY5kBWwfYdnOmDY83ZUqYRRBFGE5HggCGU0mIsJxfWRJxHFdFEXCtDzqjofjxm2JXMfDsV36ekuEYUR5sIaoiJg1jzAIQQBV0yAC33XivC9BxLddjGyKhuPSOr6NwS39yKpCrq2JDSvW49brlPoG0HM5ZFUldGwAJk8Y2yLovgeepLt3CHrhyZXrWfBPW4yW7fDJy8/m0ve+gVxmx9+cdqZat9j0nK3OZU+t5ew3HfNypzuRSCQSL4Pv+/z+97/n+OOP3+nK1zZf/OIXEQSBc845519e8+8uWQHbB/zndT/mzEu/xiVXfxeAiu1gBSEC8UqY5fq0ZHSyhorn+tQsF8t2KVYtqjUH2/dJaxKT27KYpk3DtHHdAEGK2wsBeJaHVanRqFSQRAnPtnFdhyiEMAwRBAFRFqkNVwAoDZRRNA1ZV6kMlrBqDdLp+C+bXa1SHxrCasSnE393z8O4no9pxatkm7duD5Q2bx0kkzZob80D8UGB1x1/EMCLDr4AclmD6ZO31xA77KDZL2eqE4lEYq/U29vL+eefzxFHHMH5559Pb2/vqzKOv/3tbwwPD3PGGWf8y2vuuOMObr/9dq6++mo6Ojr24Oh2r2QFbB+wblNc1mFLX1weQpOk0dIOURTSnNGJooiG45LSFURZpGraCIT0DVTJ5VKgqWyq1RCiiDCMCKMQw9BwbR9BhFROR5AEiKBeqeA7HoquEgQBoiQThgGh56MbGoquUh+ugQBRGCFrKkY2w1knL+QrN23cYfymZfOm9/w3luXw2f96N+99xymUKnXy2TRvOPlQAL7/tQ/zlweXM3v6BKZMfOl/ISVR5ItXn8+jT66jrbXAQQfOePkTnkgkEnuZK6+8kpUrVxIEAStXruTKK6/ke9/73h4fx+9+9zsKhQJLlizZ6eP3338/V199NR/4wAd485vfvIdHt3slAdg+4JwzDufX9zzGiUfMA+DxLf04gY+mykiiSN12adgekiSQM1TMhoUiyeiGjN6lYHkhghBSqjRoyhl4XkAurSPKEmI6pFQs4jkenm2CIJPKpLEwEWUFzdAJgwCr7qKoKghS3ERb10bLTcyY2sXpRx3AD2/73U7HLwoC1Vq8GnbfA0/yqSvO4eufe/+Ya3KZFGecdMguzVM6pXPqCQfv0mskEonE3mj16tUEI2WCgiBg9erVe3wMtm1zzz338IY3vAFFUXZ4/IknnuBDH/oQb3rTm/jQhz60x8e3uyUB2D7g7NMP5+zTDx+93V+r05xLUbNsdFUhikIyuoTjBVRMh5Sq0D1YxQ9DjJEWQnXLoZA3CPy4IbfjhzSKNQZ6hrHqdSRNxXF8BAIC1yMEiHzqZROiEBDi+mG+j1WpEwYhnuMShSGfvug0MmmDH94W7nT8KUNH1RQaDYvXHbt4p9ckEolE4uWbNWvW6AqYJEmvSoHT++67D9M0ef3rX7/DY2vXruV973sfhx12GNdcc80eH9srIckB2wds3DrIDT+4i9Ub4j1923HpKzcIAgiDCN8LqNo+UQiBH/DQ4xuoDNdRCGnYLsWyiSBGbNlSpFIz8f2Ano291GsWsiqjpw2amnPIkoQoCYiyjKopKJJMKptCSxloKR1VVxEEAUXTgThfq6O9iUw6ru2i6+pOx19vWBBF/O9VF3Dwwpl7ZtISiURiH3Lttdcyd+5cVFVl7ty5XHvttXt8DHfeeSddXV0sXjz2F+1isciFF16Ipmm8+93vZvny5TzxxBM88cQTrF27do+Pc3dJVsBe40qmzY3/dx8rn9lM/1CFz3/47QSCiCqKOH4AAgiSREGX8L2Qvz62Fl0FLZVlqGShqiKSpNDbW8N1AspeHd8NaOtooTxYxnddLNOkUTNRFAXHtiCCKAgRJAlRFpFkEdf28GwHQRRpb82it6QZ11bgkrO3HzOWpJ1/O0ZAsVTj13c9yOIkNyuRSCR2u87Ozlcl52ubSqXCX//6V9797nfv0Hpu7dq19PX1AfCe97xnzGOHHHIIt912254a5m6VBGCvcQ9v7qNzWid9QxVOXhI3nq6bDmEYoaoygi9QqdYoZFIgiRy5aDqr1/cx0F8hndKoVm38oEYuk6bftLDKFoV8mjAKyDZlkbV41crzAjzLhghSuSwQ0ijXcKrmSPuhCFFSQAhYv2YDJy45kP+88PQxY/3nivcQN87evHUQ03I44qA5r/R0JRKJROJVkM/nWb58+U4fO/TQQ1+VnLRXWhKAvcalVYX9Jncwd9Z+7Nde4KHuXsYV0vQO1UmlQsqORxBApVYhn5bo669Rq9dJZbLUGjayImFbPr5XQ5AF9FyK4UodQZRwXY9aqYpVqSMbGrKqgOdRGSwCEU3j2gh9n+pQGatWw7MqRCO1x3659O+c/aZj6OpoGR3rAfMm86cHxhZdlWWJO279JLbt0tqS38Ozl0gkEonEKyMJwF7jDp/cyWDdIqPKPDlQBOCJld0ccuAkBis2q1Z2Ewkic+eMp246NDXnaNg+leEqsiLjWB6VoRq26ZLOK6iKTqE1j2d5tLZlGZQlGiNJ8gPdfURhhICAkU4hhwGDgyU8x8GzLKIwTrIXRYHFB0ynva0wZqz/87HzOPnRKzFtl6Z8monj27nk3aeTSRujeWKJRCKRSLwWJAHYa5wkivRU66wdqtCc0TFUmYPn7cczGwaZPaWVQxZPZ3CowtPLu5k6qYX+oRKCIqBn0sgiVMp10jkdz/FxHWguaNSrJvWqxeBggFVtIIgCnu2gKBqyIuPaFqHZ4AfX/wdfveU3/Px3fx0zpi9d/V4OWbTzEzZ3377nEz8TiUQikdjTklOQr3G257N2aKT6fN2mu1ij7AbMndyMoSoUUiLNLVkmTmgiEgTa27KokozZsBgYGMbzIiRRYfK0dlpbMhSLNSrFMo5tIcsSnZM7EAQBSVGIiCj19uE0LE44aiEAH7r4jXz3+suZOml7O6FN3Xtv89REIpFIJHaHZAXsNe6v67fGeVdASpOpNBwkSeSeB5+lo71Ate4gKyKGGiGrGqtXx6UqDEMkDCCVlTEMjaHBGlHoxS2FRBlFDHFMD7NapH/9JqIgQCTiB9/4GGEYMW3i9oBr5rQJXPCOU/jUdbeRSescf9SBr8pcJBKJRCLx7yIJwF7DfvrISkRZQhAEHNenXGkgKTIpVWbW9Al09wwiiiIQYtrQ0z+AKIRYtkMQqGRzKRzXp14tUys1ABAVcF0Xp+EQhgGiIBL5PgAhMGVC+07HcuzhB/C72z6Dpino2s7rfSUSiUQisa9IArDXsFLDoTmfittLRAGiCB15nd5iHSGKaG7N4/khtUqNzesH8KMQSZbI51P4voBpepT7h/C9EFlVCcMAu+KCAJIsousGbt180ePJ59Kv4KdNJBKJRGLvkeSAvYYpskip0iCKIIzADSJ6hhsIgsDgcI3+wSobnt1AGPkYGZ1CIUc6ncb3BQQRAtdGSemIsgxiRBiEyKoEQYBj2bzxiLkcPmf8mPfctt2ZSCQSiUTiX0tWwF7DisM1WprSmLYHUYgoCLh+SL3e4NlVW3Fdn3RaIwhkUmkdWVURRJENz2xCHInNPdfF9zw8z0eRBTwvRNdUrvvIOew/vYtz/+MLY96zVjfJZZOVrkQikUgknk+yAvYapmoqmqaSz+ikUzpeEBFGsHF1L7btEYYRtZpNR1cziqahqAqyLDFl9sTR11BUFSOd5v+3d/fBUdWHGse/+5Y3yGYJDUHeGhKdSAjvt0YmkpFgO2Lp0ApoOhUcLtakxLcIM9DpYIpmhGEMLQZ5G4tCLYMZ5V4LhkhRCwozeCtqweIEEhEDlyWQkmySzWbf7h+U1JB4DRDOIdnnM8M4e87m7JOfzO7D75z9HYJBwmFoPn+B1YvmMObWIQD8KLfjPbtiY6IN/R1FRER6I82A9VEXPZeuzbp8RvCbpwavPE0YDocJ8839dNpvAbyeFmL79WPQ9/69Iv3PZ97N8RNnOPrFSeb//Ec4HPorJSIi3Td37lw++uijLvetXr2aH//4x3i9XtatW0dFRQXnz59n8ODB/OxnP+ORRx7Bbu+dnzu9M7V8p43/dYCwM5YWuw1fmx8LEOuwEwyHGJZyC6eqz9DWFiAuzsrXJ88RDATxO4LYbBZOVZ3GYgkTDkOr59K9HNtafZdWso+K4qvT50lPvTQDZrfbeHbJXHN/WRER6bWKi4tpamrqsG3Lli3s2bOHyZMnA/Dss8+yZ88enn76adLS0vj000958cUX8Xq9FBUVmRH7uqmA9UH7D1fx8dEahqQNo6HJh78twG0jkzhZfZbz9U18LzmB01/WQhhi4+MYgJ2o6GjcVV9jdVhwOGJoqL9IoKWVVo+H0L9mwPolJhLw+Yi228z+FUVEpI+49dZbO21btGgR2dnZJCYmEgqF2L17NwsWLOAXv/gFAHfeeSdffvklb7/9tgqY3BweX/sWZ2pq/3W6MAa73YbdbuOs+5+MGT+SXf99iLZWL5fPOHo9LSSnRBP0BwiFQ1gCFppbGhj8/SF4zl5gyOBExqYOBsIc/J8v+I870vn+8K7X+hIREblehw8fpra2lqeeegq4dBlMIBAgPj6+w/Pi4+N79TfvVcD6mFAY7FEOAPxtAex2GwF/gJSURNz/+0/sDhv9E/pT9/Wl2wFZrVZCoRChYAhfkxdblIMBA12U/Od0bklK6HDsokcN/3VERMQgfr+f+vp6EhMTcTgcpuXYtWsXcXFxTJs2DQCbzcb999/Pa6+9xsSJE0lLS+Ozzz7jrbfeYuHChablvF4qYH1Q4i1JxMb3o7mxCV+rDyxhDn/SiLfZh9Vho60twMChSZeWlohx4PU0U3emjueenM2kzJFmxxcREYMdPnyYxYsX09jYiNPppLS0lAkTJhieIxAIsHv3bnJzc4mLi2vfXlxcTHFxMXPmzGnflp+fz/z58w3P2FO0DEUfszr/PsYkO7EEggTaglgAh91B8gAnQ78Xz4M5Y8iddCthf4hAqx+P+5+kxFp583eFKl8iIhHI7/ezePFiPB4PAB6Ph0WLFhH4123mjHTgwAHq6+uZMWNGh+0vvPACf/3rXykpKeG1115j8eLFbN26lZdfftnwjD1FM2B9THSUg4V5077zeT/PNf5fNiIicvOpr6+nsbGx/XE4HKaxsZELFy6QnJxsaJZdu3bhcrm466672rdVVVWxefNm1q9fT25uLgA/+MEPCAQCrFmzhry8PPr3729ozp6gGbBuqq6uZv78+YwfP57s7GxWrVpFW1ub2bFERESuS2JiIk6nE4vFAoDFYsHpdDJw4EBDc7S2trJ3717uvffeDtegnThxAoBRo0Z1eH5GRgZtbW243W5Dc/YUFbBuaGho4OGHH8bv91NWVkZRURHl5eWsXLnS7GgiIiLXxeFwUFpa2v4tw/j4eEpLSw1f4PS9996jpaWFn/zkJx22Dx166Z7Dn3/+eYftR48exWKxMGTIEMMy9iSdguyG7du309zczNq1a3G5XAAEg0GWL19Ofn6+4VO0IiIiPWnChAns2bOHCxcuMHDgQFNWl9+5cydDhgxh0qSOt7jLzMwkMzOT4uJiLly4wIgRI/j73//Opk2bmDVrFrGxsYZn7QmaAeuG/fv3M3ny5PbyBTB9+nRCoRAHDhwwL5iIiEgPsdvtJCcnm1K+Ghoa+OCDD7jvvvvaT4VeZrPZ2LBhA1OnTmXjxo0UFBSwY8cOHnnkEZYtW2Z41p6iGbBuqKmpYdasWR22OZ1OkpKSqKmpMSmViIhI35CQkMDRo0e/dX9SUhIlJSUGJrrxVMC64fK6KFdKSEigoaHhmo/r8/kIBoMAeL3eDv8V42jszaOxN4/G3lzXO/4+n49QKEQwGGz/HJHuubx6fjgcvqaxCwaDhEIhvF4voVCoy+d8cw2zb6MCZqKu2v7JkyeNDyKAxt5MGnvzaOzNdT3jb7fb8fl8PRcmwlzr2Pl8PgKBwP97BuzK69i6ogLWDU6ns32Bum9qaGggISGhi5/onszMzA4zYCdPniQlJaXXXlDYW2nszaOxN4/G3lzXO/4+n48zZ84QHR1NTEzMDUjYd4XDYXw+H9HR0Z2uN+suu93OiBEjiI6OvuYcKmDdkJqa2qnpejwe6urqSE1NvebjdvU/LjY2tltTl9LzNPbm0dibR2Nvrmsdf6vVitVqxWazYbPZbkCyvuvyxIfFYrmmsbPZbFitVmJjY6+r/OpbkN2Qk5PDwYMHO6wUXFlZidVqJTs728RkIiIi0hupgHVDXl4e/fr1o7CwkA8//JA333yTVatWkZeXpzXARETENJcvKBfj9NSYq4B1Q0JCAlu2bMFms1FYWEhpaSmzZ89m6dKlZkcTEZEIdPlWPS0tLSYniTyXx/ybt0u6FroGrJvS0tJ49dVXzY4hIiKCzWbD5XJx7tw54NKyB9d6QXmkCQaD7d+AvJprwMLhMC0tLZw7dw6Xy3Xd196pgImIiPRCgwcPBmgvYdI9oVCIQCCA3W7Har36E4Eul6t97K+HCpiIiEgvZLFYuOWWWxg0aBB+v9/sOL2G1+ulpqaGESNGXPUSIA6Ho8e+daoCJiIi0otpKYqrc3n1erPXUNNF+CIiIiIGUwETERERMZgKmIiIiIjBVMBEREREDGYJaxldEREREUNpBkxERETEYCpgIiIiIgZTARMRERExmAqYiIiIiMFUwEREREQMpgImIiIiYjAVMBERERGDqYCJiIiIGEwFTERERMRgKmAiIiIiBlMBExERETGYCpiIiIiIwVTARERERAymAmay6upq5s+fz/jx48nOzmbVqlW0tbWZHSsifPXVVzzzzDPMnDmTjIwMZsyYYXakiLB7925+9atfkZOTw/jx45k5cyZvvPEG4XDY7GgRYd++fTz00EPceeedZGZmMm3aNFasWIHH4zE7WsRpbm4mJyeH9PR0jhw5YnacPm3Hjh2kp6d3+vPCCy+Ylslu2isLDQ0NPPzww6SkpFBWVobb7WblypW0trbyzDPPmB2vzzt+/Dj79u1j3LhxhEIhFQCDvPrqqwwdOpSlS5cyYMAADh48yLJlyzh79iyPPfaY2fH6vIsXLzJ27Fjmzp2Ly+Xi+PHjlJWVcfz4cTZv3mx2vIiybt06gsGg2TEiyssvv0x8fHz74+TkZNOyqICZaPv27TQ3N7N27VpcLhcAwWCQ5cuXk5+fb+pfjEiQm5vLPffcA8DSpUs5evSoyYkiw/r160lMTGx/PHnyZC5evMgrr7zCwoULsVo1MX8jzZw5s8PjrKwsoqKiWLZsGW63W+87Bqmurmbbtm0sWbKE4uJis+NEjNGjR3d4/zGT3ulMtH//fiZPntxevgCmT59OKBTiwIED5gWLEPqgN0dXb36jRo2iqamJlpYWExLJ5fcgv99vbpAIUlJSQl5eHiNHjjQ7iphEn0AmqqmpITU1tcM2p9NJUlISNTU1JqUSMd7HH39McnIy/fv3NztKxAgGg/h8Pj7//HNeeuklcnNzGTZsmNmxIkJlZSVVVVUUFhaaHSXizJgxg1GjRjFt2jQ2btxo6ilgnYI0UWNjI06ns9P2hIQEGhoaTEgkYry//e1vVFRUsGTJErOjRJSpU6fidrsBmDJlCqWlpSYnigxer5eVK1dSVFSkf3AYKCkpiccff5xx48ZhsVh47733+P3vf4/b7TbtmmsVMBExzdmzZykqKiIrK4t58+aZHSeibNq0Ca/Xy4kTJ1i/fj0FBQW88sor2Gw2s6P1aevXr2fgwIHMmjXL7CgRZcqUKUyZMqX98V133UV0dDRbtmyhoKCAQYMGGZ5JpyBN5HQ6u/zqd0NDAwkJCSYkEjFOY2Mjv/zlL3G5XJSVlemaPIPdfvvtTJgwgTlz5rBu3ToOHTrEX/7yF7Nj9WmnT59m8+bNPPHEE3g8HhobG9uve2xpaaG5udnkhJFl+vTpBINBjh07ZsrrawbMRKmpqZ2u9fJ4PNTV1XW6NkykL2ltbSU/Px+Px8Prr7/e4WvhYrz09HQcDgenTp0yO0qfVltbi9/v59FHH+20b968eYwbN47y8nITkokZVMBMlJOTw4YNGzpcC1ZZWYnVaiU7O9vkdCI3RiAQ4KmnnqKmpoY//elPWvbgJvDZZ5/h9/t1Ef4NNmrUKLZu3dph27Fjx1ixYgXLly9nzJgxJiWLTBUVFdhsNjIyMkx5fRUwE+Xl5fHHP/6RwsJC8vPzcbvdrFq1iry8PH0oGcDr9bJv3z7g0qmBpqYmKisrAbjjjjtumrVi+prly5fz/vvvs3TpUpqamvj000/b92VkZBAVFWVeuAjw2GOPkZmZSXp6OjExMXzxxRf84Q9/ID09vX1dPLkxnE4nWVlZXe4bPXo0o0ePNjhR5FiwYAFZWVmkp6cD8O6771JeXs68efNISkoyJZMlrOW/TVVdXc1zzz3HJ598Qr9+/Zg5cyZFRUX6EDJAbW0t06ZN63Lf1q1bv/WNUq5Pbm4up0+f7nLfu+++q1mYG2zTpk1UVFRw6tQpwuEwQ4cO5Yc//CELFizQt/JMcOjQIebNm8cbb7yhGbAbqKSkhA8++ICzZ88SCoVISUlhzpw5zJ07F4vFYkomFTARERERg+lrRyIiIiIGUwETERERMZgKmIiIiIjBVMBEREREDKYCJiIiImIwFTARERERg6mAiYiIiBhMBUxERETEYCpgIiI3ObfbTVlZGceOHTM7ioj0EBUwEZGb3Llz51i7dq0KmEgfogImImIwn89HKBQyO4aImEj3ghQR+RZut5s1a9awf/9+Ll68yKBBg5gyZQq/+c1vaGlpYePGjXz44YfU1tZisViYOHEiixcv5vbbb28/xuWbLa9evZqqqip27NhBXV0dH330EaFQ6DuPcfnnr7RixQruv/9+w8ZCRHqW3ewAIiI3I7fbzezZs/F4PDzwwAOkpqbidrt55513aG1t5euvv2bv3r3ce++9DBs2jPPnz/P666/z0EMP8fbbb5OcnNzheOvWrcPhcLBgwQLa2tpwOBycOHHiO4+RlpbGE088wYsvvsiDDz7IpEmTAJg4caIZwyIiPUQzYCIiXViyZAl//vOfKS8vZ8yYMR32hcNh/H4/drsdq/XfV3LU1tYyffp0CgoKKCwsBP49gzV8+HB27dpFTExM+/Pb2tq6dYwjR44we/ZszXqJ9CGaARMRuUIoFGLv3r1MnTq1U/kCsFgsREVFtT8OBoM0NjYSFxfHyJEj+cc//tHpZ3760592KF/AVR9DRPoOFTARkSvU19fT1NTEbbfd9q3PCYVCbN26lW3btlFbW0swGGzf53K5Oj1/2LBh130MEek7VMBERK7Bhg0bWLNmDbNmzeLJJ58kISEBq9XK888/T1dXdlw5+3UtxxCRvkMFTETkComJifTv35/jx49/63PeeecdsrKyeP755ztsb2xsZMCAAd16ne4ew2KxXEV6EekNtA6YiMgVrFYr99xzD++//z5HjhzptD8cDmOz2TrNUu3evRu3293t1+nuMWJjY4FLxUxE+gbNgImIdOHpp5/mwIEDzJ07lwceeIC0tDTq6uqorKxk27Zt3H333bz00kv8+te/ZsKECVRVVbFz506GDx/e7dfo7jFGjBiB0+lk+/bt9OvXj7i4OMaOHXtVryUiNxcVMBGRLiQnJ1NeXs6aNWvYuXMnTU1NJCcnk5OTQ0xMDAUFBXi9Xnbu3ElFRQUZGRls3LiR0tLSbr9Gd4/hcDhYuXIlq1ev5re//S2BQIAVK1aogIn0YloHTERERMRgugZMRERExGAqYCIiIiIGUwETERERMZgKmIiIiIjBVMBEREREDKYCJiIiImIwFTARERERg6mAiYiIiBhMBUxERETEYCpgIiIiIgZTARMRERExmAqYiIiIiMFUwEREREQM9n+Dv8ccx+bc/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "sns.set_theme(style=\"whitegrid\")\n", + "\n", + "# Load the example diamonds dataset\n", + "diamonds = sns.load_dataset(\"diamonds\")\n", + "\n", + "# Draw a scatter plot while assigning point colors and sizes to different\n", + "# variables in the dataset\n", + "f, ax = plt.subplots(figsize=(6.5, 6.5))\n", + "sns.despine(f, left=True, bottom=True)\n", + "clarity_ranking = [\"I1\", \"SI2\", \"SI1\", \"VS2\", \"VS1\", \"VVS2\", \"VVS1\", \"IF\"]\n", + "sns.scatterplot(x=\"carat\", y=\"price\",\n", + " hue=\"clarity\", size=\"depth\",\n", + " palette=\"ch:r=-.2,d=.3_r\",\n", + " hue_order=clarity_ranking,\n", + " sizes=(1, 8), linewidth=0,\n", + " data=diamonds, ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5zcdZ348de3Tp/Zkmw2ZdMbkIQQQjMUDd2GAipWFE+KgIXzd7Y7kVM4Dk/UA09RERALoB6inKAUFVGklzQCpJfNbrZMn/nWz++P2d1ks21mdzbZzX6ejwcPsjPfursz+57P+/15fxQhhECSJEmSJEkalHqoL0CSJEmSJGk8kEGTJEmSJElSGWTQJEmSJEmSVAYZNEmSJEmSJJVBBk2SJEmSJEllkEGTJEmSJElSGWTQJEmSJEmSVAYZNEmSJEmSJJVBBk2SJEmSJEll0A/1BRxuhBD4fvWbrKuqMirHHQ8m6r1P1PsGee8T8d4n6n2DvPexcO+qqqAoypDbyaCpynxf0NGRq+oxdV2ltjZCOp3Hdf2qHnusm6j3PlHvG+S9T8R7n6j3DfLex8q919VF0LShgyaZnpMkSZIkSSqDDJokSZIkSZLKIIMmSZIkSZKkMsigSZIkSZIkqQyyEFySJEmSyuD7Pp7nVvmYCsWihm1beN6hn0V2MB2se9c0HVWtzhiRDJokSZIkaRBCCNLpDgqF7Kgcv61Nxfcn1sy5bgfr3kOhKPF4XVltBQYjgyZJkiRJGkR3wBSN1mKagRH/4T2QpikTbpSp22jfuxAC27bIZjsBSCTqR3Q8GTRJkiRJ0gB83+sJmKLR+KicQ9fVQ96n6FA5GPdumgEAstlOYrHaEaXqZCG4JEmSJA3A8zxg3x9eaXzq/vmNtCZNBk2SJEmSNIRqp+Skg6taPz8ZNEmSJEmSJJVBBk2SJEmSJEllkEGTJEmSJB2Gmpt3c/LJK/n97393qC/lsCGDJkmSJEmSpDLIlgOSNEH5viCZtTB0lVjYPNSXI0lSlTU2TuWxx/6Grss/9dUiR5okaQLKFR22taTZvDvN7rYczgTtESNJY0WhUKj6MRVFIRAIoGla1Y89UcmgSZImEMf1aW7PsWlXmmTGpiZqki04tKWq/4YtSVL/br/9Nk4+eSVbtmzmq1/9MmeeeRqf/OTHAfjDH37PJZd8iNWrV3Huuau59tov0tKyp88xfv3r+3jPe85j9epVfOITH+Hll1/kqqsu5aqrLu3ZZqCapueff5ZPfvKfOOOMkznnnDfzhS9cw9atW/q9xp07d3D99V/lnHPezNlnn8YNN1xHsVgche/K+CCDJkmaAIQQpLIWW5pLI0umoVAbD6DrKpGgzt5kkXzROdSXKUkTyr/92xewrCKXX34V73jHu7nrrtv5+tevpampiauv/izvfe/7ef75Z7nqqkvJZDI9+91//6/41rduoqGhgU9+8mqWLTuGL37xc+zd2zrkOZ999mmuueYqOjs7uOSSS3nf+z7I2rWvcMUVH6e5eXef7b/ylS+Qz+e47LKrWL36TH7/+9/x4x//oKrfh/FEJjol6TBXtF1aOwu0p4toqkJdvPfaWcGATsGyaO0sMLNRR5VN/CTpoJg/fwFf/er16LrKzp27eN/73sUnPnEFH/nIJT3bnHbaW/jYxz7I/ff/ko985BIcx+FHP/oeRxxxJN/5zvd66pXmz1/A9dd/lcmTGwY95//8z3eIxxPcdtsdxOMJAE455c1ccskHuf322/jXf72u1/YLFizii1/8Ss/XqVSK//u/B/jkJz9VrW/DuCJHmiTpMOX5Pm3JApt2p9mbLBANGcQjZr+dcWMRg46MRSprH4IrlaSJ6V3vuqDn33/5y+P4vs/q1WeSTCZ7/qurm0RT00xeeOE5AF59dT2pVIp3vOPdvQq8zzzzHGKxwdfGa2tr4/XXX+Pcc9/eEzBBKeBaufIE/vGPvw16jQBHH72cVCpFLpcd1j2Pd3KkSZIOQ9mCQ0tHnmTOImhq1CeCg26vayqGrtDamSca0jF0WTgqSaNt6tRpPf/esWMHQgguuujd/W6raaU/13v2NAMwY0ZTr+d1XWfq1KmDnq9735kzZ/V5bvbs2TzzzFMUCgVCoVDP41OmNPbarjswy2QyRCLRQc93OJJBkyQdRhzXY2+qSFtnAV9ATdREK3NF72jIoCNl0ZYqMrU+MspXKklSILDvw4wQPoqi8F//9d+o/bxmQ6Hwwby0Hqra/wcoIcRBvpKxQQZNknQY8IUglbVp7cyTLThEQwYBs7LRIkVRiIRLReGJiEk4aIzS1UqSdKDp02cghGDq1Gn9jgR1a2wsjSbt3LmDFStW9jzuui7Nzc3Mmzd/yH23b9/W57lt27ZRU1PTa5RJ6kvWNEnSOFewXHa0ZNjanMZ2PerigYoDpm5BU8fzfFo7C/gT9JOkJB0Kp522Gk3TuOOOH/YZxRFCkEolAVi8+EgSiQS/+939uK7bs80jjzxMJpMe9ByTJk1iwYKFPPzw//Wajbd58xs8++w/OPHEVdW7ocOUHGmSpHHK9Xw60kVak0Vs2yMeMdD1kX8O6i4KT0QD1MYCVbhSSZKGMn36DP7pn67gtttuZc+e3ZxyypsJh8Ps3r2bJ574M+9857v5wAc+jGEYXHLJpXzrW9/g05++gtWrz6C5uZmHHvod06fP6Heix/4++clP87nPfYrLL/8Yb3vbedi2xa9+dS+RSJRLLrl00H0lGTRJ0riUztu0dhRI5izCAZ26RPWCG1kULkmHxoc//FFmzpzJvff+nDvu+CEADQ1TOP74Ezj55FN7trvggvchhOCee37Gd7/7HebNW8CNN97Mt7/9X5jm4O8Fxx13At/85i3cfvtt3H7799F1neXLV3DFFZ9i2rTpo3p/hwNFTNRqrlHieT4dHbmqHlPXVWprI3R25nAn2HIXE/XeB7pv2/HYmyzQlioiEMTDJqpa/b5KQgg60hbTJkUOelH4RP2Zw8S997F8345j097eTH39VAxjdNZo1HV1xPft+z5vf/uZnHbaW/j85/+1Slc2+qpx7+UY6udYVxdB04YeqZcjTZI0DvhCkMxYtHQWyBddYmEd0xi9ESBFUYiESkXh8YhJRBaFS9KYYVkWptm759rDD/8f6XSKY4459hBe2eFPBk2SNMbliw6tnQU6MxaGrlIX779BZbUFTZ1C0WJvZ4GQ7BQuSWPGunVruOWWm3nLW84gHk/w2muv8n//91vmzp3HW95yxqG+vMOaDJokaYxyXJ89HTma2/K4rk8sYqCXMXxcTbGIQacsCpekMWXq1Gk0NEzhV7+6l3Q6RTye4Oyz38oVV1yNYchR4dEkgyZJGqN2tmbY0ZolaGjEwocmYNE1FV0WhUvSmDJ16jT+8z+/dagvY0KSfZokaQyyHI/OTJFoyCAUOLSfbaIhg2zBoS1VPKTXIUmSdKjJoEmSxqBs3sGyPAKjWOxdrv2LwnNF51BfjiRJ0iEjgyZJGmOEEHRmLQxdOygF3+Xo7hS+V3YKlyRpApNBkySNMQXLJZt3CIfGVslhd1F4Kmsf6kuRJEk6JGTQJEljTCbv4Ho+5hgrut6/KNxxvUN9OZIkSQedDJokaQzxfJ9k1hr2grujrbsofK8sCpckaQKSQZMkjSG5oku+6B7yGXMD6S4Kb5NF4ZIkHaC5eTcnn7ySP/3p0Yr2e/31jdx++20Ui8P7MHbyySv5+c/vHta+lZJBkySNIemcBYA2CuvJVUt3UXirLAqXJGk/9fWT+P737+DYY4+raL/XX3+NO+744bCDpoNJBk2SNEY4rkcq5xAMjM3U3P7iEYOkLAqXJKmLZRUxTZMlS5YSjycO9eWMGhk0SdIYkS24FG2X4BitZ9qf1lUU3iKLwiVp3Lj++q/y4Q+/l6ee+hsf/vB7Wb36TVxyyYdYu3ZNzzYPPfQgV1zxcc49dzXnnPMWrrrqUtavX9vrOLfffhtnnnkK69ev5bLLPsbq1W/i17/+5YDpud///ndcfPFFrF79Jt71rnO57bbv4nml940HH/wtN9xwHQBvf/sZnHzySi688B0AtLW1ccMN1/Ge95zH6tWruOiid3Pbbd/Ftg/dh7WxWThRgU2bNvH1r3+dF198kUgkwnnnncdnPvMZTNMcdL/Pfe5zvPLKK7S2tmIYBgsXLuSKK67g5JNPPkhXLkn7CCFIZovoqjJmejMNJRoy6Ehb7E0VmVYfOdSXI0lSGdrb27n55v/kkksuJRaL8dOf3sU///NV3HPP/dTW1rFnTzPnnPM2pk+fgeM4PProH7jqqku5885fMHPmrJ7jOI7Dddf9K+997we47LIrBxxduueen/K9793Ce9/7Aa666jNs3bqVH/zgf/B9nyuuuJpVq07h4os/zl133c43v3kLkUgU0yytn5dKJYnHE1x99WeJxWLs2LGdH//4B7S3t/GlL117UL5fBxrXQVMqleLiiy9m9uzZ3HLLLbS0tHDjjTdSLBb5yle+Mui+juPw0Y9+lNmzZ2NZFr/61a+49NJL+clPfsLKlSsP0h1IUknR9sjkx24BeH8URSEaMmhLFklETCJBuVCoNHEIIbAdvyrH8nyB61Z2LNNQh/UBK51O8bWv3dhTd7R8+bGcf/7buPfen3P55VfxsY99omdb3/c57rgT2LBhHQ899CCXXXZlz3Ou63LppZ/k9NPP6nmsuXl3r3Pl8zluv/0HfOADH+nZ97jjTsQwdG655Vt84AMfpr6+junTZwCwaNER1NTU9Ow/b958rrrqMz1fL116NMFgiOuvv5Zrrvk8wWCw4vsfqfHzDt2Pe+65h1wux6233trzjfY8j+uuu47LLruMKVOmDLjvd77znV5fn3rqqZx++uk88MADMmiSDrpswcFxPeKR8RV4BEyNfNGltTPPrClx1DFcwC5J1SKE4D9++gJv7EodsmuYPyPBFz+4ouLAKRqN9irUjkajrFx5fE8KbuvWLdx223dZu/YVOjs7erbbsWNbn2OddNLgmZk1a16hUMjzlrecjuu6PY+vXHkClmWxefMm6uvrBtxfCMEvf/kLfvvb+9m9eze2bfU8t3v3TubOnT/0DVfZuA6annjiCU466aRekem5557Ltddey9/+9jfOP//8so+laRqxWAzHkdOopYPL9wWdGWtMrDM3HKWicJtExKIufvA/+UnSITFOPx/U1NT2eayuro5t27aQz+e45pqrqKmp4eqrP8uUKVMJBExuvPHrfeqIgsEg4XB40HOlUkkALrnkQ/0+39raMuj+9933c7773e/wgQ98hBUrVhKLxdiwYT033/yfh6yuaVwHTZs3b+aCCy7o9Vg8Hmfy5Mls3rx5yP2FEHieRyaT4X//93/Ztm0b//7v/z7i69L16tbXa5ra6/8TyUS490zepmh7xCLGvvtVe/9/LNM0lYDr054uUhMPjLiT+UT4mQ9kot77WL5v3+8bHSmKwhc/uKIq6TlFKd235/lU0sFjuOm5ZLKzz2MdHR3U109i7do1tLa28J//+S0WLFjY83wulwUaDrjuoc8di8UBuP76b/Sb+Zk2bdqg+//pT4+xatWpXH75VT2Pbd26ZcjzDkbTlBH9jR7XQVM6nSYej/d5PJFIkEoNPWz6q1/9in/9138FIBwO861vfYtjjjlmRNekqgq1taNTFBuPh0bluOPB4XzvGcsnEjGpq+n7qS0SCRyCK6pcLBpkb7KA7StMqdLv/+H8Mx/KRL33sXjfxaJGW5va7x9bo6qjw6M/0qwoCtlslpdeeo6VK48HIJvN8Nxzz3Dhhe/FdUujN8Gg2XOvr7zyMs3Nu5k7d27PY91p+AO/H/sHv7qusnz5coLBIO3tezn99NMHvK5AoDRxy/edXse0bQvTNHo99sgjD/c6x75zDx4M+b6CqqokEuER1UKN66BppE4//XQWL15MZ2cnDz/8MJ/5zGe49dZbOe2004Z9TN8XpNP5Kl5l6ZcjHg+RThfwvOoUHo4Xh/u9O67P9t2doCikM4WexzVVJRIJkMtZeP44uW/fZ9P2DvA8oqHh12Yd7j/zwUzUex/L923bFr7v43mVF2uXY7gjTcMhhCAeT3D99f/ea/acEIILL7wIgFAozDe+cSMf+tBH2bu3ldtvv43JkxsQgp779/3ShR74/ej+2Xmej+v6hEIRPv7xy7n11u+wZ88ejjnmWDRNY/funfz1r09www03EYmEe2bl3XffvZxyypsJBoPMmzeflSuP55e/vId77/0FTU2z+MMffs+OHTt6nWPfuQf/+XiewPd9Uqk8hULfNinxeKiskc5xHTTF43EymUyfx1OpFInE0M216urqqKsrFaGdeuqppFIpvvGNb4woaIK+v0jVcuAvyURyuN57KmuRzTvUxQP9/rHwfH/M/REZiKEpZHMezW3ZqhSFH64/83JM1Hsfi/fteaMbyXQHSgeruX59fT1XXPEp/ud/vsOuXTuZM2cuN998C3V19QB87Ws38t3vfpsvfOGfaWqayf/7f1/iZz+7a9jne//7P8TkyZO5996f8etf34uu60yfPoM3vekUNK0UgixYsJhLLrmUBx98gJ///Cc0NEzhV7/6HR/96CdIJpP86Ee3AfDmN5/OZz7zOT7/+c8O+3pGGvyO66Bp7ty5fWqXMpkMe/fuZe7cuRUf76ijjuKJJ56o1uVJ0pCSGQttHPVmGoosCpekse9NbzqZN72p/5lvJ574Jk488U29HjvppFW9vv74xy/j4x+/rM++U6dO48knn+vz+BlnnM0ZZ5w96DVdcsmlXHLJpb0eC4fD/fZjOvAc/Z1ztIy9qrsKnHrqqfz9738nnU73PPbwww+jqiqrVq0aZM/+Pf/88zQ1NVXzEiVpQEXbJVNwCAXH9WeXXjRNxdBVWpMFbEd2Cpck6fAyrt+tL7roIu6++26uvPJKLrvsMlpaWrjpppu46KKLelXqX3zxxezevZtHHnkEgD//+c/85je/4c1vfjNTp04llUrx4IMP8uSTT3LzzTcfqtuRJphswcF2PGLh8dWbaSiRkE5H2qItLTuFS5J0eBnXQVMikeCuu+7ia1/7GldeeSWRSIQLL7yQz362d76zVMS371NvU1MTtm3zzW9+k87OTmpra1m0aBF33303xx9//MG+DWkC8kWpN5NpjOvB3n7t3yk8HjZHVBQuSVL1fPnLXz3UlzDujeugCWDevHnceeedg25z991399nnf/7nf0bxqiRpcPmiS67oHLYBRcDUKFgue5N5wgHZKVySpMPD4fcxV5LGgUzexvcF+hhs5lctsXCpKDyZtYbeWJIkaRw4fN+xJWmMcj2fzoxF0Byfy6aUSxaFS5J0uJFBkyQdZLmCg2V7BM1xnx0fUiSkkys4dGSKh/pSJEmSRuzwf9eWpDEmlbNB4ZDW+exNFnhmfStb92R460kzmTO173JE1aAoCkFTI5W1aagJy9omSZLGNRk0SdJBZDke6ZxNOHDwX3pCCDbtTvP0+hY27drX2+x3f9vKFe9aglHlhaa7BQMamZxD3nIP28J3SZImBhk0SdJBlCs4WI5HJHTwXnqO67NmcztPr29hb3JfmmzxzBp2teVIZm2eWreHU48efMXx4dJUFV8IsgVbBk2SJI1rsqZJkg4S0dWbydDVg7JsSiZv8/gLu/j2L1/hwb9vY2+yiKmrnHBEA1dfsJT3rp7PGStnAPC3NXtI5+xRu5aAUUrRdS/0KUnSoXHvvT/j/PPfxqmnHs8Xv/jPo36+5ubd3H77bbS17R3W/hde+A5uvvk/q3xVwydHmiTpIClYLrmDsGxKc3uOp9e3snZLR0+QUhM1Of6IBpYvmNSrAH3JnDqee3UvO1qzPPr8Ts4/tfI1G8sRNDUyeZmik6RDaceO7dx667f54AcvZtWqU0gkakb9nM3Nu7njjh+yatUpTJo0edTPN9pk0CRJB0km7+B4PvFRqB3yfcFrO5L8Y30L21uyPY83NUQ58cgpLJpZ028RtqIonHNCEz/83QbWbu5g5aLJzJwSq/r1aZqK5wtyhcO3oackjXXbt29DCME73vEupk+f0e82llUkEJCLbQ9EBk2SdBB4vk8yW/3eTJbj8dLrbTyzoZXOTKmJpKooHDmnlhOOnML0SUOv/Ta1PsIxCybx4utt/OGZHXz8bUeMyiy3gKmRzFpMrgnJWXSSdJBdf/1XeeihBwF43/veBcCXvnQtN9xwHTfd9G1+//vf8swzT7N8+THcdNO32bOnmVtv/RbPPvs0nuexbNlyrrzyM8ybN7/nmBde+A7e9KaTmTVrDj//+U/IZjOsWLGSf/mXf6W2tpYXXniOT33qcgD+6Z8+0rPfk08+R6FQ4Hvf+2+ee+4ZWlr2UFtbxwknnMQVV3yKaDR68L4xFZJBkyQdBLmCS77okoiaVTleMmPx9IZWXnq9DaurcWQooLFi4WSOW9xAPFLZeVavmM76rZ00t+d56Y02Viys/jB6yNTIFGSKTjo8CCHArU4doBAqwvUr20k3K6qN/OhH/4nZs+fwve/dwvXXf4P6+km0trYAcNNN13PWWedyww0Xoqoq+XyOq6++DEVR+NznvohpBvjJT37MlVd+grvu+gVTpjT2HPfJJ59g584dXHPN50mlkvz3f9/Mt799E9dd9x8sWrSYa675PDff/J986UvXMnPm7J79isUivu9z+eVXEoslaG1t4Sc/+TFf/OI/c8stt1X2vTiIZNAkSQdBOt81CjSCERYhBDtaszy9vpVXt3ciumqq6+NBTjiygaPn12PowxvJioQMTl0+lUee3cnjL+ziyFm1BKvcFkHTVDxPpuik8U8IQf631+O3vHHIrkGbsoDQO79UduA0ffoMmppmAbBw4SKmTp3GCy+U3pdOPvlUPvnJT/Vs+8tf3sOePc3cffd9zJ49B4BjjlnBBRe8nfvu+wVXX/3ZXse+8cabMc3SB7Xm5t3cffcd+L5PJBLt2X/u3HksXnxkzz61tbV87nNfRNdVXNfHdV2mTp3GJz/5T2zfvo2ZM2cN8zszumTQJEmjzHY8UlmHUGB4AY3n+6zf2snT61rY3Z7veXzutDgnHDmF+dPjVZmNd/ziBl7Y2EZ7ushfXm7m7OObRnzMAwVMjVTOZnJtCPUgzCCUpNGicPj8/p500sm9vn755ReZO3deT8ADEI8nWLnyBF555aVe2y5fvqInYAKYPXsuruvS2dlBff2kQc/78MP/x333/ZwdO7ZTKBR6Ht+xY7sMmiRposoWHIq2S108UNF+uaLDEy/v5pn1LWTyDgCaqrBsXj0nHDmFhtpQVa9T01TOPr6Jnz/6Os9uaGXFwklMrqnuOYKmRrbgULBcIkE52iSNT4qiEHrnl6qWnusebalsp8rSc4Opq6vr9XUmk6G2tq7f7bZs2dTrsQPrjwyj9Lq27cG/N3/5y5/4+tev5V3vOp9PfOIK4vEa2tvb+NKXPodtj91FvmXQJEmjSAhBMmuha0pFb3Abt3fyyz9twul6I40EdY47ooFjF00e1WBj/owEC2YkeH1nij8+s4MPnLmgqj2l9P1SdDJoksYzRVHAqOyD0IDH0lUUpcKgqYoOfI3H43G2b9/WZ7uOjg5iseosufSnPz3KggUL+cIX/rUnYHzxxeercuzRJJtbStIoKtoe2bxDqIL6ICEEf3xmB47r01gX5ryTZ/Pp9yzj1KOnHZRA46zjm1BVhU2707y+M1X14wcMjWTWxhey0aUkjUXLli1n8+Y32L59a89j6XSa5557hmXLlld0rO6RJ8vqPfJkWRa63vv97I9/fHhY13swyaBJkkZRJm/jeD6mUX490/aWLG2pIqah8rG3HcHR8yehawfvpVofD3LikVMA+OMzO3C96n4CDgY0CpZL0XKrelxJkqrjbW97B42NU/l//+8zPProH3jiiT9zzTVXoWka733v+ys6VlPTLDRN4//+7wHWrl3Dq6+uB+C4405gw4Z1/PjHP+TZZ5/mlltu5vnnnxmN26kqmZ6TpFHi+4Jk1iZQQcAE8MJrpeUGjlnYQNDU8KoctJTjlKOn8sqmdjoyFk+vb2HV0qlVO7auqbieIFd0CcsUnSSNOeFwhFtuuY1bbrmZm266Ad/3WLr0aL773R/2ajdQjpqaGj772X/h5z//CX/4w+/xPI8nn3yO8847n927d/HLX96DZdkcf/yJXHvt9Vx22UdH56aqRBFCjpFXk+f5dHTkqnpMXVeprY3Q2ZmrvFhwnBvP957J27yxK0U8YqCp5Y0UFSyXm+99Gc8XfOaiY6iNGIckaAJ4+Y02HnhyK6aucuX5S4iFq9NjCkrfm4ChM39Gos8suvH8Mx+piXrvY/m+Hcemvb2Z+vqpGEb1XgP7G1Yh+GHiYN37UD/HuroIWhkj+jI9J0mjJJNzEIKyAyaAVza14/mCxrrwqCxnUoll8+qZNimC7fo8/vyuqh47ZOoyRSdJ0rgjgyZJGgWO65PMWRX1ZhJC9KTmjl00uaqz1oaje106gJc3tbNzb3aIPcqn6/tSdJIkSeOFDJokaRRkCw4F261orbmde3PsTRbRNZVl8+tH8erKN2NylGXzStfy8NM7qGY23zQUklmrqseUJEkaTTJokqRRkMpaaGplvZle2FgaZTpqTi1Bc+zM0Tj92OmYusruthyvbGqv2nFDpk6h6FKwvKodU5IkaTTJoEmSqqxguaTzDuEKejMVLZd1WzsBRmWx3JGIhU1OObo0e+6x53f1LBA8UqUUnU++6FTleJIkSaNNBk2SVGW5goPjehX1ZlqzuQPX82moCTFjcmQUr254TjhyCnWxANmCw19fbq7acQ1DJZm1ZYpOkqRxQQZNklRFvhB0ZCxMo/yXlhCC53t6M0065AXg/dE1lTO7FvB9en0LHeliVY4bNHXyRUem6CRJGhdk0CRJVZQvuuStypZN2dWWo7WzgK4pPUXXY9HCGQnmTYvj+YI/PrujKsc0ZIpOkqRxRAZNklRFmbyN74uKlj158bU2AI6cXVdRsHWwKYrC2cc3oSoKr+1I8cau6qxLJ1N0kiSNFzJokqQqcT2fzoxVUZsBy/ZYu6UDKKXmxrpJNSGOO6IBKK1L5/kj7+QbNDXyRYeiLVN0kiSNbTJokqQqyRUcLNurqF3Ams3tOK7PpESQmQ3RUby66jnt6KmEgzptqSLPbmgd8fEMXcPxfHIyRSdJ0hgngyZJqpJUzgYFVLWC3kxdqbkVY7QAvD/BgM7qFdMB+MtLzeQKIw92DF0lJVN0kjQmPPXUk9x++22H+jLGJBk0SVIVWLZHOmdX1Jtpd1uOPR15NFVh2byxn5rb3/L5k2isC2M5Hn96ceTr0oUCGrmiK1N0kjQGPPXU37jjjh8e6ssYk2TQJElVkC04WI5XUauB7nXmjphVSzg4dgvA+6Oq+9ale+G1NprbcyM6nqFrOK5HXq5FJ0nSGCaDJkkaISEEnRkLQ1fLTrHZjsfazaUC8BXjoAC8PzOnxFgypw6ozrp0hq7KteikCWPv3lZuuOE63vGOszjllBP40Ifey4MPPgBAR0c7p512Aj/+8Q/67Ld9+1ZOPnklv/71vT2PZTIZvvOdb3L++W/jLW85ife971389Kd34u83UaO5eTcnn7ySn//8bh544H9573vP4y1vOYl/+qePsGHDup7trr/+q/zv//4SgJNPXtnzn1Qyvj7eStIYlLdcckWHSAWjRWu3dGC7PnXxALMaY6N4daPrjJUz2LgjyY7WLOu2dLBk7vD7TAVNmaKTJoaOjnYuu+xjAFxwwXupq6vj739/khtv/Br5fI73vvcDLF++gscff5RLLrm0176PPfYImqbxlrecAUCxWOSqqy6lra2Vd77zfKZMaWTt2le47bbv0t7ezqc//c+99n/00YfJ5/Ocd975KIrCz3/+E7785X/hvvseQNd1zjvvfNra9vLss0/zb//27wfnGzKOyKBJkkYok7dxPR9drzw1t2Lh5HFTAN6feMRk1dJG/vzibh55bicLm2oqWj5mf6ahkck75GSKTjrM/eAH/4PnefzkJ/eQSNSg6yrvfOf5XHvtl/jxj3/Aeeedz+rVZ/KNb9zA5s1vMHfu/J59H3vsEZYvX0FdXekDyj33/JTdu3fy4x//jKammQC8610XMGnSZH7xi7u56KIPMmVKY8/+LS17+MUv7icejwMwc+YsvvCFf+bpp59i1apTWLJkGU1NM3n22ac5++y3HsTvyvgg03OSNAKe75PK2hX1ZtrTnmd3Wx5VVTh6sA7gro1i58GzQYy8H9JoOemoRmqiJpm8w9/W7BnRsUqz6GSKTjp8CSH4858fZ9WqUxACkskkyWQnyWSSE044iWw2y8aNr3LaaavRNI3HHnukZ9/Nm99g69bNrF59Zs9jf/rTYyxbdgyxWLzrWKX/Vq48Hs/zePnlF3udf/Xqs3oCJoBly44BYPfukU/omAjkSJMkjUCu4JIvuiSiZtn7vPB6aZRp8cwaIiGj/42ED8k9qB1t6CigaAjNRBgB0EyEqoOql/6vGaAcus8/hq5y5somfvnnTfx97R6WL5hEbSwwrGMFTY1cQTa6lA5fyWQn2WyG3/72fn772/v73aazs5Nly5Zz7LHH8/jjj/CJT1wB7EvNnXba6p5td+7czqZNr/P2t58xwLE6en09ZcqUXl93B1CZTHrY9zSRyKBJkkYgnbeA8nsz2Y7Hmk3dBeCTB9xOsXOQT4IRRPg+iu+hOHlUa/83NgWhaaDoCE0HLYjQA6V/dwdUqg7q8NJllVg8q4bZjTG27snw6HM7ec9b5g3rOKahkbdssnlHvjlJh6Xu4uyzzz6Xc855OwCapuJ5+0aT589fAMAZZ5zFDTdcx+uvb2TBgkU8/vgjHHvs8dTU1PRsK4TguONO4AMf+Ei/52tqmtXra3WA9wM5ulse+b4kScNkOx6prEMoUH5Qsn5rJ5bjURsLMGfqAAXgQqDkO0BRQDNB8RFdp+j1tiZ88L1SQOVaYOdQhejaSikFTopWCqL0AEIPgKrjomF5KkVPQQgNTVNJxMofKeuPoiicfUITP/jtejZs62RLc5o5U+ND79gPXVPoyBRpGOE1SdJYVFNTSzgcwfN8jjvuBAB0XcV1+6bgTznlzRjGDT0puh07tvPhD3+s1zbTps2gUCj0HKsaxnOd5WiTNU2SNEzZgkPRdglUUM/0fFcB+DELBu4Arjh5lGIGApHBD6aooBkII4gwI4hgAj9Ugx+qxQ8m8I0gQlXBtfEyHVit28nv3ozb/DqBzs00ujtpUptRrWS/b9iVmlIbZuWi0ujZH57ege8P75NrMKCTzdsUbVkQLh1+NE3jzW9ezV/+8jibN7/R5/nOzs6ef8diMY4//kQef/wRHn30jxiGwSmnvLnX9qtXn8Hata/w9NNP9TlWJpPBdSt/HQWDoZ79pd7kSJMkDYMQgmTWQq+gN1NLZ55de3OoisLy+QP3ZlILnSjCL9UqYQ3r+lwfHBccV0XBRDeCBMMakaCOaWgEdIEqfHy7iGUlactFqEkMEaSV4c3HTGftlg5akwWe37i3Z3HfSgQMDcv2yBVcEhE52iQdfi6//CpeeOE5Lr30o7zjHe9m3ry5dHameO21V3nuuWd46KHHe7Y9/fSz+Pd//zfuv/9XHH/8icRivUeoP/CBj/Dkk0/wL//yGd761newaNFiCoUimze/wZ///Bi//OXveqXzyrFo0REAfPvb3+CEE05CVVXOOOPsEd/34UAGTZI0DAXLI5t3CAfLH2V6sWuduYUzE0TD/ReAK04etZhCmOGKrkf4YLsetuvj+6CrCqapkYjoBE2dgKFi6H2vVdVN4sVWknYG1wuhayMbfA4FdN58zHQe+sd2/vTiLo6aUzesbue6rpLKWTJokg5LdXX1/PCHd3HHHT/kL395nPvv/yWJRILZs+dxxRVX99r25JNPJRAIkM/nOP30s/ocKxgMcuutP+Duu+/gT396lIcf/j8ikQhNTTO55JLLiEYrXwj8tNPewoUXvo9HH/0jf/zjQwghZNDURRGy+quqPM+no2NkS0ocSNdVamsjdHbmqpJGGU/G6r23dubZ0ZqjPlHeLDHH9fnWfS9TtD0+cOYC5k9P9LudltqNmt+LEqknEgmQy1l4ft/7FgJcz8d2fFzPR1UVDF0lHNAJBXSCpoaha6hljIJ5hQx7khYdwenUxEc+2uT7gh/8bj2tnQVWLp7MW0+cNfRO+9E0FTNg0N6RY960REXpz/FurP6+j7axfN+OY9Pe3kx9/VQMY3SC+IFqmiaCg3XvQ/0c6+oiaGV8aJQ1TZJUoVJqzsY0yi+W3LCtk6LtkYiYzJvWf4G04hRQrCS+0f8ok+cJCpZLJueQyTu4rk8ooNNYF6apIcasKTEa6yIkIgEChl5WwASgBiMkTBetmOk1g2e4VFXhnONL69I9v3EvLR35io8RMDRs1yNXdEZ8PZIkSdUigyZJqlDR9ijaXkUNLZ/f2N0BfJAC8GIKxXNAL41e+b6g6Hhk8g6prE3R8tBVlbpEkBmTIzRNiTFjcpTaWJBwQEdTh/dyVhSVUDhCgjTZXGFYxzjQ7KlxjphVixDwh2cqX5dOURQ0TSWds6tyPZIkSdUggyZJqlDR9nBcr98aof7sTRbY0ZpFUWD5ggEKwF0LtdCJMEI9D6VzFghBImIybVKEmY1RmqbEmJwIEQ2ZmGWevxxqMELCcFGKmX7TgcNx5soZ6JrC1j0ZNm5PVrx/yNTJFhws2ehSkqQxQgZNklShTN4uu5klwAvdBeAzaoiF+6+JUItJFNdG6EEAHM9H0zSm1keGlXKrlKKohKJREiJNNlesyjFrYgFOOLLUffjZV1sr3t80VCzHI2/J1gOSJI0NMmiSpAq4nk+24JSdmnNdn1c2lYKmFYsGGmWyUfOdCCPY81DRdomEdIIVNM4cKTUQJm64qIX0sHssHai76/nWPRmy+crqk0opOoVUdnhtFyRJkqpNBk2SVIGi7WE5HgGjvGBmw/ZOCpZHPGIyb1r/M+bUYgrFtXpGmYQAz4OaaACFg9eZV1FUIrEIMZGqWm1TbSzA9MkRhIB1WzuG3uEAPSk6R6boJEk69GTQJEkVKFguvi/KTs91p+aOWTCp/308p1TLpAdKy6ZQWp4laKoDL+Y7itRAhIThQRVHm5bMqQNg7ZbKg6aeFF1RpugkSTr0ZNAkSWUSQpDO2ZhGeS+b9lSRbXsygxaAq1YGxSn0KgC3bJ9o2Bxxo8nh6Blt8lPk8tUZbTpqdh2KArv25ujMVJZq607RpXMyRSdJ0qEngyZJKpPt+OQtt+zU3Atd68zNn57ov7O176Lm2xG62TPK5PkCRYXoMLpoV0tptMnFz6eqMtoUDRvMbiwt/TCc0aaQqZMpuNgyRSdJ0iEmgyZJKlPBdrFdD0Mf+mXjej4vv9EO7CuGPpBqZVDtPGK/ZpaW7REK6IQOYdBUGm2KEvOqN9q0ZG49AOs2DzdF55KTKTpJkg4xGTRJUpnyBRcVpawFejduT5K3XGJhgwUz+ikA9z3UXDu+ZvSMMglRWm4lETYPagF4f7RghBrTw89VZ7TpiJk1aKpCa7JAS2dlHcIVRUFTFDJ52ehSkkbTE0/8mf/931/2efz667/Khz/83kNwRWOPDJokqQy+L0jlLQJmeS+Z7tTc8gEKwEu1TPleC/M6rodpaIQCh34d7Z7RJj9FPj/yvk3BgM78ruBx7TBGm4IBjXTekSk6SRpFf/3rn7n//r5B00c/+k9ce+31B/16xiIZNElSGQq2W3argY50kS3NGaA0a64P4aMUOhCqBsq+l6Bl+0SCOmaZNVOjrXu0yc11VrwMSn+6Z9Gt29JR8fEChiZTdJJ0iEyfPoP58xcc6ssYEw79R9oR2rRpE1//+td58cUXiUQinHfeeXzmM5/BNAdejbq1tZU777yTv/3tb2zfvp1YLMZxxx3HNddcw/Tp0w/i1UvjRcFy8T1R1irYL75eajMwb3qcmmigz/OKlUW1sviBWM9jomvlklhodFZRHw5FUQlHo8Q70uTztUQioaF3GsTCpgSmrpLM2uzam2NGQ7SCa9mXoquN9f2eSpJUns2bN/E///Md1q9fh2UVaWiYwtvffh5bt27hoYceBODkk1cCcO65b+fLX/4q11//VV59dT13330fAL///e+44Ybr+NGPfsJtt32XV155iYaGKVxzzec59tjj+NGPvs/vfvcbAN72tndy6aWfRB3m2phjzbgOmlKpFBdffDGzZ8/mlltuoaWlhRtvvJFischXvvKVAfdbt24djzzyCBdccAFHH300nZ2dfO973+M973kPDz74IHV1dQfxLqTxIJ2z0csoAPc8n5e6gqZj+ysAFz5qoQOhqKDuG1EqOi5BUyMUHBujTN30UIQaI0sm24kIB8uq5xqIoWssmlnDms0drN3SUVHQBBA0NTJ5p6J1/yRJ6u3zn7+Guro6vvCFfyMajbJz5w727m3lox/9J5LJTrZt28pXvvJ1AGprawc91te/fi3nnXcBF130IX760zv58pf/hXPPfRu5XI5//dfrWL9+Lbfffhtz587nrLPOORi3N+rGddB0zz33kMvluPXWW6mpqQHA8zyuu+46LrvsMqZMmdLvfsceeywPPfQQur7v9lesWMGb3/xmfvOb33DJJZccjMuXxgnb8chb5aXmXtuRIld0iYYMFjT1LQBX7BxqMYMfiBxwDp/auiCqMrY+jSmKSjgWIdKeJl+oJRIe2WjTkrl1rNncwbotHZx1XFNFa/gFTI2OjEWu6FITlUGTdGgJIbCs6qzTqGkqnlfZQtmBQOUfYpLJJM3Nu/j0p/+Zk08+FYAVK1b2PF9TU8uePc0sWbK0rONdcMH7ePe7LwRg8uTJfOQjF/Hqqxu47bY7ADjhhJN48skn+NOfHpVB01jwxBNPcNJJJ/UETADnnnsu1157LX/72984//zz+90vHo/3eayxsZG6ujpaWytfWFQ6vBVsD8fxiASHTp11F4AfPb8e7cDhaCFQ852gAOq+l57j+uiaSuQQthkYjB6KUmNm2ZXpRIRGNto0d1qcUEAnV3TZuifD3Gl9X4sDURQFVVFI5+x+056SdLAIIfjc565m/fp1h+wajjxyCf/1X/9d0esxkUjQ2DiV2267lUwmzbHHHkdDQ/+DC+U47rgTev7d1DQLgGOPPa7XNk1NM9mxY/uwzzHWjM136TJt3ryZCy64oNdj8XicyZMns3nz5oqOtWXLFtrb25k3b96Ir6ucNE4luutoyqmnOdyMhXu3XA9VVdCHSAl1Ziw2704DsHJxQ59rVqwsqpOFQKxXQJV3XeIRk1BQ72k10Pu+K/sEWn0a8UScdHsay6ofUW2TpqkcNaeO515tZd2WDhY01fTdput70yfoBCIhg7zl4iMwD8MU3Vj4fT8UxvJ9+/5AQcmhbQsyHIqicPPNt/KDH/wPN9/8nxQKBRYtOoKrr/4sy5evqPh40ei+ukzDMPo81v24bfff0b873lOUUsuVg0HTlBH9jR7XQVM6ne531CiRSJBKpco+jhCCr3/96zQ0NPC2t71tRNekqgq1tZGhNxyGeHxkqZHx7FDdu+8LdnUUqK+LEAsPPtL05Jo9CGDhzFpmTz+gFkAIsPdCUIfIvt8PXwhsH6Y2xEj0M3oSiYyNERURC+C5u2j2csSitSMabTpxyVSee7WVDds6+UAoMOAbWH/3Ho0K2lNFjIBJbTw47GsY6ybqa30s3nexqNHWpvb5Y/vtb99KsVid9NxwBIPDG/WdO3cON974DVzX4ZVXXuF737uVz3/+Gn73u4dRlFIfugNfkwc+3p1W1/W+2x74fRromL33Gf1g2fcVVFUlkQgTDA7/vWNcB03Vcsstt/CPf/yDH/3oR4TD4aF3GITvC9Lpypr3DUXTVOLxEOl0oeK893h3qO89X3TZ254jHNRJewP3CPJ8wT/WNgOwfH496UzvTtqKnUdtbwEjCPuto1a0S1Pofdcjnd63j6apRCIBcjlrzPzMNT0Aba206FHC4eG/6dTHTeIRk3TO5vkNezhidu8AU1P3u3e/773nc0V2NidRvFif58a7Q/37fqiM5fu2bQvf9/E8gev2vjbDGPmHGkXZV9NUyWiL5wlgJMMzGsuWHcMHP3gxX/jCNezZ04Km6ViW1ec+hRAIse/+uxveum7f78mB36cD993fcO99ODxP4Ps+qVSeQqHve3k8HioreBvXQVM8HieTyfR5PJVKkUj004W5H/fddx/f/e53uf766znppJOqcl39/XJUg+f5o3bsse5Q3Xs2b2PZLtGQPuib+cbtnWTyDuGgzoLp8T7batkOhOfimzrsFwgULJdJiRCI7jfBbqVtPM8/4PFDRw2EieopmpNtmObUEY02HTm7ln+sa+GVTW0s7KdgHsDz/X6/54au0pG2mBQPlbWkzXg0UV/rY/G+R/v11x0sHIz01BtvvM6tt36L008/i+nTZ5DNZrn77juYOnUa06fPYPbs2fz+97/lkUcepqlpJolEDVOnThu16zmY996tv+C3EuM6aJo7d26f2qVMJsPevXuZO3fukPs/8sgjfPWrX+VTn/oUF1544WhdpjSOpXM2ujZ0cPD8a6U2A8vnT+pby+QUUItJfKP3KKbnCVRFJRw0qnfBo0hRVKLRGOGONMViHaHQ8Eebls6t4x/rWnhtR7LspqHdgqZGZ8YmX3T6TWlKktS/+vp66uvrufvuO2hr20skEuXoo5fzla98DU3TePvbz2P9+nV8+9vfIJVK9fRpkvYZ10HTqaeeyve///1etU0PP/wwqqqyatWqQfd9+umnueaaa3jPe97DlVdeeTAuVxpnHNcnZ7lD/kFPZS3e2FmqoTtmYd8O4EoxCb4Dgd59iYpdi/MGzfFT0GxGoiQyaXanOwiFhv8JtLEuTH08QHvaYuP2JMvm1Ze9b2kWHWQKtgyaJKkCtbV1/Nu/fW3A5yORKNddd0Ofxw8MnN761nfw1re+o892Tz753JD7jnfjemz7oosuIhKJcOWVV/Lkk0/y61//mptuuomLLrqoV4+miy++mDPPPLPn602bNnHllVcye/ZszjvvPF566aWe/7ZvP3ymRkojU7BdbNsbclmT7g7gsxtj1B9YnOxaqIW+o0xCgOP5xCMG6gjSXAeboqhEYzEiTopiYfhFsIqicFTXsiprt1S+Fl3A1EjnHJwxlsqRJOnwNq5HmhKJBHfddRdf+9rXuPLKK4lEIlx44YV89rOf7bVdqYhvX+HXyy+/TCaTIZPJ8P73v7/Xtu9+97u58cYbD8r1S2NboegiEIM2YPR90dMBfEU/HcDVQhLFtRHh3jMqna6UVHgMLM5bKTMSI57JsCfdQXAEo01L5tbzxMvNbN6VJl90KkpTBk2NZMYmb7kk9LGz9IwkSYe38feOfYB58+Zx5513DrrN3Xff3evr888/f8DGl5IEpRkfqZw9ZC+gN3alSOcdQgGdxbNqej/p2qiFToTRt/bHcnxqYua4XA6ke7Qp1J6iWKwb9vTdSYkgU+vDNLfnWb+1k5WLGyq4hlIgm8lbJCIyaJIk6eAY1+k5SRotRdujaHsEzMFfIi90FYAfPb8e/YACcLWYQnEthN47qPB9gVAgOoYW561UIBIjoTtYqcpTa/sbSYouGCil6NwxNkVdkqTDlwyaJKkfRdsbcmHYdM7m9Z1JAFYsOKAA3HO6RpkC+9redrFsj5CpExqHqbluiqISiccI2SmsYv/dfsuxpCto2t6SJZWzK9o3YGgUbY9c0R32+SVJkiohgyZJ6kcmbw+5mOxLb7QhBMycEmVSTe9OxqqVRnEKCL1vh2Pb9YmHx1cBeH+C0RhxY2SjTfGIycwppVmF6yocbVLV0qIz2XxlwZYkSdJwyaBJkg7gej7ZgjNoKwDfF7zYlZo79sACcN9FzXUgdLPPKFP34rzhMbo4byUURSUajxG0O7GrMNpUadAEpRRdKmfLFJ0kSQeFDJok6QBF2xuy4eLm3WlSOZugqXHErN7LgKjFNIqbRxh9l+Qp2h7RkE7AGP9BE5RGm6K6S3EEo01Hzq5FVRSa2/O0pSprY9CdosvLFJ0kSQeBDJok6QAFy8X3B2818MJrewE4el5974UofQ8134FQjT6jTMIHBESHWPh3PFEUlVhiZKNN4aDB3Oml5rRrN7dXtO++FJ0zrHNLkiRVQgZNkrQfIQTpnI1pDPzSyORtNu5IAnDMAak51cqgODmE2c8ok+tiGuq47M00mGCkNNo0ktqm/VN0osKFqAKmRjJnyRSdJEmjTgZNkrQf2/HJD7F0ystvtCMENDVEaajdr9Bb+CiFDoSqg9L3pWXbPvGIiaYeXi87VVWJxWOYdieONbzRpkUza9A1hfa0RXN7vqJ9g6aGJVN0kiQdBIfXu7ckjVDBdrFdD0Mf+KXRXbC8/IA2A4qVQbWy/dYyuZ5AV1Ui42Rx3koFozFi2vBn0gUMjYVNNQCs2VR5ik4gU3SSJI0+GTRJ0n7yBRcVpafj9IE6MxYtnQUUBRZ1/ZEHQPio+U6EooLad5SqaHuEg/qQi/+OV92jTbrVgWMNrwXAkv0aXfoVpuiCpipTdJIkjbrDq7hCkkbA9wWpvDVoF/DXumqZZjZEe7UNUOwcqpXBD0T77CMEeJ5PNGwMGIwdyN27jbannsR1PISqoahaKRhTNRRV7/k3qr7vOU3ven7fc/u+1vfbv+trTUPRAyiByNAXVIZgLE4snaEz1YHR0Fjx/vNnJAgYGumczZZdKSYnAuWf29RJZUtr0cUPo0J7SRoNa9e+wu2338a6dWsRQjB79hwuvfQKNE3nU5+6nB/96CcsXnxkz/Zf/OI/k8lkuPXWH/Q8tnXrFr7//Vt48cXn8TyPY445ls985v8xffqMQ3FLB40MmiSpS8F2sRyPWGjgFNrG7UmgVIPTQwjUfAco9DvKZDsepqkRKbM3k3Btis/+GpFPVXD1w2ce8w702ceO+Djdo03pjnZcqw49UFnwomsqR8yu5aXX23h+YyvnHN9Uwbm7UnQFRwZN0kFTLBYGfd4wTDSt9J7gOA6e13/dnaap+D4EAqUPCkIILGvw9hvBYN/GueV45ZWX+PSnr+Coo5by+c//K7FYjFdfXU9Lyx6mTSsv4Nm1ayeXX34Jc+fO40tf+iqqqvCTn/yYT3/6Cn7+819jmofva1AGTZLUpWC5+J5A0/ofaSpYLttaMgAsmrmvN1NplCmNb/Y/YmM5PnWxALpWXmrO2fhXRD6FFq3FOOIt+K6L8D3wXfA98D3Efv/G9xCeC8IDr7Sd2O+53l+7Xdt3/dtzsNc+gjb1CJRA31qsSgVjceLpNJ2pdqINUyvef8mcOl56vY1XXt/LmSunV3ZuUyWVtWioCfVZB1CSRsO73/3WQZ//0peu5ZRT3gzAXXfdzq9/fe+A2y5YsIj//u/vA5BKpXj/+9896LEfeuhPlV1sl+9977+ZPr2J73znez0B3fHHnwjACy88V9Yx7rjjh8Tjcb71re/2BHpLlhzNe997Hg8++ADnn/+eYV3beCCDJknqks7ZvXsuHeD1nSmEgIaaELWxrtSREKiFThCUUl4H8H2BokB0kNGrXttn2nBf/xsAiRPegVM7D8+rrL6nXEL4FB+/DZFuwdnwJ8zlbxvxMTVVJRaLk+7swLXr0Sv8xDm7MUY0ZJAtOGzalWbetHjZ+wZNnVROpugkaSDFYpF169Zy2WVX9gRMw/Hss//g9NPPQtM0XLc0ehaLxVi4cBGvvrq+Wpc7JsmgSZIopdDy1uBdwLtTcwv3S80pTh61mMLvpy8TlArAg6ZOsIzeTEII7FceAuGjNS4gOPMonExlHbIroSgq5rJzsJ68C3fLc+hzVqImpoz4uMF4nFgqTTLVTnRyZaNNqqpw1Jw6nl7fwppN7RUFTaqqIIRM0UkHz/33/37Q5w1j3+/hxRd/nA996OJ+t+tOz3VLJBJDHns4Mpk0vu8zadLkoTceRDKZ5L77fsF99/2iz3O6fnjOEO4mgyZJAgq2h+N4RIL9/7F1PZ9Nu0o1RvvXM6mFZKnVt9b/G4Xj+kxKBMtanNfbvQG/dROoGsHl55ZdND4S2uQ5aNOOxNu9HvuVhwicfPGIz6uppS7hmY4OPLsercLRpqXz6nl6fQuvbuvEOWkmhl7+J+LuFN2U2tBh1w9LGnsqqSsyDAPD6P99QtdVXHdf1KQoyrBrlgYTjcZQVZW2tr39Pm+apRF0x+ndviOTyfT6Oh5PcNJJq/pNw4XDI0/zj2XyXUWSgHzRQcCAAcOW5gy26xMLG0yrL70pKE5h0FEmx/Ex9fI6gAvXxlnzMAD6glWo0frh3cgwGEvOBFXHb9uKt3tDVY4ZiieIag7FdOV9m2ZMjlAXD2K7Pq/tqKwYPmjqFG2PnGx0KUl9hEIhjjpqKQ8//H94ntfn+YaGBgC2bdvS81gymWTjxld7bbdy5fFs2bKJBQsWsXjxkb3+mzlz9qjew6EmgyZpwvO7lk4JDLJ0ymvdqbmmmp7ASikkwXdA638kpej4REIGZhmL8zob/4oopFHCCYyFJ1d8DyOhRmrRF7ypdB1r/4jwRt4ksnu0Scm14zmV9W1SFIUVi0rpg7VbKgu6VFVB+JAryEaXktSfyy+/mh07tvOZz3ySxx9/lGeffZqf/ewuHnzwARoapnDkkUv48Y9/yJ/+9ChPPPFnPv/5zxKN9m6l8vGPX8aOHTu45pqreeyxR3jxxed57LE/8l//dSOPPPLwIbqzg0MGTdKEV7Q8LHvgeiYhRM9acz2pObeIWuzE76f7N5QydkIIoqGhU1P7F38bS89F0Q9+PY6x8GSUYAyRT+K+8VRVjhnuGm0aTpfwFYtKtVVv7ExRtCobNQoEVFI5G8+XjS4l6UBHH72cW265DUVRuOGGr/LlL/8LTzzxZxobS/WH1177dWbMaOKGG67ju9/9Nu95z0UsXnxEr2PMmNHED394F4lEgptvvpF//uer+f73b6VYLDBv3oJDcVsHjaxpkia8ou3ieP6AM+d2t+XIFhxMQ2V2YwwAtZBCcR1EuG8zS4Ci4xIyNUKBwetx9i/+VqfMR5u6aGQ3M0yKbmIsORP7uf/F2fhXtJnLUUPlF2H3R+vq25TtbMdP1KMOUM/Rn6mTIjTUhmjtLLBhe5JjDliyZjAhUyeZs8kXXWKyIFyS+li69Oie9gYHmj59Rp/nzjjj7D7bNTXN5N///T9G5frGMjnSJE146ZyNrg1c/Nw9yjR/eqLU/8d3UYsphBEccB/L8YmGh16cd//ib3PZwSn+Hog2YylqXRN4Ds66R6tyzEgiTkS1KaYqW08OYOncUl3X2s2Vr0WHX5pFJ0mSVE0yaJImNMf1yVluWa0GulNzip1HcYsIvf9lPlzPx1DVITuAH8ri7/4oioK57FwAvB2v4LXvGPExNVUjFo8ich2lBpwVWDqv9P3YuidT8WK8gYBKWqboJEmqMhk0SRNawXaxbQ9zgKCpI11kb7KIqigsmJ4AQLXSpSeV/l8+RcsjHBp6cd5DWfw9ELV2GtqsYwBwXnkIIUYedASjMYLCws1nK9qvNhZg+uQIQsC6rZXVRQVNjbzlkpez6CRJqiIZNEkTWqHoIhCllE4/ukeZZjVGSw0qXRvFyuAb/fdQEQI8IYiFzUFTbWOh+Hsg5pGrQTfxk7vxtr884uMFTJNQ0MDOdFa875I5dUDls+g0VUXIFJ0kSVUmgyZpwhJCkMrZmIM0Tzxw1pzq5FA8e8A2A7ZTmoU3WG+m3sXfCw5Z8fdAlGAMY/FpANjrHkU4I+9KHo7HUK1Mxcc6anYdigK79ubozFgV7StTdJIkVZsMmqQJq2h7FG2PgNn/yyBfdNjRWkopLWyqASFQiimEqsMAo0iW7RMLm4MuGNu7+PucQ1r8PRB93gkokTqwcjgb/zri44XCEYKKi5NLV7RfNGz0zFisdLSpO0VXsPo28ZOkSgkxOmtASgdHtX5+MmiSJqyi7eG43oDLdLy2o7RAb2NdiJpoAMUtoto5hN7/rDnPFygqRIIDT60fa8XfA1FUHXNpaZqx+8ZT+NnKZ7/tT9dUQpEwbrq91MSqAku6ZtGt2zyMFJ0QZAuVNdeUpP11L2xr25WNdEpjS/fPT9NG1mlJ9mmSJqxM3h6wlgn2peYWNtUAoFhZ8FwI9B8UWbZHKKATNAdO9zkbnxhzxd8DURsXok6Zj9/yBs6aPxI46f0jOl44HieV2YMo5lBCsbL3O2JmDb9/SqE1WaClM8+U2vLXtgoYGqmsTUNNeNCftSQNRFU1QqEo2WypJs80A1UfHfZ9Bc+bmCNZo33vQghs2yKb7SQUiqKOcE1KGTRJE5Lr+WQLzoABjuP6bN5dSiUtmllbqj8qphADFGwLUdpnciI04OK8peLvvwNjr/i7P4qiYC45m2LrZrw9G/Fa3kCbMn/YxwuFTAKGipXtIFBB0BQM6MyfkWDj9iRrN3cw5djyg6ZgQCOdc8hbLtHQ4b36ujR64vHShITuwKnaVFXFn6C1dwfr3kOhaM/PcSRk0CRNSEXbw3I8EpH+A5fNzWkc1ycRMWmsC6HYORSngB/ovwO445baFoQG6M001ou/B6LGJ6PPPR530z+w1zxMcPIVKOrgrRQGPJaiEo7HyXekoNaGCoLGJXPq2Lg9ybotHaxeMb3sT/r7p+hk0CQNl6IoJBL1xGK1eBX2GxuKpikkEmFSqfyEG206WPeuafqIR5i6yaBJmpAKlovvD9xq4MAFehU7C/gwQMBg2T41MXPAmXjjofh7IMbi03B3vILItOFueRZj3onDPlYoHEFv78AvpFFj5S+NsrApgamrJLM2u/bmmNHQf/DaH5mik6pFVVVUtbojxLquEgwGKRQ8XHdijTaNx3uXheDShCOEIJ2zMY3+f/19X/Da/q0GfBe1mB6wALy7rjkaHCB1N06KvweimKFS7ybA2fBnhJUb9rGCAR0zGMKpsCDc0LWetg/DmUVXsFzyFS78K0mSdCAZNEkTju345AdZOmVXW45csfT8rMbokMumFB2XoKkRCg5QH9VT/F0z5ou/B6LNXoGSaASniLPhT8M+jqooROPxUjG4na9o3yVzS/UI67Z04PvlD+Vrmorny1l0kiSNnAyapAmnYLvYroeh9//r390FfMGMBJqqDrlsiu34xCImaj/P9y7+PmfMF38PRFFUzGXnAOBueR4/tWfYxwqHA2iqgpdPVrTf3GlxQgGdXNFl655MRfsGzFKKrpJgS5Ik6UAyaJImnHzBRUUZsK6o1wK9Qyyb4rg+utb/4rzjtfh7INqk2WjTjwJK9zXcZnGmrhGMRHAzneCVP/qjqSpHzq4FKk/RhWSKTpKkKpBBkzSh+L4glbcG7ALelirSni6iqgrzpyeGXDalaHtEgjoBo2/Q1Lv4+9xxVfw9EGPJmaDq+G3b8HavH9YxFEUhEovi23ap91UFutei27C1E9crvyaqO0WXk2vRSZI0AjJokiaUgu1ida0P15+N20t9WOY0xggYKkph4GVThCj9Fw33Daj6Fn+PvD/IWKCGa9AXrgLAWftHhDe8ICQUMNBNAy/TUVFB+MwpUeJhA8vxeGNnqqJzBkyNZNaSKTpJkoat7JYDX/ziFys+uKIo3HDDDRXvJ0mjpWC5+J5AG2BtuP0X6FXcIqqTwx9g1pzluJhG/6m5w6H4eyDGglV4215E5FO4r/+9Z3HfSpiGRjAaJZ9MEnAKCDNS1n6KonDknDr+sa6FtVs6WDyrtuxzhkyNTEE2upQkafjKDpqefvrpig9+OKQjpMNLOmejD1AAni047GwtTadf2FSDYqUGXTbFdnwmJUJoBzRN61X8vWz8Fn8PRNFNjCVnYj/7a5zX/oo2czlqOFHxcaLRMNnODpRiuuygCWDp3FLQ9NqO5KCjhgfSNBXPK6XoZNAkSdJwlB00Pf7446N5HZI06mzHI28N/Ee2uzfTtPow8bCO2j7wsimeJ1AVlcgBf3z7FH83ju/i74Fo05egbn4Wv307zrpHCRx3QcXHCJk6WiiCm+1EjUwCrbxAprEuTH08QHvaYuP2JMvmld/3KmBqpHI2k2sHXu5GkiRpILKmSZowCraH43gDNrXsnjW3cGZNqTeTUxiwoWXR9ggHdYIHBGCHY/F3fxRF6WlB4O1cg9e+veJj6JpKNBLFKeRR7fILwhVF4aiugvDhNLrMWw75opxFJ0lS5WTQJE0Y+aKDoP+0se14bGnuXqC3pmvZFNHvsilCgOsJYmGj17F6FX8vPPmwKf4eiFozDW3WCoCuFgSVL4MQCZmg6oh8sqKC8CVzS6NLm3elyRfLL0bXu1J0lewjSZLUbURrz/3lL3/hzjvvZP369WQymX77tmzYsGEkp5CkqvC7lk4JDDDKtHl3GtcT1ERNGuIGakd6wA7grudj6Aohs3dAdTgXfw/EPGo1hV3rEMlmvG0voc9eUdH+oaCGHo7i5lLosfILwiclgkytD9Pcnmf91k5WLm4o+5wBQyOZtZlUI1N0kiRVZtgjTX/4wx+4/PLLaWtr461vfSu+7/O2t72Nt771rQSDQRYtWsSVV15ZzWuVpGErWh6WPVirgSRQGmVSnULXsikDzZrzCQV0zP16M/Up/i6zPme8UwLRntlz9vrHEE6xov1VRSUaCeE4LopVWZfvYafoAqUUXUE2upQkqULDDppuu+02li1bxm9+8xuuvvpqAC644AK++c1v8rvf/Y69e/cyY8aMql2oJI1E0XZxPL/fmXO+L3itq+fPoqaa/ZZN6b83k+eJXrOvSsXfvz/si78Hos87HiVaD1YO59UnKt4/HDTACEG+Eyro+9Td6HJ7S5ZUrvzO4vp+s+gkSZIqMeygadOmTbz1rW9F0zR0vfSJ23VLn9xmzJjB+9//fn74wx9W5yolaYTSORtd6z8Vs6M1S8FyCQU0ZtYHBl02pb/UXKn4e/NhX/w9EEXVMZeeDYC76R/4mbaK9g+aGmYo0lUQnit7v3jEZOaUKFBaxLcS3Sk6f5hLwUiSNDENO2gKBoMYRunTdjwexzRN9u7d2/P8pEmT2Llz58ivUJJGyHF9cpY7cGquq9XAghk16F5+0GVTDkzNjWbxt5dP4+c6EVYO4TnDXuvtYNAaF6JOWQDCx17zh4r2VRWFeMTE9lWUYrI0nFem7tGmSoOmYKC0Fp1M0UmSVIlhB01z5sxh06ZNPV8fccQRPPDAA7iui2VZPPjgg0ydOrUqFylJI1GwXWzbw+wnaBJC7KtnakoMuWzKgam50Sr+Fk4RhECNTQJNQ9gFRK4DP9eBKGYQjjWs2WqjyVx6NigqfsvreHter2jfUEBHMSP4hTSKUyh7vyNn16IqCs3tedpS5ddT6ZqK6/kyRSdJUkWGHTSdeeaZPPbYY9h2qZbg8ssv55lnnuG4447jxBNP5LnnnuPSSy+t2oVK0nAVii4Cgar2DYT2Jot0Ziw0VWF+g4nq5AYsAD8wNTdaxd9C+Agri147BX3STLTGheiNC9CmzEOtmQZGqDTylE/iZ9vx86lSUOV7VTn/cKmxSejzTgDAXvNwRdcTMDRC4SCO5aB015SVIRw0mDs9DsDaze0VXa9M0UmSVKlhtxz4+Mc/zsc//vGer9/ylrdw991388c//hFN0zjttNM48cQTq3KRkjRcQghSORtTHzw1N2danIBfGHTZFMv2iIYMTEMf1eJvUUijRGowahogbaMoKpghFDME4a5tXLs0GuVa+MUc2PnSCJTvgaKWlm7RSz2QDmaNlbH4NNztLyOy7bibn8GYf1JZ+ymKQixssCdtEi4kKyoIXzqnjjd2pli7uYPTlk8r+36Dpkau6FK03FIxuiRJ0hBG1KfpQCtXrmTlypXVPKQkjUjR9ijaHqHA4F3AFzUlUIsDL5siBHg+PcumeLvXj0rxt3CKoChoicaukav+Z4Uputmzpp0am4zwXXCsUtrOziOsLMIugOcgFFA0s1SnpRulIGyUKEYQ86jTsV/8Hc6rf0ZvWoYSKK/3UsjU0QJh3GIWrCzQ/4jfgRbNrMHQVToyFrvacsyYHC1rP11XcT1BriiDJkmSyiM7gkuHtaLt4bgeRj8jTZm8ze620mytxVPMQZdN2Zea07uKv0vFztUs/u5Oy6nxBtRQrKJ9FVVHCURQo3VodTMOSOlNByN40FJ62qxjUBKN4Fg468tfs9I0NCIhA8sVkE+WXRBuGhqLZ9YAsHZzZQXhpqHQmbFkik6SpLIMe6RJCMG9997Lr371K3bs2EE63bcOQVEU1q9fP6ILlKSRyOTtfmuZAF7bUerNNH1yhJhWYKBlU2D/1JyGvf4vo1P8XUijhBKosckjPlbflF7jASm9LNiFUkoPgRquHfE59z+3uexcrL/egbv1efQ5K1FrypsUEgmZZLOhUkG4EgetvNGmpXPrWbO5g7VbOjjzuBloanmfB0OmLlN0kiSVbdhB00033cSdd97JEUccwTvf+U4SiUQ1r0uSRsz1fLIFh6A5UBfwTgAWzYijFjMDLpuyf2pOOEXcTU8DYCw5q3rF304RFFBrGlG0qmbNe/SX0hNWHq9tG8LKlZ1GK4c2aRbajCV4O9div/IQgVM+VlYKMxzQMAIBHCuPomUhXF7QNHdanEiwFABt3p1mwYyasvaTKTpJkiox7Hfn3/zmN5x11ll85zvfqeb1SFLVFG0Py/FIRPrWKVmOx5bm0rIdixtNFLcdP9h/4L9/as7d/HdwLZTYZLRpi6tynT1puZppqMHK0nIjoag6SigONVPx2raBblZ1+RfjqDPwml/Fb9+Ot3s9+vSjhtxH1zSiYYNiQUcvdkKwBtSh36ZUVWHJnDqe3tDKmk0dZQdNUErRJbMW9YmgXItOkqRBDbumqVgs8qY3vama1yJJVVWwXHy//1YDm3al8HxBXTxAQ6Crv88AfzAt2yMc0DFUH2fTPwAwFq6qWkF1KS0XR42Xv+hsNSnROpToJEQhXdUGmmq4Bn3BKgDc1/9W9n7RkIHQAwi7gFJBh/Cl8+oBeHV7Esspv1YrZOoUulJ0kiRJgxn2u/5JJ53EmjVrqnktklQ1QgjSORvTGGLW3PQYqp0dcNmU/VNz7vaXwcqhhOJoM5ZW5zq703KJ0UvLDUVRVLTaRpRAGFGsbNHcoRhzjwdVw+/cjddR3goBQVMnaJrYLqiFVNkF4VPrw9THg7iez6vbOsu+Rl1XcbpSdJIkSYMZdtB07bXX8vLLL/P973+fzs7y36CqbdOmTXzsYx9j+fLlrFq1iptuuqmn4eZgfvazn3HZZZdx4oknsmjRIh5++OGDcLXSwWI7PvkBlk7xfJ/XuxboXTzVRHEHXjalOzUXNNSe0RJ9/ptQBigYr0RPWi7WgBqKj/h4I6HogVKxtvARjlW94wYiaNOXAOBufrasfTRVIR4NUBQBVDuL4pbX6VtRFJbOK81kXDOMWXTJrDWml6qRJOnQG/ZH23POOQchBN/5znf4zne+QyAQQD1gxoqiKDz//PMjvsiBpFIpLr74YmbPns0tt9xCS0sLN954I8Vika985SuD7vvAAw8AcNppp/Gb3/xm1K5ROjQKtovtekRDfX/Ft7dkKdoe4aDOzIiFcPtfNgX2zZrTWjfi5TrBCKHPXlGVaxSFNEowjhof+Wy5alDDNYh4A35nM2h6VQJDAH3ucXg7XsbbtRax9KyyCs6jIQPFMPCdPIqVRQwwEnigpXPr+fOLu9nSnCaTt4mF+w+GDxTsStEVrNLvhSRJUn+G/e5w9tlnH/LV3O+55x5yuRy33norNTU1AHiex3XXXcdll13GlClTBt1XVVV27twpg6bDUL7goqL0+zvanZpbOC2K7ubxB+jN1JOaC+o4a7pGmeYd3zMDbSSEY+03W6538bUQAsvxSGYsLNtDG6BlwmhQEw2l5piFFEqkOv2ntLoZqLXT8Dt34259AWPRKUPuEwzohEwdyzEIFpL44boB20HsrzYWYEZDhJ2tOdZt6eDEoxrLukZDV0l7PvmiI4MmSZIGNOx3hxtvvLGa1zEsTzzxBCeddFJPwARw7rnncu211/K3v/2N888/f8B9DxwVkw4fvi9I5S0CZt+f8f4L9C5uNMDLDbhsSndqLpDegZ9sBs0o1eiMUCktl0GtmYoaipeWZHF8irZLwXbJ5B0c18cMGii+z7T6CKHAwflDrqg6Ws1UXLtY1TYE+tzjsZ//De6W59AXDJ3e1FSFWMRgdy5AyC0VhItgeSnMZXPr2dmaY83m8oMmANNQ6eyaRXeoPxBKkjQ2jeuPVJs3b+aCCy7o9Vg8Hmfy5Mls3rz5EF1VqbC0mjRN7fX/iWQ4954rOLieIBo2+uy3pz1PKmdjaCoLax1UJYgyQACd91yiYQNl/VMAGHNWoIfLW6JjMF4+g2tGKRq1FJIFMnkby/awXR9FKY16hIIGNfEQO1tS7G7PMasxRtA8SC9XPYY2aRru3m0oBKrShkCduQRnzR8RhRSi9XX06UcMuG33zywWMjFNHeEr6E4GP1JT1rmWzqvn4ad30Nyepz1t0VBbXmovEjLJF10cTxAOVic1WamJ+lqfqPcN8t73//94MKI+TUMJBAI0NjZy1FFHYZojT2kcKJ1OE4/3/fSZSCRIpVJVP185VFWhtrZ6TQL3F4+X9+Z/OKrk3h2RJxQOUFfTd5+n1rUAsKgpRm3Ah1Ci37SPEALbEzRoGYqtm0FRqVuxGj1a+c/A9wW262HZHvlsnnzGoRhrpJjxUFSFYMAkFtMwdbXPCMeMxgTtqQKdeZe5NRGCB2nESdSEsE0fJ9mKHotVYeQlBItPIPvKnxBbnyN+xNB1YXW1YTKWRz6jEFUtCADm0N//eCzEkXPqWLu5nY07UsyfWX6a0U8W0AMGtbXhsvcZDRP1tT5R7xvkvY8Xw34H/sIXvtDzRnrgjJP9H1cUhWg0yqWXXsonPvGJEVzq+OD7gnQ6X9VjappKPB4inS7geX5Vjz3WVXrvQgi2705TLDqk+5k9//LrewGYP0klX8gjcIG+U81t18dxPexNTwCgNy0l7wchXSjrGizHx3Y8irZLznJxXB/X8THsJCQaUbUgAa1Ufy58D6vosf+cNU1ViUQCFPI2hgq79qTIZorMbIz1OyNwNAg1geu2I1paUMMj7/gvpi+HV/6M1fwGnTu3ow1QAK9ppXvP521UIUgXfTQ7i6/uxY+WVzR/5Oxa1m5u57kNe1i1dErZTSutos22nZ0Y+IckRTdRX+sT9b5B3vtYufd4PFTWiNeIRpq+8IUvUFNTwwc/+EFmzpwJwLZt2/jZz35GJpPh3/7t32hvb+fuu+/m5ptvJhKJ8IEPfGC4p+wjHo+TyfT9y5hKpQ7psi6uOzo/fM/zR+3YY125954vuqQyFqGg1udFmMrZNLeXAtqFNQ6eaiL8/o9ZKDrERQZ/d2ntRH3Bm/C8/qej+8LHdnysriApX3RxXYHrC1QVdF3B1DTCfg5iCdxEAygKvi+Awae4e76P8AXxsElHuojnCZqmRA9O4KQYiFgjXtsW/GIBxShvSZMBBRNoUxfiNW/EfuMZzKPfOsCGpZ+J5/kEdAVNhaKvY+Q68AI1ZRWEz5sWJ2BoJLM2W5vTzJpSXqd1U1fJ5GwyuUNbED5RX+sT9b5B3vt4ufdhJxLvuusu6uvrufPOOznzzDNZtGgRixYt4qyzzuLOO++ktraWX/3qV5xxxhnccccdHH300fziF7+o5rUzd+7cPrVLmUyGvXv3Mnfu3KqeSxofsgUbxxMYet8/rK91FYA3TQoS02zEELPmonteAEBtXIga7z0T03ZcUlmLPR05tu7JsK0lw+62HMmsjUAQDGokogaxsEHI1NFwUAAv2gDDqBFSVYXaWIBUzmJnaxa7go7XI6GGE6jxKYhiDuGP/Jx6VyG9u/2lUmPPIZiGTjigUxAGilN+h3BDVzliVg0Aaza1l319hq7idM2ikyRJOtCwg6ZHH32U008/vd/nFEVh9erVPPLII6WTqCpnn30227ZtG+7p+nXqqafy97//nXQ63fPYww8/jKqqrFq1qqrnksY+z/fpzPQ/aw5g444kAIunGKW82ADpF9fzCfh51OZSx3tj4cm9nrddj+b2PLvbc6RyNgqltgSJqEksbBA09d5tAoRAtXJ4kXpEYPhry3UHTslsKXBy3IMUOMUno0RqEIXkyI81eS5KtB5cG3fHK2XtEw2b+CgIQLXSQ27frXtZlfVbO3ErGPo3dLUU/MpGl5IkHWDYQZPv+2zZsmXA57ds2YK/X+rDNE0Cgf5XkR+uiy66iEgkwpVXXsmTTz7Jr3/9a2666SYuuuiiXj2aLr74Ys4888xe+65Zs4aHH36YJ54o1ay8/PLLPPzwwzzzzDNVvUbp4MkVSqmxUKDvKFPRdtm6p5TKPaLeHbA3E5QaWta0vQS+h1rXhFY/s+c5Xwg60kXylks8UgqSAqbW7/p23RQ7izAj+OFJAwZq5eoOnDqyFjv3HpzASVF1tNqpoAcQVvlrwfV7LEXZN9q0+ZmyApNwQMM0NGwCKFYayuwQPmtKjFjYoGh7vLGz/IkhoYBGvuhQtA9OUCpJ0vgx7KT96tWr+cUvfsGsWbN4z3ve0xMQWZbFfffdxz333MO5557bs/2LL77YU/dULYlEgrvuuouvfe1rXHnllUQiES688EI++9nP9trO9308r/cb4M9+9jPuv//+nq9//OMfA3D88cdz9913V/U6pYMjnS+VUmv9tBB4Y2ca3xdMihtMDrr4Wv+tA4QA37YINL8M9B1lSmYtOjNWqRVBOfGPZ6MIgTvMtFx/VFWhLhagI1263xmTYxhVbnNxIMUMo9VMxWvbCro5ojYE+syjcdY/hsi04bdtQZs8eCpd1zSiQZ1kxicgiqhWbtCgt5uqKiyZW8dTa1tYs7mDxbNqy7o+Q9dIew65onPQ+mNJkjQ+DPsd4ctf/jI7duzg61//Ov/5n//J5MmlWS179+7FcRyWLVvGl7/8ZaAUSAWDQT72sY9V56r3M2/ePO68885Bt+kvCLrxxhvHRINOqTpsxyOVdfodZQLYuL20PuLiBh2hMWhqrqZjDYpno8QmozYu6HkuX3RoTxUJmlp5XbqFQLVzeJGGEaXl+qOqCjUxk460hYLCjIYo+ij3OlEitaWAJd0KkToUZXjnU4wgetPRuFuexd30zJBBE0AkaNKZsfFVE7XQiR+qKasgfNncep5a28JrO5IULbfslg2GrpLK2tTHZaNLSZL2GXbQVFNTwy9+8QseeeQRnnzySXbt2gXAySefzMknn8wZZ5zR03U7EAjw9a9/vTpXLEn9yBYcCrZLfbxvCtjzfN7YVaqFOXKSj9AH7sFjFS3qW14ESqNM3YGB43rsTRXxhSBQZpNJxc4ijAh+ZORpuf5oqkpNzKQ9XUpXjXbgpCgqaqKxa5mVDMoI2hDoc4/D3fIsXvNG/HwSNVwz6PahgIZpqBSFQdjJozj5sgLRKXVhGmpDtHYWWL+tkxULy2tZEApo5IouRduTo02SJPUY0buBoiicddZZnHXWWdW6HkmqmBCCzozVb3NIgK17MliORzSoMT3mDZgmEwKCe9ejOnmUUAJtxhKgVMfUni6SKzokImU2afVsFOFXNS3XH01VqYmatKeKKApMnzzKgZNuotZMw9u7GeEUh92GQI03oE6ajd+2FXfL85hH9T+ppJumqsTDJm3JImFNQS2m8MocvVs6t47Hnt/Fmk3tZQdNhq6RzskUnSRJvY2f3uWSNICC5ZIrDPzHrXvW3KIGDcUYeDKC67rUtJbaDOgLTupZHy2ds0hmbWKhMuuYhEC1snjhSVVPy/VH00ojTm2pIrvbchXNFBsONRQvtSGwsiNqQ9BTEL71eYTXt8HogcJBA0UFVwugWBlwrSH3AVgytzSLbltLllS2vH1gX4pOzqKTJKlb2R+hVq9ejaqqPPTQQxiGwerVq4fM9SuKwqOPPjrii5SkwWTyDo7nE++nGFoI0dOf6YhJ/oC9mQDUlo3oVgrMEPqs0jIfeculLVXENFQ0rbwUW2m2XHTU0nL90TSVRNRkb7LUsXz65Ei/BfHVosYbEHYBkU+iRMpfpmR/2tRFKKE4opDG27UOfebRg24fNDWCpo7lKkT8AqqdxdeHnpGbiJjMaoyxbU+GNZs7OHnZ1LKuT6boJEk6UNnvBMcffzyKovTUKXV/LUmHkuv5dGYtgmb/RcHN7XnSeQdDU5hbpwxYPCx8QbT5OQCMuSeg6Cau57E3WcDzRfndoQ9SWq4/uqaSiJQCJ0WBaZNGL3BSVA2tZiqunUdYWZRA5QsZK6qGPmclzvrHcTc/M2TQpCoKsbBBS4dL2DBQ8534oVoooyB92dy6rqCpnVVLG8t67+pO0ZXaWMigSZKkCoKmA2eayZln0liQK5Z6M9VE+6816k7NLZikoQeCAy5aonRsJVDYC5qBPvf4njqmfNEhXm4dU1dazo9Wf7ZcuXS9FDi1dHYFTvXRQXtIjYRihkptCPZuA90ZVhsCffYKnFf/gt+5C69zF1rt9EG3Dwd0dFXBUYOYTg7FzpX1vT5iVi2//8d29iaLtHQUaKwvb0HeUqNLi7p4QH5IlCRp+DVNGzZs4MEHH+z12F//+lc++MEP8p73vIe77rprxBcnSUNJZS1UhQEDg+7U3OLJYtDUXHDH00Dpj7gSCJPJ2SQzNpFy65jY18TSO4hpuf70BE4dBZrbc11r3I0OJVKLGp+MKKQQovJaKiUQRZt+FFBqdjmUgKERCupYLoBALZbXITwY0FnYVAPAms3lL6sSNPel6CRJkoYdNH3jG9/g97//fc/XO3bs4KqrrmLnzp1AaSTq3nvvHfkVStIALMcjnbMJDtCbqTNj0dJZQFVKReADBTJquplgZidCUdHnn0TBdmlLFTAMBb3MOiY8G8X3u9aWK3NkahQZuko8YrCnMz+qgVOpDcEUlGCpNmk49LnHAeDtXDtkx3FFUYiFDFzPxzdCXR3CyyvuXjavVHu1dktH2d8P09BwXI98cehCdUmSDn/DDppeffVVjj322J6vH3jgAVRV5f777+eXv/wlZ599Nvfcc09VLlKS+pPNO1iOR8DoP2h6rSs1N7NWJRgODXicwPbSCIc6fQl+IM7eZAHXh2CZ/Zi615bzw/WIQLyiexhNhq4RC5UCpz3tefxRmgVWakPQCIqCsAsV76/WzkCtmQq+h7vtxSG3DwW00sK6QkdxbdQyF/GdPz1BKKCRyTs9S+qUw9BVUjlLzqKTJGn4QVMmk6Gmpqbn67/85S+sWrWKurrSp7lVq1ZVfYFeSermd/VmMgbozQSwsXvW3GQGHP1R8x2YHa8DYC5cRXu6QK7gEB2s8FsIFCuDWkiiFlOomT0gfHzdRLGzKHYOxSmURkA8G3wXhpG6qgbTKAVOzR059nSMXuCkhuL7Gl9W2Iag13p0W54dMs1nGjrhgE7R8RGagVLoLOv7q2kqR84uvT9VmqLLFmSKTpKkETS3nDx5Mps2bQKgtbWVdevWcf755/c8n8vlembaSVK1FSyXXNEhMkBwU7BctrWURhMWNRoDpuYCO59FAfzJ88nqNXS254mE9IEnZAlRCpRybYAAz0NxbbxoPXp6FwildC5FAUVFKApQ+jeKglA1UDRQtX3/VrT9ti9tp2gaBAT4fmn/ETANjVgY9rTnUSh1yVZHoeZKjU1CWLlhtSHQZiyBtX9E5FN4za9B4phBt4+GTVJ5G18PodlZfDuPKGMG39K5dTy/cS8btnXy1hNnYuhDL8ViGqXRKTmLTpKkYb8DnH766fz0pz/Ftm1efvllTNPkzDPP7Hl+48aNNDU1VeUiJelA6ZyN6/noAyxU+/rOFEJAQ1ShNt7/TCnFymK2rAfAn30Sbakihq4M3FFbiNLoUr4doRnQ1WTRT0zr6sm0b7vSyEfX/4VAEQKEh+K6Pc+riNK/EZSm9SldxxComgaFACphvEhjWeusDcY0NCJ0BU4KTKkNV302WK82BMUsSrD8NgSKZqDPWoH7+t+w33gGFg8eNIUDGqau4XigIVCsdFlBU1NDlJqoSTJr89qOFEfNKS+4607RyVl0kjSxDXso6DOf+QxnnnkmDzzwAO3t7fzHf/wHkyZNAiCbzfLwww+zatWqql2oJHVzPZ/OjDXg4rywf2pOGbBfUmDX8yjCw4lPJ2VOwXX9gUcSegVMJugBcAsII4gXquk9GKR09YNS9VJaUA8gjCDCCCPMCCIQRQTj+MEEfqgGP1SLH67FD9fgh2qwzBq2ZEKs3avhpdvQMi1VSe8FDI1wUGd3W57WzsKo1OiU2hBMQ3g2wrUr2lefsxIAr3UTTqp18G01jWhIx3J9hBEszaIr43yKovR0CH9lU+UpOsuRKTpJmsiGPdIUiUT45je/2e9z4XCYJ554gmBweOtSSdJgcgUHy/ZIDNCbyfV8Nu1KAbB4av/bKG6RQPPLAGQbV5It2MTDA8x62z9g0s1SIOS7KL6HF50M2shSNqmCR8RUe2bq3f33JNvaHQCm12h8YFkrEVXFjzaU1chxMAFTQyDY3ZZDUWByTaj6I06R2lJhfLoFInU9ix4PRY3UojUuwtuzkdyGp1CPHHxNy0jQpDNj4ysBNC/Z1SF86JGjpXPrePKVZjbtSpMvOoSDQ/eX2j9FV/YEAUmSDjujUnSkqiqxWAzDOLgdkaWJIZm1YJDeTFuaM9iuTyzAgE0Mzd0vo3g2VrCOZKiJcHCAOiYhUAudqPm2fQGTAMUuIIIJhFFZJ2zXF+zsdHjqjTz3PZvi5j+0cfMf2tnR4fRsM73WIBpQCZkqu5Ie33/GY8+uPai59q503sgETZ1QQGNXW469yeqPOCmKMuw2BN3tB/KvP49wBm8lEApomIaK5XkI1UDNd0AZReiTa0JMrQ/jC8G6rZ1lX5uhqyQzchadJE1k8iOTNK4UbZd03hl0WZON20t/CI9oUFH7GwXyHAK7ngdgb+1ygkEdo7/aqJ6AqR2hB/bNwPOKCM3om5YbgBCCR9fn2N7hsLvTwT0g06Yq0J7zmDO59PXpR0Q4d2mMotD44WOttGZcbn/G5fzCLo5YpOGHh7fW2/6CAR0B7G7Loakq9YnqjgoruolaOxWvdTPCLqCYA7d82J/aMBclWo/ItuNsfxlt9nEDbqupKrGwSXuySDASLhXoWxn8UM2Q51k6t57m9jxrNrVz3OKGsq4tFNDJFBzylkukjNEpSZIOP3J6mzSuZAsO9iC9mYQQPf2ZFk3tfzFXs2UdqpPH0qNk6xb0X8c0UMAkBIrnIEI1fWqlPF/QnHR4enOe+19I43U1UFQUhY17LLa3lwKmkKGwcIrJ6UdE+OiqGr74tsmsnL0vqNA1BUVRmBQzuPTNdSyYYuL4cO/LLn9/aTtqIVnR92wgoYCOYag0d+RHpXmjGox1tSHIIfzyjq8oKua8UvsBZ9MzQ47qRAKlEUJfKAhVRylztGnJnDoUBXbuzdGRLpZ1bYau4vk+qVxltVqSJB0+5EiTNG5092YyjYFj/V1tObIFl4AGsxsifTcQPoGdzwLQHF9CXay/bQRqvgO10FFaemX/4MgtIPQQfiBG3vbZ0eH0/Le708X29v2RP3FuiKk1pX1PXhBGCGiqN6iPaGXXEQUNlQ+cmOCPa7P8Y1OB+qiGmtmNUFREcOSNNCNBg860xZ72HLOmxqq+wO9w2hAYs5djr3sMP70Xv20r2uQ5A24bDOgEDQ3L8QiZEdRiGt/OIoKJQc8RDRvMmRpn8+40azZ3cNryaWVdW9DUSWYsJidC/Y9OSpJ0WJNBkzRu5ItuqfFkeODUSHdqbsFktd92BMbe19CKKRw1QHHKUmrMA7YZLGASXtdSKTWkinDzH9v6HD+gKzTVGcyoMwjtd+zlM8tLT/VHVRTOWRpj+cwQjQkdrAxaejdFX0EPj3xh4HjUoCNjEUkaTKkrbyHbcimqhhZvwC2mEV55i/oqRpDw/BXkXv0H7uZnBg2aVEUhFjFp6cgTCugIVUPNt+MFYkMWzS+bV98VNLVz6tFTywpkQwGNjoxFJm9TF5cTXSRpopFBkzRupPM2vs+AfZQ832fNG6VAZvG0foIUITC3lxbmbYkdRSxywCiT8LsCps6+ARNdxd9mFGFEiBsQDagEjX1B0sw6g0kxbVQaRwKlgAkQgRgbt3fwf+tf471vns3UxvoRHVdTVaJBnZbOApGQQTRU5XqdQAQllEDkkiiR2rJ2iRzxJnKv/gOv+VX8Qgo1NPDIUTigo6sqnifQjHCprsnKDDnatHhmDYau0pG22N2WY/rkoYv6FaXUx6szY1Ebkz2bJGmikePL0rjguD7JjDXg4rwAGzbvJV3wiJoKR0zvO2KidmzFyO/FU3QyDcswzf2O1RMwdSD0UN/eTr7LjqxOsxMrdexWFD59Zj1Xn1HPu1bEWTk7RENcH7WAqdelCMFfNkOqKLjzj1tYv2nwnkblCAZ0fN+nuT2Hc2Cl+ggpioIarQdE2bVNRm0j2qTZIATulucH3TZgaAQDemmZE1VDKGppJt2Qy7FoLJpZA8CazR1lXReU6qiyBYecXMRXkiYcGTRJ40K24FCw3AEbWgrf4+l1zQAcNzfU0/Oo53kBxrbSKFNHYjF6KIqhK9077xcwhfv2XRKwN2lx17owt/8jT3Oy1B7A1A/NKIOqKHxkVQ3zGwwcH3711+088cKOEU+Fj0dM0jmbvaPQ+FIJRlFCcUSxvMV1AYz5XevRbX0e4Q0coCiKQjxs4Hp+qdm6GUG1MihWdshzLO1qdLl2SweeX16wqHcVhKfzsiBckiYaGTRJ40IyY6F1zSrrz65drezqdNFVWDmn7yiT276TUHYnApWWxDLC3Q0K9w+YjH4CJiCVt7hzfYSCA/VRjbroyJY0qYZSgXgNJ84t1dX8+ZUW/vcvm0Y0SqSqCrGwQWsyT7rKM8QURS2NNgm37AV99WmLUYIxsHJ4u9cPum0oqGMaGo6z32hTYejRpnnT4oSDOvmiy+bdmbLvJxQoFYQ7ruwQLkkTiQyapDEvX3TI5G3CAy1x4hZ5el0LAEtnBIkGev9aO65PYEdplCmVWAChOGZA6wqY2ks1TEa4tOzJgee2BXe9YpKyVCZFNT54Yg2BMTJrSlMVzl0W5x1HR1EVWLc1yV0PvUpmBCMgpqGhqgp7OvLYVV4yRAnFUQIxhFXeaJOiaj1Lq7ibnxl0W1PvWlbFKQVJwoygFocebVJVhSVd68+t2VzZsioFyyWTd4beWJKkw8bYePeXpEFk8g6262P215tJ+GRa97B+Tyl9c9K88IFPk2vbQyyzBYCW2qMJmDqGKkoBU74TYYT6DZhsD376MrTmNeJBlQ+/qYZIYOy9ZFbOCfORk+KEDNjdnmfL7tSIjhcLG2QKDns68vhVTNMpqoYaqwfPQZS5lp4++1hQVPyOnfiduwfdNhYyQQHfF12jTZQ12rR0biloenVbsuy15RRFwdBLBeHV/B5JkjS2jb2/AJK0H98XtCXzA/ZmUgtJnnmtAwHMnWwwJdE7+EnlLaJ7XkABsrHZ5PVawqaKmusKmMz+R5g8H+5dA9vTGkEdPvSmGmrChz4tN5A5DUEuPTXBOYtUlk9xR7TAr6IoJCImbakiyczgS5lUfOxQAiUQBjtf3vbBKNr0owBwhhhtCgZ0QgGdglUKfHpGm+zBR7amTYpQFw/gen7PQs/lCAd0MgV7VBqDSpI0NsmgSRrTckWHbN7pv2u3W8RJtvDczlKAcOAoU6Hokk92Up9+DYC2ScdgaD4hp7OUkjMj/QZMAM/ugo3tKroq+OCJNUyJj/3uHHWxACctjKNl96Lm2ti2J81fX949rKJuQ1cxDZU9HXkKVvWCAkXTUaOTEE6x7OvS55YKwr2daxHWwMGW2hXsuZ4oLdGn6oDomkk38LkURekpCH9lU/kpOl1X8T1IZ2VBuCRNFDJoksa0dM5GCNG3N5Pw0TKtvLS9gOXCpKjG/Clmz9OO65PMWkzuXIOCTyE8lbQxiZifxrRTXQHTwCNHx011OW6qw3tXhJk5yRxwuzFHM/GNEFZ7M798/A3+9OJu7n9iy7AKxKMhg6Ll0dKRL6W8qkQJJ8AIgl0oa3u1bgZKohF8F3fbi4NuGw7omKbaU4/lB6KoVhrFHry2qTtFt6U5XVFNWCio0Zmzql7/JUnS2CSDJmnMclyPzoxFqJ/FUdVCEgqdPLW99PUJ80I9PZKED8msjVssUJ8qzbrqmLwco9BBVOQGDZi6YwvdLXDekgCLZoy84/ZBpwcIhYOcuUBFVUrT6e96eOOwCsQTUYP2TJH2dHkBTjkU3USN1iOc8o6pKApG12iTu+XZQeuhDF0jHjSx7K5tVB0EqPnOQUeb6uJBZkyOIASs21J+z6bugvBsQRaES9JEIIMmaczKFlyKttc3NecWUbOtvNqu0ZH3CRkKy5v2dQBP5y2yBYfG7AZU38EK1GEpEcJ+BjUUGzBgerEZvveMQipnITQDb4iO0mOZMEIcOyvIR48LEDJVdrfluP3BDTS3l1dL1E3TVEKmzp6OArli9QIDNVILuolwylssV2taCkYIkU/i7Xl90G0jYQNFBa9rHUDfDHeNNg1e27R0XilFV0mjS0VRMLu6isuCcEk6/MmgSRqThBAks0U0TendZbsrLad4Fk9tK6VEjp0d6mk0WSi6pHIOIc2ntv0VADI1C1DsNEowhq73HzC91gb3b1BoySm8uFtBBGv6dgUfZ4QZZna9xqUnBZgUN0nnHe586FU2bOus6DjhoI7n+expz+N61ekWrhhB1Ehd+e0HNAN91jHA0O0HQqZGJGiUOoRD6ecofNTC4KNNR82uRVUUmtvz7E2WP7IWDupkZUG4JE0IMmiSxqSi7ZHJOX16M6mFJGoxya5iiK1tDqoCx88tjTI5rk9n1kIB6jKvoXsFXD2MbSawlDDBQP+1STtS8Is1Cr5QOLrB5dQ5Kn7wEKXlhBj0D3vFhwtEqQ8JPnFigHlTIziuzy//tIkdrUN3y95fPGKSzFoVBRNDUSM1oOkIt7wZevrcUs8mv3UTfqbvYsndFKXUpLO7QziAb0ZQiykUZ+CRtnDQYN70OFDZaJOuqfgCUtnqzjSUJGnsGftTgqQJKZO3cTzRqzeT4hRQs60IzeSpzaX6nCOnBUiENHxfkMxYWI5PNKBS2/oCALnYLCw9ii4UjH76PLXm4CcvKTi+woI6nwvm51HCjYiBisSFwGx+GdXKUJxzCgBqvoPIht/uF/B0/V/4KF3/zh59EX6oBoDw+gcwOrftt92+fRQEVuNS7MXn9jonI1jTTgTjhAspPnRMkIfi9RRdmDE5MvSO+1FVhWjIYG/Xor7x8MiL45VABCVSg8i0o+iBoa8hUofauBB/z2u4W57FXHbugNtGggYBU8NyPIKmVhptsnOohU48Izzg93PZvHpe35li7eZ23nLMtLIX5A0FNJJZm8k1Xv/9xCRJOizIkSZpzPF8n86MRcDc79dT+KjZvSieRdoPsHZnqRbmpPlhhIBUziZbcIkEdGLJ1zGcDJ5qkK5ZhOsrmLrGgY28U0W460WFgqswIy74wKIsajCKb/YfUKj5dqIv30P4jUfRcnv3uzYPLdeGlm9HK3SgFTrRikk0K41qZVDtLIh9s6sUz0Hx7NL/fRdFeCjdARb0jDQJIdDbXif68r0oxfSIvqd+MI7uFXjbQsE7T9gXDOxNFsiVWcQcMDUEgj3t+aotH6JF6kFREV5512DMPQ4Ad/tLg45Q6ZpKPGz2mtXmm+Gu0aaBR8sWNiUwDZVk1q5oNC5oaqXRUdkhXJIOa3KkSRpzckWXvOUSj+yrKVIKSZRiJ34gzrMbC3gCmuoMZtQa5Aou6ZxDMKChCpe61mcByCQWlAq6HY9gpPen/7wDd72kkLIUJoUFH17qYGoqXqim7yiE7xHY+SzBbU+hCA+hGjj18/c9HUyQXfoeQEEoStf+CigqKAAqfiC+79wLzkLx3a7nFQSlfYRQcXwfx9fwsjaO5xF/7TF0O03shbsoLDgLZ/Ki4X1TFQU/mEAtJjFyzXjadLI2/PyR16mJmnz47EWo6tCjKvGISUfaorWzwLRJkbJHYgYUiJQW8s2nUCK1Q26uNsxDidQhch24O9ZgdC2z0p9IyKAzbeF6orSAs2aCnS+NNpl91yeE0uy7I2bV8vIb7azZ1MHMKeWlaUsdwhU6MkVq44HedXiSJB025EiTNOakcxYI0NSuX0+7Oy0XwBEqz24pjRScNC+EbXskM0VUFQzFJ96xDtNO4Ssa2ZoFeL5A1/tPzZkaxAOCjx4jiCoFhBlHGMFe22iZZmIv3k1o65MowsOpnUN65cewpy7bbyMTt3YWbu1MvJomvMQMvMR0vPhUvNhUvNiUXkXlIhjHD9fhBBLk1ShpP0TKCZDxTVw9TCgcprE+xKzptdjHvh8r0ojqWkQ2/I7Qa38Ab5jNFLsDp0ISLd1MsWhRsFy2tWT5y0uDL1Gy7xCleqG9yQKpKizqqyhKaSFfBMIfupBaUVT07tGmzc8M2iAzaGiEgzrF/ZpzlkabkoPWNnU3uly3taOiwvdwUCdXcMoeuZMkafyRQZM0ptiORyrrEAp0BTnCh3QLimshzDCv7CiStwU1IZWFU0w6sxauLwjpgkCumdq2lwHIxufiawFcT/SbmgsbcMkKwSUrBDW6hVANvFDvFgPBrX8j+uLP0XJt+HqI3KK3kltyPiIYp1JCgOv5PYu8prIOhWIpdZSImDTWh2lqiDGrIcb0yVHqYkHiYZOG6VPR3nQx2enHI4DAnjXEXrgbLdNS8TUApXXcggnUQgdT1CRvP6kJgL++0symXeWtWWcaGppWmmVm2SNP0ynBGEowXvZMOn3mctAMRLoVv33bwMdVFGIRE0+IfbX1mgm+i5pPDrjf7MYYsXBp9t0bO8tfx6+7IDxdhWBSkqSxSQZN0piSLTgUbZeAWQqalEIS8h2IQBwhBP/YVBohOH5umGzeJm+5hHUfM9dKfeuzpVomLUi6djEg8DxRKgSmFLg8vRO6y1xMDSaFQHHtflsM+EYIBYHdcASZlR/DmXJk2QXZQpRm8+WLpdRhOmdj2T66qlIXDTJ9coSZU6LMbozRWBehJhokHND7dD5XUIhHQ9Qcczb5o9+Ha0TRCp1EX/oZ5u7Bu2MPSNXwg3HUfBvLJrscu3ASAPf/dUvZDTCjIYN80WFPR27E/YkUVe1ayNdF+EMHYYoZQm8qjfQN1X4gEtQJGBqWs99okxHpGm3qv7ZJVRWWzCl1CK9kFh1AuKsgvNyFfyVJGl9k0CSNGUKUZsDpuoqiKKXZcpmW0pIbqsbmvQ6tGQ9TV1jUoJPKO0R0n0CxnXjqNcK53QgU2hpPxNdDfVJzf3hD4XcbVX76irJv5MEtIIwQfjCK4hTQ297ouR572nIyy95HfvHbSgv7DsL3BZbtkS24pLI22byD6wkChs7kmiBNDVFmTYnSNCXG5NoQ8bBJ0NRRlfJegqahUT9nMWLVxynWzkMRPp4ygj5Sqo5vxtByrZxzZJDGuhD5osuv/7K5rCVTuhf17UhbdKZHPtVeCcVRgrGyF/LtTtF5uzfgFwYuktdUlURkvw7hALoJvlMKyAfQnaJ7bUeyV3pvKAFTo2i7ZGVBuCQdlmTQJI0Z3ctRhAN612y5VhTPhq6A5amuUaal0wMULJsANiGrnVB+D4mODQAk65dihRoAeqXmntwGT24vjRIdPUWUBoyEj+J7iGACo30TsefuILLht6jdM+MUFa+mqd9r9X1B0e5Otdnkii4CiAZ1GuvCzGiIMrMhSlNDlPp4iGjIxDT0ERUIq4pCoraWyJsuIrv0PSRjCylYLkJ0LStTKc3ANyIEC62857gaTENle0uWP7+0q6zddV3FNEuL+o60saOiaqixeoRrD7pMSjc10YhaPwuEwN3y3KDbRoIGuqr2qk/yjTBqsXPA0aYpdSEm1wTxfFFRM1BFUTANlY5MUXYIl6TDkAyapDEjk3dwPB9DV1ELnajFJKJr1llr2uX1llLqaNFkFRyLqJvEsDPUtr2Igk8+Mp1MTffssn2puReb4eE3Sr/qZ8/3WTGttIVi5wGV0KZHiWz4HaqTxw/VoPiD/9F2XJ9MwUFBoSZqMm1ShJlTYsyaEmPapCi1sSCRoIExQPfxkQqYBpPmHUlj1+w1u2ULsWdvJ7TpcSijmLoXvbTAbwPtvHNFKSXV3Fb+Ar2RoIHleLR05vCG+L4NRQnFUcwQosyFfHsKwrc+P2gRecDQiIR0CtZ+KTM9UGr5UEz2fy2K0jPa9ErFKTqdrCwIl6TDkmw5II0Jnu+TzFoETW1fE0s9gNLVZPIfm0pFwnPqdUIUqPGSqL5Non0NulvAMaK0NxzXU3PUnZrbkta4f0PpsVUzBSfP7D6hg965lUDrehTPRigqVtMJFGeeUFrkdQCO61OwPCbFQ9QnAmWn16pNVRQSkQBBUyPXvAcFQWDXC+jJHeSOeDt+uL78g+kBfODomjSBVQ3MnTcDpYz2A90SUYOOtEUkaNBQO3gaczCKZqBEJ0Fy56Cz4rpp045ACUYRxSzerg3oTUv7P25XQXg67yD8UqcH6BptKnTih2pBD/bZb+ncOh5/YRfb9mRIZS0S0aEbcEJpvT4EpHIWsSo0AZUkaeyQI03SmJAtuOSKLiFT7UrLOQij9Ac4Z3m8uL00+nBkvUuN34kqXKKZrYQKLfiKRlvjKoS27w+U6wnaizq/XNu1PEqj4Oz5pbScYmUIv/EoweaXUDwbNzaVzIoPU5y9atCAyXa8UsCUCPL/2fvvIMvS87wT/H3f8efa9FnedFV1V7U3QHcDDUMCoJFoRAuMpBApajRcLXe1o1jFbEzExGgmpNhQKPafFTUKabVUkCPRL4cCSdEDJIAG0AZo31XdXd5XVrrrj/++/eO7eTOzMrMqq7qyTOM+ERnn5jH3nnPvOed7zvs+7/OO1fy7RphWwnNs6k9+nvyJn6awA6zuLJXX/hPu5bdurh2L7aEdn4fKTaxoAbQmy4tNRY8sKQl909S38yGjK7JUQ7j+pqJNQlrYfZ+mGwnCQ882BpQrBOHYHiLPNkxt1soee6bKALxz+uaiTcYhPBsKwocY4iOGu3/XH2IITN8uKcCOF5FRA+Utmwp++4MOWQFjIRwMFrB0gZM2qS0aHdPC5DNk3kq7AE2ea/78jGvao4xpfvKwZil4IpIOsjePljbR/u+j88R/gypNXHf/krQgyRQT9YCxqn9PmRdKIajuewTns/8dWX0PQuWEx/+c8NgfXNf9+lpo20fbHlbrMvMzM/x//+gYf/Xa5vybAs9GK/2hm/oK20OURyniTdoP7H3a2CgsnEc1Lm+4niUl1ZJLmq0mktoNTCPfDdzFH32gn6I7Ob+p6NcSPNciSfNNVyMOMcQQ9weGpGmIu44kK2j1MgKZIruzxmCyn5bLleYb77cBeHqsjXEP0IzPvAxAu3aAXmXPqvcrlMZxJH/7Mc1jU5r/5lGNkzb7fd5Au2XivZ+i/fTPk+x8ejlfswHiNCfNFZP1gNGK9+FdsLcIfmWE8md+jvzg96GFxJ07Tvn1X78pnZN2fLTtMndlhtlGzLfeucLxC41NbVspOTS7CVc/ZFNfqzSCdDx0Ft9wXeFXsHYcASA78a3rrlvybWxLkOXLpE7bPiJPN4w2HdkzgiUFs42YmcXNH9dAEN5KNq0PG2KIIe59DEnTEHcdnV5GkphKOKEytBMMlr19IaIVFYS24pGxjEJ6TFz5FlJlJN4oi+OPr3qvTEGWazxbMlmCnz2SUb7yGuGxP8JeODmwGEh2Pj1ooHs9RElOkcP0SMhIxb9nCdMSLCmpPvIZrE/+PEUwQnP8EeL85vZZOwEP7/B4drchrv/lG6c35f4tpaAcOlxd7H0ot3DhBljVsU2bXToHPwFAcf5tVPPKhut5jk05sImvMeTUzsbRJt+zObjLRDHfPjm/2UMATEqwG2d04qEgfIghPioYkqYh7iq01iy2E4KsiRU3Ue5yWk4pzTf7UaYnJxOEGzI69xpu0qCQHnPTnwCxXKGWFvC7x1y+ccExrtXtK5SO/ZERe6OxunPGYiCoX1e7tIQozlEKJkeDTYuA7xX4E7sJP/d/ovTgJ9FK0+5mWFff37Q1gXZCfvCwz/aqIEoKfu9rJzelb/IcCykEV+a7q5rl3izsyhjCctD5JshafTvWjocBSN/9ynXXrYSeCTiuOBRte4g8Rsbru38/1q+ie+f0wk1FjZYE4a3uh/exGmKIIe4NDEnTEHcVvSQnarco54ur0nIAJ88tcKWtsYTmiW2SUusU5dbpgYFl4SxXamUF/P4HLpe7knOLmtKlVwlP/CUy7aCckN7+z5BOPYJ2Syi3dMP96kbGd2l6LKRWur8I0xIsx2OkGrBjokxNNyi//8eUX/vfca4e29z2QYmffcrHs+HC1S5ffW1z/k2V0KET5cws9m5KB7QS0gsRYR2ddDa1vnPk+422aeY4xdyZDdcLfYvgWkG4ECba1FuAdUjagZ01fNei3cs4O9O+qeMI/L4g/Da0mxliiCHuPoakaYi7ilYnQnSvYpEvp+W0Ju8s8tIpk555dApqxQKjs68B0Bx9mCScGrxHruDLxx0utCVPuuf4n0b/gHLTOHun4wfpHv4Risq2fsPa+g1boXSiHCkF06MlKsH9XzLuuzbjYzV0dRpZpJTe+68E7/3JugThWozUK/ytRw1p/PY7M3xwvnHDbYQQVEs2c42YRufW0nSmke+oITTFjdNbsjyGvfcpALJ3/3JDsibFkiB8ddTMaJuSdaNNtiU5sncEgNePz93UcXhOXxAeDQXhQwzxYaGV2lSrpa3EkDQNcdeQF4rW1SuERWu5Wk5rdK/B5YtXONkyg/Xz0zFjl76F0IpeuJ3WyOHBexQK/uiEw9mWRShT/nb1JZwiQnkVege/QLLrWbBcRBaZ/nUr9FLXQmtjsGlbgunRkHLwIdqU3GOwy6OUPvsLcOAFNALv6ruUX/vfsdoba4CWcGRPjef2mHTmd45urprOsS0cW3J5vkuc3ppbuPDLiKC2eW3TQ58xLucLFyguv7/heiXfxrEl2UriJATa8U20qVhLcJ46ZKor3z29wHzrxgL15bcdCsKHGGIltFZolRv3/yymiLuouI3qNVHdRVRnHtWapWhcplg4Tz57mnzmBPml9yguv0cxcwKd3b2U99Dccoi7hm6ziW5exQnLJi2nNSJqEM9f5tWrJTSCPbWCfQvfxM67ZHaJ+amPDyJFSsOfnHI41ZBYQvP5fQVR5VmIZ0m2Pb6c6ssTtHQoghpsEGTS2jQLdm2LqdHQtHL5iEFIi/DRz5NPP0Dy6u9jxw3Kb/wGvYM/SDb98HW3/cJjI9SCBs/uNT5XeoUlxEYoBTaL7YQr8z12T1WQN2GYCUvRpjGKXgOtioHR6Ybr+xXsB54j/+AbZEe/grXtEGKdykjXsSkHDs1uiuMsL9e2b5zooyaqvNqCYvt4iQM7a5y40OTFNy/z45/at+njCH2bVtcIwqtDs8shPkLQWoMuoChA9RtuawVKmflao/Osvyw36+miv54GCXHTIW9FFIVavj9rAAFSghDmOu5fyzqLVosS7zA+eiPDEPcFtCroXL2A1Bl4ddAaGS2SLF5lPpYcWzQOzT9ZeQuvcwktLOa2fWKVgeXXz8Aj8Xd4slTQnnyKQ2MCUd5FIlb0i9Mg8gRVmgRr/QFLa1PB57uGMPnu3bkstFZ9Q0qNBlRu9fuw3d6KPXtiH9bn/xHRd7+MuPIe4Qd/SqsyjS5t7CJuW4JPPDSCSNrQvEhe3Q5+9bqfY9J0LvOtmNC3magHN119KPwKwq+ikw4iqN1wfefQJ8lPfwfdnqU49yb2nifXXa8SuDS7KUrpZTK3FG2KFk1lpbU60viZx7dx4kKTt07N86nHtzFaXesivh4saQThjXYyJE23AK0VqAKKHFR/wO3/aZX3ybQwD1NCmMFViME8Mfif5WWD5cv/r0ewv5ehlTJ2JSu+68HrLDZp8zzrz++TJNUnPhrzvWrd/44lQsrB7yOkbebbEissIQofuQkepFUOyd2tRh2SpiHuCuKFq8SNOexSfUCYiuYsrUzyXisgVYJnwgvs6b0NwOLk02TeyGB7N5rjZ3iFwDdC4bPhPgJ/Yq1cqW8xoPzyuvuhNbS7GYFvMz0a4DmbuyR0kZkbSJ/krJzqlfNWLe9DALp/ZxGDO0x/Wf+GblnoFHS3hcI2qarbeFMXbkDw3M8Sv/5HdESVjqxxY3k8aK9Cc7HJ737rBJ98bDuH9k9fd33bMm7hF+e6SCEYr2+cHl13P6VEVsYorjbRWt3wOxCOj/Pgp8je+XOyY3+FtfMRhLU2zRr4Nr5r7AdCf/k313bQ73vYRJXGV22zY6LMAzuqnLzY4sW3LvNjL9xstCklSQs8d2t6Et5vGJAhVaByTd7JUJ02Ks3QRYYuUsjSfpRixaA8eJDoXzdC9yMTrL62lrCCQJnLbCWpYgWp6pMoKa8Z6C2EZffnW4PlQlrXrG+Z9e9xaK0H3/sgOtQnpbrI0HkCg+hQsfy9r/pOrcF3IKQNlgRp3TAafC2EJcx7iGt+s3sYQ9J0n0AlPXQaoXHuiwvzetBJl97cRRI8Kq6F7M1DZ4FmJsm0xZuzDiOywxeDFxEaopED9Gr7TD5OF9Tn36HS+ACBJrNCrow+hVUZwXOu+V60QqjCDH7rWAxoBa1eSilwmB4JcG9AmLQqIIuN6aJlgbSXB/EVN1RxzQ0XKZdvJktPwus8GQuW/7cdC79eInJnUYtX0d1FtOUgvNJN35g2ghAS/8kfpYgzFue6ZLnCEfmGEbklvHrZ4nwj4b986wK/WPeojY5cd/2gn+q8MNsBAeO1myROQQXhlyDpgn/jtKC9/2PkJ19CRy3yU68OfJxWwvTuc7g8n5mH4SWyLQTa9pC9BZRfWyfatJ2TF1u8eXKeTz2+nZHK5iorPdeiE2W0eymee3PHfz9Ca2UKDVZGhpYG5SJdHpSX0jVCE7dc8k5MUegBGRFL14/lgPTMwHyTDw96nQebNa8HPhQ55MsPPnrlskHkhD5fk5g2A3L5upfS3GukjbDs/n73SVWfZIkVr5ESLR201n2tjwLUNftIf9+W91VvdBzrvB6kwnRhLDyKrP+brCCiSwe16nu3ELa7+r42xJA03Q/QWpPMnCNfWKQQNsItIbwQHA9he2A597zp4hK0Ksgbl+l0IiyvhOwtILoLNHObuICLXYdOovkn1a/h6pTUG6Gz7WOQK5xkkfDCK1S1qXDqVPYyN/Y4GTZj7tpogsiivsXA2ijTEmEqhy5T9QDXWZ+IaK2NJirrgQLhBciRHcigAra3ZaF9YUuk6yPLo1huGd1rodpz6F7jtpInIQQl32G04tO6dJqxk39I79APko8f2HCbzz5U4tRsysXFnN/7+hl+/gddZHD9OFXg2WhtiJNAMFbbXGoLQEgbWZmgmD0NunTjaJPl4Dz0WdLX/4Ds/W9g730K4az9vNAzfl5ZXqz6/bUTIqMGMmmtaXy8c7LM/u1VTl0y0aYf/eTeTR+H51gstBNGq/5N67vuB2hVQBqhki661zQPF0sal8GgLPoRmdVkSDg2TrWEJEIXtzfiIFZElTa9zSbWMel0tRz90tpodvJsmQAtkZdVb76abGFbRJ1woOvRS3qdpei01sCKeavmr9hZvUHUTfT/EWIQHRPSBns5WjTE5jEkTfcJtMrRCFAK1V2A9mw/jeOYfl1eCeEGCMczjUite+OnNaHgfPkpM+4SNxboao9K3kAmTdrKpZsqfFfy3VMOPxm+wi57nkK6zG//JLa0CFqnGbnyMhJNW/nMjD2DO7adOM6plBwc55rbXL91yHoWA0pp2j0jyp0cCXDstTcNXWTotAdFBraPLI8jghrCL5kbzh2EkDaiPIoIa+he87aTJyEEo1UP6+h7yDyidOwP6B75cfKxB9Zd35aCn3mmxr/76wUuNAq+8spJfuATBwYNljdC6NsQw/lZ43V0U8QpqCLcENIIvBsnEq3djyNOfAvdniM7/k3cI59bs47rWJQDm0Y7XU2ahUDbLrK7gPKqa6NNT2zn1KUWb56Y51OPbaO+yWhT4Fu0OhmdKKNa+mhom3SRoZMeOu6g4xY6jU2E1/YQbrDpyND98tC3EgNx8jqHd72jGZAtrZfTXoP0l+jfX1aTneUpg//vx+/so4B7Y2QdYlMQ0kLYwfKDhVZmUM9TVNIxF6GUhki5AcIrI5aiUba3ZWm9ZWKUoYv+NM/Mk2Yem3kqN/4AaLqFhR3NYYsukfDopArHlsz2LLYlp3mh/AEamJ96lsIpYQNvdCf4pLZ4L9vOmerTPDXmkBdmu/Uq3UQWof36GouBJcJUKxnCZFsrIgyqgCwy5ayWhfDKyNKI0RPZd9/gUkhrmTxFLVRr9raRJ0tK/Cd/hN7LEeHicUpH/4Duw3+LfHR93c5IyeInnqrymy83+fbplL1jZzj04L7rWjrAEnHSJuIk2LSYWlgOojyGWjgPbnjDAUNIC+fI50hf/m3yEy/h7P84Yp3UXiVwaXSuEYTTjzbFi8ikjQpHV22za7LMvm0VTl9u8+Lbl/mRT+zd1DFYUiIENDrJfU2adJ70iVIbFbUgS8yYbvuG3A4jF9fFykowLKPrsfwAkUrEbY6yDXH7cd+TppMnT/Iv/sW/4PXXX6dUKvHjP/7j/Pf//X+P617/pqS15j/8h//Ab/zGb7CwsMDhw4f5H//H/5Ennnjizuz4bYAQ0qSIbG+ZSKkC8hQdd9Hdhplp2SY37YZILzTrO57xL9rk04ohaCuI0QqfDbK4r03ol5SanesLA+1+KNi4fRdFTnT5DH7RJvPKdLo5aLBtyenLbb5YegmAVv0wVhGDLnhrxuEPztZ5Uf4oD0z6fGpHAWjSTFEru6wJFOXpuhYDRaHpRBn1ssvkSIglpSF8WWzKWDECaTm6E+mXNzU43w0IaSFKI4igelvJUxi4xE/+LXqv/R+EjZOUjn6Z7sM/QT6yZ931H9rm8fwDAd8+GfH7b/T4R9VzVLft3gRxcujGGReuGhH/ZomTLNVR7VnIYtiELsja9hBydCdq4QLZe1/DfeJH1qzjezaBt1YQjhBoy0P25lF+dY0m7jNPbOf05fd5ox9t2mybncCzaXZT4jS/a1WaN4vBNZL2UL2m8c3KE5Nmc3wojQz1LjcB3dckFYVGaY3IBbKXEqU59Mm7lAI5/E7vSdwfV+0GaDab/NzP/Rx79+7ll3/5l5mZmeFf/st/SRzH/M//8/983W3/w3/4D/zrf/2v+af/9J/y4IMP8uu//uv8wi/8Al/+8pfZtWvXdbe9lyGkBW6AYHlQGZSGdhcp2nOAAHu9tJ7bz8ub6hWKFcQoT/pkqS/qXMqXW7YZxC0HLH/d1JX5/ASVJUStBrq3iCzXaPZy0lwReBa9OOX7im/gWgUtZxwvnqXWOMbpdo8/vPgUINgzEfCpXTlCYETLthyIjAdQOaKIUeFqi4G8T5hGKx4T9QCpclQcmQiY4yErE4iwdluF1luNNeSpvUSebBNlvIXjqFdDrjz8Y/DOfyFsnqb07u/TfeQnyeu7113/Cw+XOb+QcWEx56vvdfmp8CJ5fachyddByXfoRoY4CSE2JagWtocsjaIal03q50brC4Hz8OdJvvGr5Gdewz7wPLK8WqMkhaAWulya760WhINprRI3kXFrTbRp91SFvdsqnLnc5sW3r/A3n1+fWF6LZUF4dk+TJq0VpBE66ROlpVS1tA1R8sr35APF3YDqV8wWamlqItpKa5RSKA1FrsmVIleKIlcoQCttsnISAj8hilPQpvG1EGAJgWVJLCmwbTO1hED0p9ISSGHOYUOyhim7O4F796rdBH7rt36LbrfLv/k3/4Z6vQ5AURT8r//r/8ov/uIvMjU1te52SZLw7//9v+cXfuEX+Pmf/3kAnn76aX7oh36IX/mVX+F/+V/+lztzAHcIhtA4CIzm5HppPZZSbUvNWYUwN0rZj1ZJ+4aDsVY5ZGk/jN81Kbo8Iy8UvaigcMp0U0UvKQhcCzSULn2HCatNT7uU80VkVlBg8/JcBY3g0YmC79ud9wc1TZZr6hUHa+XDWJEh8hgVjJroQB9ZruglOWNlm/GgQPQWDbEIKsiw3k+/3b/pkrXkae6WyZMUgrGREhcf/BHk+3+I3zxD6Z3fp/3k31lTgg9gScHPfKzGi8d7/MCREiJrYTUvUtR2mijodVAKDHE63+/nthniJEsjqM48OovXFXev2b/xvcipg6iZ42RHv4r38Z9Zs07o27iOJM2usQMQprJpUEl3zff4mce3c+by+7x+fI4XHttGbZMpN8+xWGjFRkd2D1XCapWbCt24i44aRp+kCnPvcEzq7XsFSySoUGoQESqURiszzZUizzW56hMjlkmQ6le8rTASMbdRYUiOkUEJU+whBJYtqZRcpNCGUGmNUppcK7LUkC5TXccqkbcQ/feRhmhJQFoSWwosS+DYliFVUg6I1cB1gRUODIhl66prX3Nn9Wa6yAxJz1OTMehXWpqqvxSVJcjtR+4qcbmvSdPXv/51nn/++QFhAvjhH/5h/tk/+2d885vf5Cd/8ifX3e61116j0+nwwz/8w4N5ruvyhS98gb/4i7/Y6t2+69gwrVdk/Ss6vKmB1qQEExOVSnpGF1RkoLUpXbVdEunQ6KXERYGQ0O1meI401VvzxxhTF1AaQmGetmJ/gq/L5/j2wggPT2h+YH8+uGEkucJzr4ky5QmiyFDhuDEm7F/oWVYQd7tMBDDi+UgnRNSmTPWbc/Nmi/cy1iVPUQMtb448eY7N+EiFy/v/JlOn/wi88ppIy0rUQ4sfedzohZRdQ8YNaF2kqO7YFHHqRBnn+6m6GxEn4QbIsI5qXd0UaQJwH/4c8cxxiovvohY/iRzZvmq5Y1tUA5f5drzGQ0m7ITJqmkq6YLW1wp7pCnumK5y90uabb1/mbzy3uWhT6Ns0OymdKN800doqrBJyR/2KN637UejyPVNQshUwhEiRq/7rXJEpTZoWZHlBoUEVmmId92khRJ+IGDJkC4Fw+tEeQIhrPdpWTFdcEyLtYimBsDPsLEOovqVBn7lo21km68rIEvpborVAYaJaGuPIUmQFiTbRL/rTwT1uJWHSSzpzM1OqDKnS/moK0RerS91/bTkU4ZhxTyhynPYFswyN6K8j0Ii+tjWbOoJ2QjQa58J3sZoXzUNtkfanGSgzbUwdornvBygKhd28wMjR37nu7zbnbGdqqsC/S5fOfX1FnDp1ip/6qZ9aNa9arTIxMcGpU6euux3A/v37V81/4IEH+LVf+zXiOMb3N1/Zcy1s+/Y+PS4JVKUlEdYWDfKWDZs1dtQKsj5JSnuQROaJQGuElAjLBddH9DVDrV5Ko5MAGt+zaLSTwZOQ173C6KIxsJQCtJA0xx+jUz/EESEIyhkHxy2KQpggWP9mUA5d7H6YSaQ9tNao6jTCr2AhoEjJoh5FkjAxUmNsehq7VL1v0m9W/9gs61bOJQnuGLoygo6aFO05dK9lNGb+5shTveKS5mVmxI9QrQRYS/qKa3NY16CbKP7wHckPHugwIi/3I07Xv7vVyh7tXsrl+S6OLRnrG2BudOyyNk4RLYLONhUhtEa3ke9+jPzcW2THvkL4qb+3Zp1q2aHZS9CAvSr6IxGOi4gXKcL6mmjT9z21g1/94/d4/YM5Pv3Ejk2RIMsCyxJ0onRNBeGH+903B52ZCLCK2hC3IUsMCbA9KNfvyvWx+rjXkhStij6xa6GiFrrXxDn43EBLlRz7Gqozv1yRptWg7F8rhZ46RLHjSYqiIL96BvfU15Yd+PvWAAKFpzUeioWn/gGubSE9qL7+n5FRg9UEiMH/6b4XSHc/C4Bz8XX84xs/eGvbp/PCPx78X371VwyRANaz340P/SDZ9scBcM+9hHfmxQ3fuwhG6T3735p/VEH5xf83q6rwlvZfFQg0nYd/gmzUVMgGJ/4a//IbG753WtnB4iNfpMg1Mukw+s7vbbguQMOdICtvQwAjC+dxFo5vuG6WRBRLdlSOh7I8tOUY/yrLBstBS9fMEzaZAmmJ2z7Obhb3NWlqtVpUq2tDxrVajWazed3tXNfF81Y/1VarVbTWNJvNWyZNUgpGRjbjrbx5aK2JFiEMXSz/zhvjaa3QWYrOEoqkh467qDw1ZbNCIkoewl47GGeZYqEd04kLQt+l0JpuL0VYkrLnIrMeI5dfGjz9NKxRZqY+SWTX2NH/aR6aNFOrr5WK0pxK2aZeDbAEkHQgcKEyaYwPsxiSDomWpGGN3Q9uZ3r7FLZ796vfbgXV6of9vStotY2i2yJrzKB6TZA2Vli54eAYhj7StoiTglLJhbiN+O7voh/5YahtW3eb3/3OLO9cTGhGDv/4UzF2PgeVXTckTtVKQLObsNDLqNdNGnmjY9c6JBUd8uY89ia/n/DZv8HMhXcpZk7idS7ibV/tQ1Uu+8Q59OKcUukaz6/AgV4DnAzC1UPb45WAB968zMmLTV45dpWf+r6Dm9of13NIsgIvcAn9tR5jH/53Xw2Vp6ioQ9FtUHSbqDxFCImslhDu6F0VcmtVUPTa5O0upYqJaGaNq7Re+zOzr70mRa+17EvUx8iRZ1BuxaT9rxynmD+/4WdETo3eSIYQ4OUJdvvydfdpvB4MCLIoUkS+cZNmx5E4pf795YbhD02ptOJeJKSxkukvu/ZxxPUc3KX1b+AkLyXL713kJupzHYS+Df3zTHhmv/XARqFvzNt/7YRlJkb741oi0NXpFeutMO+UFlgO4xOjUO5Xq6qnUdP7zT3AcozW1O5PLQfLDRjz+uf7aAl2/g/0TRbWoMhy/NYitVpAuXZ7x9nN4r4mTfcilNK0Wr3b+p5SCmyl6HVjdLzKvnhL0ktaaygMSdJZbML3uWlngOgb0tmuGXQ1kAFZDixfpL0kZ7GT0O1lSAmNtCArNLYUOI4kibpMXPw6UiXM5BXezvdS23uY/997HkrDFw9nTJd1v0u8TZrlFIUiyQtC1yONU0TaQdseqjQKiUa2r6Bsl55VJbYrbJsaJayGtLs5dK9/A7nXYFmSajWgtdTI8kPDRYc70KJC0Z5Fz1wx1U83iDyFjmSxEZHnObXjf4HTuAgv/Wd6j38RVVmrGfzCkRIfXIk4v5Dxe2/b/OiDV1G9BFXbcUOncQG0uinvnkx5+MAEltYbHrtSAXk3RhTtTaaQApz9z5CdeJmFl/8r4ff/wzXXji00rU4MFMhrbtkiVeiZixSjzppo0wuPTXPyYpOX3rnMs4cnN20nsNCMOe9KJkeW/a1u5+9uUm9doxHptdF5bK5fNwA7NIqVBEjuTMf4fPYMauGiiRRFLbNfUQsddwCNv/th/Oe/RFEoinaP+Mzbq99ASERQAb+K8iocPzNHJCJypfGrR5DBHrOOEP2It4UUZqpL47hLwdLqNqJHfsJQlKUBf4Uzv0aiehkIc88Qj/wkQmvTnWWNb5JxkKfb/w7rhxCf2Ie+Zp2VbVsG6wK88I+RUhIEDlGUoZaqj5eiQkIsrz/9DEw+0V9sIl7iGvNMvbSu1ohnf7G/bOm9Vh6rtXq/93zG/F1vPBnstw1PrY3Wbrh+ebf5WwdSSgKvf+zqxud7nmckcU6zGZGp20tfqtVgUxHe+5o0VatV2u32mvnNZpNarXbd7dI0JUmSVdGmVquFEOK6224GeX57OzALFOrqGbJu0m9Yu9bobHV/pSW32bXzxED9t+I9VrzWeQJJt9+Z2michHTA8hCOYfaDyPQ6niIKRbOTMteMibMCNBRK41gS35GIImPk8hv40Qx2HhFrh3/f+TxTIwFnjlvEuWC6pKh7CqXMgwwYImf6dklcW6DjFsoJUF4dkcYgbdJwnKYuoS2f7RMlRqu+aclwn/Q0Wg9FoW7v+eRVwSlD3EK15tDtBsJ21vUwAvAdm1rZ5epihLXv+6n0FrDblwne/B06j/8sqjSxav2KL/jJp6r8+ktNXjoVsXuswqMjDUSWosIxlFdZYxa5EiXfphvnnL7YZLTkUFonCgOg7RDlVdG9FjKsb+rQ7UOfIjvzOmrxIun5d7F3PLz6q3Ekji2I43xtfzg7QMYmLaSC1Z+3e7LMrsky5692+Mabl/ihZ9cfINbsjyWYXYyoldw1gvBb/d11kaOTbt9DqQlpbJy3bR/8EYQQ5mpQcLuvC601unmF4soHFFdPojoLeM/8JNakkUFk594mP/2d9TcWFmijMSoKjfZrOI/9kDGUDarkdolYeHTjgijJSXKFnQs8B3Nf2fnoIDSx8oovVn7G0qDshOSj6xu3rjiY5ciWX7/xwQ8KZyzWeqBssO7gozTgoJSiWBVNEyy3UOn/Lze+dta8t3fjlkPX7su10bw7BaUUxSZIk1Yarcy1cbvH2c3iviZN+/fvX6NdarfbzM7OrtErXbsdwOnTp3nooYcG80+dOsX27ds/lJ5pK9D7i/+N/PR3EWEdOboLObITURkzIfXBibYizw4rTv5+1UV/vl7qnTSA4Nqbp+i7jCNvzqcozgtmF3rMt2I0GktKHFviORZW1iFozlBdPIadL0fi/lPnBeZVmbgFvUwwESp+6sF0TSRa9QWSgSeRSQftBGjLR6BR4Ri5X6eR2HiexY6J8l0X2N7LEFIiwjrCr6J7DYqFCxB3EBs0NR4peyRJQSfKEI/+NOW3fge7M0P5rd+h89gX11TVHZr2eOFgyIvHe3z59Q7bPjvCmEqwmueQdglVGl3XaXsJ1ZKL0nBups2O8fK6kRshJLI8StFtoFWxKR2O8MrYB54nf+9rZEe/irXtoVXb2ZZFJXSZb0ZrSZOQaGkhu7MoJ1gt5hWCTz+xjV//8+O89sEsn3x0mkp44/Mv9Gwat0EQrlVhiFLUNmLuNDbPQU6w5R5KOk8prp6imPkAdeU4Ol79EKujZZmEHN2FlSXGAHPFnwxqWGGJWq1Eq9X3S7M99J6PEaUFnV5K1MtJ8whLCjzXwvfs6wZF7iU0egXznYJ2XNCKFe1I0Y4VrbigHSt21B3+u8+bxtfdRPGrLy7iOxLPEfiOwLOlmToC3xYc3u5R8c352YoKlAbPNsvl3fxSNKCXIvorEmy30MbmXsZ9TZo+/elP8+/+3b9bpW360z/9U6SUfPKTn9xwu6eeeopyucyf/MmfDEhTlmX8+Z//OZ/+9KfvyL7fDKz6NDmYAa7XoLjwNtgecmQH1thu5Ogu02JiA2z1uZoXRrs0sxDRS4z/jO9Iyt2L+I0Z/N5V7Lw7WH+pFPcNcYR3sl3YUtPNBKO+4qcfTPHXOSuTvMC3NUHeAdtDu6GJXISjZNKn2TUu39vHS6tNCofYEEJKRHkUhKCYPwtJz/Q0vAaWlIzVfOKsIFIC8ejPUHr7d7A7Vw1xevxLa6rrvv9wiXPzGecWMn7n1Rb/4NMjOE6IyHpYjQtIJ0CFo+s2xQWolz3anZjzVzvsmipTXYeECL+KCCropLvpcnjnwCfIT72K7sxTnH0de98zq5aXA4fFVkJeaOxrii60W0bGDaz2FSNwX0G49m+rsnOixIXZLt965wo/+PEbR5uWSsAb7fimSZNWCtIeKm4be4l0iWz4iFL9jmiUtNbEX/m36F5jeablYE3ux5o6hBzZhigt+2LZux/H3v34uu+19HCW5YpOlBmilBgfNykF/j1GlHKlB+SnHRe0VhKhSPF9h0vsHTe/6TeP93jldLThe5Xc5XhYnCmutguuiZGtwo4RZ0Ca/uTtDkcvLaf7PFsMCJTvCA5Menz2IZMhaMcFb56PCRxJ6EoCVxC4ktAVBI5cc75viH6jX1HkCG1aZIkiMdXXauV+r8xm0B+I5HJ1ICaNSuYh4gxLmRSiXpkNWUqh9t9AFzky7fUbG98d3Nejy5e+9CX+03/6T/zSL/0Sv/iLv8jMzAz/6l/9K770pS+t8mj6uZ/7OS5dujSwE/A8j1/8xV/kl3/5lxkdHeXQoUP85m/+Jo1Gg3/wD/7B3TqcDeE/+zP4pRK9y2coWnOoxYvGLHL2FGrWRNpEZcI8yY3uQlQn7shNM80L2lHKbCOm0+5RLeZxa9sHBpfVxWO4qXnS1AhSfxQ7bWOplK4/yX+69CQAuRLUPMVPP5QSrhN8yIsCu0ioiAjt1imqu1HlcbRbJskUnV7GRD1g21i4bh+5Ia4PWRoxqZG5cyDEusaRvmszXvW5vNAj9z26j/4M5bd+B6s7u0ycVqStLCn46Y9V+Xd/tcDlZs6Lx3t830MltFtCOyEii7CaF4wHUjCCCmprNE+1kstCyxCn3ZPlNdEbISWyPEYxexqt1eZ6nDkezoOfJnv7T8ne+xrWrsdWVeD5jmVShElOObjm9igEyqsiowbaclGV6cGgYKJN2/mNvzjOd9+f5ZOPbKO83sl8DUq+TbObESX5WqPWa6C1gqTXb4i7iE4i0KrvoVTbsqo3rQrUwnmKyx9QzHyA9/zfMe2FhECO70XNn8WaOog1fQg5vsdoHm8CWV7QjRXNOGd2rkOcFoYoOXePKGmtme8UXFjMWOgW5Ap+4GETiVVa8//8w1mu1/FkvlOwtx+AHStbTFYsKr6kEphp1ZdU+69HwuXfveJb/L1P1EkyRZxr4kwPXieZ+b/sL5/nArAlLGWqklyT5Br6uvWx0vJ7z3cK/uLd5YfXa+Fagn/8hVFDyDR89ViLblwQOBDaisBSlKyMQBaU7IKKkxNYZif0kiB8YG68nOlY1WD4GvsGKQArRyY5hS76x9QXxA++36XHbI0oclSSQXFndHjr4b4mTbVajV/7tV/jn//zf84v/dIvUSqV+Omf/mn+yT/5J6vWU0pRFKuZ+z/8h/8QrTX/8T/+x0EblV/5lV+5Z93Au7lFVt2Fs+MxHEC3r1LMn0ctnEN35tHtWYr2LMXZ10wUanQX1tgu5MguhHv70o0K42PSiRLiuSvQuMhEPMuebAGB5krwOVJvFCvvkXijKOmihUSqDCdtIVVGbgX8pfgkOeYmX3E1P/NQRmW9h22t0J1FKuTI0T1ko/vQfhWEpBNl5Lli+3iJqXr4kewcf6cgSqPIIkctXDQ6NmdttWGl5NJLMhqdlGopoPPoz1B+67fRlotexzOpFlj81DNVXvygxyceWEHEhEC7IdoJEHmE1bpoyNMg8rT8XrWSS7OTcG4j4hRWTXQs6ZrqyU3A3vcM+cmX0L0G+alXcA69sGLXBJWSSytK13dXkBbKK2F1Z8H2VkXYHtheZcd4iYtzXb717hV+4GM3vpe4jkW7l9HupeuSpiVnbhV30EvO3CofmE1uGVFKuhQzxymuHKe4esL0l+ujuPIB8gFTYu8+8TeN4e1NMpssL4jSgl6c0Y1z8kJTLntYtkXVse44UUpyxcXFnPMLmXG4X8iIsmVWZEtT5LDkz1TyJb1EGSLkW1QC2SdDFtVAsnNkmTg+90DIcw9snAlYqWdzbcEDk5uPOv7sx43+Ni90n1gpQ7RyTZwpqv7y+eE7ksd3+USpopcqokwTpYooNT5PaaEJsyZWlkKRc+yCzdXetQ8iNku04dN7ND9wwHxH783BV04JAhv8/l/ggGdpAsf8/+SKgttGDJ4FgSPBc9EqXaWv2oiPqiyFZGHT389WQGh9l5RfH1EUhWJhYWM2fysQQnPxxT+g1YmxwjqVwKbkO7iuhUSgkx7FwnnUwnnUwgXo+34Mtq9MGgI1uhtRGb+lijuFIoozsnPvQPMSbu8qUq8mokrYFJaPVcRIvX61WiE9ZqZf4N+8v51uJthfL/jMrpzR4JrTUGtkESOTNsIv4W5/EEZ2gbSM91Mnw7IlO8ZL1Mub76F3v8C2JSMjJRYXu3dM8Ki1RjWvoBYvIfzKuh5IaVZwab5LXihC30akXbS0r2tiqVcY7OWFHhgCrlgBkceILEbbHqI8TnlimlasBhVkzU6CY1vsnqpQDlZHMlR7jmL2rGlmvMnzID/3Jul3fx8cn+AH/m+romt5oTh3tQ3oDVudiCxCqIK8vgu9QnB7/EKT3/zL49iW5B//9KNr9nU9dKMM25Ic2FnDc23q9ZDFmTmyXhvVbaDTLhRFv39ksG6rotsFrTXJt/4z6urJ1QvcsB9NOog1+cCm2thci2uJUpoXSGEiSp5nUS75dLvJpgTBHwZLUaRcwXTNfJfHLiX81iurbWpsCdtHnH6UyOKFQyF2/8EszhSevUH18kamln1tqbhmviUEYejS66XLQvAlHRCiX4m3ct6K12vmrXvAJp2mTBssM80QuSFHWhUkWUEvFYyFup8es/jujEszFUSZpJdDlEEvW55+dp/mk/0s9MsX4A/f3zjS69ua/+kzy/f4f/E1QZyb/fUGREvjW+A78PxOzYF+ZvdCCy63IbDBJWeHPcf2j/8ApdHJDT/vVjA6WvroV899r0BrDRfeppxG5FZIRzi0LA/b9/GDEDcI8Wo7sSYO4kiFaM0aEjV/Dt1dQLevkrevwpnvgmMa0lqju5CjO6/rqqyiNnnjEkl1N71mA9VZoHblLaTKzH6xWi8ldY7MO/1lkswtk7lVcqdK5tbI3Co9q8w7cw7dTFByND92IFvdCkVrZJEYd1pd0HbHqe97FKs2ZiprlKLRTqmERr+0mUFpiM1BCIGsTYFSqOYVCKprUi2uYzFW87k01zX9/9wVXikqJzj5V8S7njXRwBXvC5Dmmt98ucF42eZvPLaid5kQRthv+4g8RrYuAR0kIYVbA9ujVvZodBLOzbTXECcRVBFeAGkPvM15t1i7HkUc/ya6dZXsgxdxH/nCYJltSaoll9nFaEPbHe0EELewWlfIR5xBr70DO6psHw+5NNfj2+9e4QvP3DjaFHg2zWaXzkKBHQqSbkI+N0+RJsaZ2y3ddMprM9B5SjF7CnXlOM6R7zfGr0IMyLKoTWNNH8KaPogc2XFLKf+8MESpG60mSp4jqYbuchHwFiov42w5inRhcTmKdHDK5e8+Xwdg54hNPZTsGrHYWbfYXZdMVcAW9FNKOSJZJlUh2litDHZ7ReneCs0OQizbDyytJ6SZSlNcoKQFno/KLXRRIJQC1CDcYv7Xgz+xwlhzMNVFnxApNAWiKPqO28avSaMRS47imkFhg2mqbhE4NoG7mqA9va3o72/BMkHjmtcGD41D3VfEOSv+BFEGSb5cBQ30TYqX/09y89dccQ48OrW8wrFZwdfOLC1z+SeP3t3WQ0PSdJ/A717GyTeOYM1XH6I7+Ri+axF2m4Qzp8DxoLoNqXLIY5PCyCLUzHHUzHFAIKqTyPo25PhehFeiuHoCPX8B1ZmF3ESsbAS1dQKmAmOGljlVMnf1X+6UVwj4DHIFX/7A4ULbzH9iKl8mTFojVYpUKYVwKOyAjlUlqexk9/Q2kiglzQravYzRqs/28RKeM9Qv3W4IIZH1baAVqnkVwtoaH6Sy7zBa9plrRWbg6/+GwYmv4l15C3vxLJ3Hv7gqAgNwdj7l9GzGqdkM2zIakVVP6kvkyQ1BamRzBlvM9zVPdepln0Z7LXEStosoj6EWzptIzGa0TULiPvx5km//BvnJl7Ef+DgyWLYaKfsOizIhL9TAef5aaK9yjTDcpKk+/fh2fusrJ/jOe7N84pHptbYJ/abYIo8ReYKVdgjbbboxlMdKqFoZ3ADpbi7deDPQWUx+/m2KK++jZk8PhLtybPdApO0c+RzOYz+MvMVec5slSluGvnbmzXMR3zwZc7Wt1ty9bAmWypDRIiCoAf/3T7tGm8OyYaOWNlj2sumjsFZYuCyRoj4JAgZ+T9cSpsFUXhMlAiwJlQDlXePNtaT/WSJFeYZQWd+4MoMiRRYJIjNGw+bd+lMpwQpQTt96ZrDfSxXXfX1R/08s6Y2WiNjKquwVBE2s0hktoy6gvtHpukQk+xlegeafPS/IFaSFREmHZlQQZRAVhmzt9gtEYvZhwnF4aNQhzgVxDp694vu+CxiSpvsEndoD6KSHbUlDLop0QDJkkZJbHt04JUokVrdFOWkNTtJroYVE+31Ba2uGojVDce6NDT9boNHCInGqpHYFFZioUeZUyZ3SGnJ0LZqJ4Nic5Oi8xWLcb5eA5rGJvvCvSLGKhMJySbwRpNZkXpWGHmOqPoJnWyzGGd0oZ3o0ZGo03HAgG+LDQ0iJHNlm2k90ZiEcWaWdEUIwUvWIspxunFPuC1nj3c9hL57BihsDcbheEYk6OOXxI09U+MM32nzrhCkf/9zh0toUhxDg+OhAQtrDas8go0VDnLw6zUQYcfhUeUBIZGkE3V24KW2TnDqIHNuNmj9HduxreE/92GCZ51iUApt2lFEJNzjXhED5NdNiQ7oUfZfkgztrbB8LuTTf49vvzPD5p3dAkSLyxKT10i6iiBFFDmi0dHA9j5ayGfNqWKUyooi4rtL4JqF6TfKTL5Of+S7kyzcGEdaNgLu6nOqQlbWNmW+EvFBEaW6IUpKT9sXcnn2biZJWRtOlTGQlSTMuNjXnG4rzDc0j05Indxgn66JQzLTNwFsPBDtHHXaNeewcC5gaDbAti1xaA4JkKres1S7XdwpLRDpL+8eXm2mewdK5ovvHrftRKCHQ0kJbNtrxTDXnEjn6MPtxE6nFlVOxUvRNf/+W/1k1f2lOKCVh6FFemZrsY0kW/lgVHjtkXqs8J+mJG/a03EoMSdN9gl5lF4mbYZfqG65TQpMXmkV/B9FkFUfk+DLH0f1mjHliOkcLSXPbc4isi9++RPXqd1cY+YOyfFRQpyhPUYSjtHWJVu4iLYG7yeq0KIP3FyyOzVtc6izffCQaheDhiYKSTJFZghYOqT9KYftYeUzq12nY47iOR6Xk0GibEvDdU2XGqv5HTr90L0JIG2t0B4UuDBkprW61YVuS8VrAxdlO33TUQvtVuo9/kfKbv4UVLVJ+67fpPPbFVcTpmb0BhdL88VsdvvFBD1uKQUn0etC2j7Z9yBOszlVktMiIX6fRK3H+qjGWDH0HYbvI6iTF7BmTptiMb5MQOA9/nuTr/5Hi7Ouog88jKxODZZWSS6uXLXUL2uiLQnkVZG8Obbuo0jgCzacfGee3vnaOV4/N8KntPcqW0ZGAMD20LBftlAYDiA10OxndKGNig4/6MEhf/V2jdwREeRx7zxNY0w/essYRDFGK05xunNGJc7JMmTYltklv3vJlqvUyMVrS4mjFUnRmtid494rm6EzO5eZqXaVfDnl0bCcIyb6w4GdGI3ZOVqmU1g6yd69oHXOMeYxKYlQeES2mqF7PlNRrY7MwiGhJG4SFtjy0Y20tmbuBp9L1aPytUHwtJfgeukg2ZSOgRY62srs6BgxJ00cKwnhthCUKHRIVisVcY9kC37bwPQvXsZACSgBBDV2p0dr2IDqOUEWCDEew+n4dWaZoRRlx34n7Wtfi6+Gr5xzem18auDS7q4q9VcXXL5hT7pmxFkILMq9O7pjIgJ33SP0xkmCcJNJM113avYzJcY991SrhDUqyh7i9EJaNNbqTQqt1iVPo2YzVfGYWezi2REoTeek89kXKb/42Vm+B8lu/S+fxn0U7y9VDz+4PKRT82Tsd/uq9LpaETx26gRbJ9lC2Z8hTd5ZR2aAZhVzIxtm5Y8IQp3AEES6ioxaiNLKpY7TGdmNNP0hx5X2yo1/Fe/aLq47Pdy3iPCfYQBAOmOIEBPb8SYreAkIIjgQJ26twqaX51smIzx8pgyxdNwrgOoJmN/3QQmitNerqCYRfQdaMaaL9wHPk8js4Bz+BnDpwy5Yk1yNKfuhsniit0uHkJkqBhYhSpNIgbbS0TZsk2+jatLT58iuzvHGqseqt6mWXHRNldk6U2DtdMeldoOpAtbq+YetWQ2uNUppi6a/QqCxBZxEyi5FZB6lSHJVjORZUKhTY5MJBIVGAViavpQuW02IiH1TwSYFp/ID532T+BBJxR4Nk32sYjkIfUQgh8GwLbCiUIk4LekmBbQl8z8ZzJK4t+w8zEsISFv02KRripKAVZahCE/p9M451oDScb0mOzUv2VBWHx80N//BYwUIkODxW8OBojiNy/uy0Bwj2VVNqtTKJW0FZHrJIsPKIJJggDcbpJgWeY5HlisnRkAM76yRRetds87+XIWwXa3SXIU69hknVrRgZ62WXKMlpdzOqZZMqU0GdzuM/ayJOvTlDnB77WSOe7uMTB0JypfnK0S5/ebRL4Eqe2buJiqwBeUqpFU26s00uRwtM79pFqVYz0aa4g87Tdav/1oPz8OdM649LxygWLmCN7gRMKXglNC1kgpVvpQpEkfVTbjEii0DlyLSLiBZR1e0or8xnDnv85stNXj6b84kHLcIbmAf6jvGH6ka31idRFznFhbfJTnwb3bqKte0hvOe+ZI5lx8PYOx+5pfctlCJKCrpxSrdPlBDg2pLKjYjSymiRKpbFyGCIkbBAOigvhHqNwi8osFDCYradc/Rsk33bKuyZNg9W2yYS3jrdZN/2Ckf2jnJgR3VT7uu3G4Uy7V6WSJFaMRUIEBobha0SLJXiF108nWKLHNuVWGUX6VaxHAfXsanVTL/BLCsM4eqLpZXSKK3R/alSmrz/2Uqbll0KTa40utAme4lmUBS/pPsWxkhVCmHkTkIgrT75Glq13BSGpOk+gUZiFSmyiFGWC2z+UcKSsu8bqMlyTaeX0pMC25YEroXn2IN2SYWCbpTSiQpsC3xvbZpDa5jtCY7OW7w/b9HJzEXXTBSHx40ocX855eBDOYVSvDnn8eLlEnEhAc0Tu0OywDwNWnkPoXLicJrMH0VhCFutbLFtLGTnZIXQd0iidM1+DHFnIBzPEKf5s+hoEYJl4iSFZLzmk2TFKoNGFYz0I06/hcjidSMsnz5Uoig0r5+L2Td+k9Vhtou2XQI3JWrOcjVpMjFWx3NtdNyhmD+3oifdNdU+a/ZFIKcPoq58QPrmH+M8+aP94xOEeYGf9FBKGh2dyg1RWkoZCYmWpnpOOSVE1kFkPfDKPDjtMl2zudLM+faJHp87cv2ox5JGeLEdU70JV3ud9shPf5fs5MuQdAbfjyiNDOwebjadsUSUenFGJ84MUQJcR1K+HlHSymi38gTQJq3Ur9LSXoiyPPPbSduQJssBaWNZEl32ubKwwNun5jl2ZpG5pnFobHbSAWl67MAYj+wfvaER6O2A1pokK0gzRaEMEelTIkM8pMSSRrLgORaupXF0iqUy7KyDzCOjOZUgLRdh18B21kT5LEtgSfN3w75160Bps29L+7hEtq6dV+SarCjIctPjLktVf1v6WiQToZJCIK0+sZISS1wTuVpKn+YJokgGv7fIExM9FFb/ulihDVvSiwlpqgb784RlgwwQSYbQYsUya/mCuMcwJE33AYQQvDQ/QhwHTCSKMTdl1M1xXRsl3ZvIcQscW+DYEqU1WaFotAtsO8NzLDzbopvmJEmB50msa963ncLROaNTmo+Wl/mW5sGRlIdHYuwsQwuBEjYn2iX+6rzHYr+DwGhJ8qkHfHaMmtPOTjsgIC5tJ/dM5dJ8I8KzLQ7uqDM1GuLYwzjzvQDhBoY4zZ1DR03Eiia5nmMzVvW5Mt8jt5fbj6hwlM7jX0RkkdElwbIIuS/k/OxDJZ57ICRwb+13FrZLMDpBt93jymyTcuBS9jxsBDpuI6xrtSxr/cAA7G2HSWdOoBuX0JffR9S3AxoXKOmIqJ3jenZffGubdOM61512SoikgyUXKUrjfPbBEr/1SpOXT0U8fyAkvMFxlgKbRjshS3NGy951yY6O22Tvf4P87OumhQUg/Ar2A89i7336pr2UCqWIk6KfestIM1OJ5TqScuBsfJtZRZRAWx5Fadxo2SzHkEq5sRZnthHx7ulFjp1bZHZxud2IJQX7t1c5uGu5qnGrK2aLQhFnBWlqKu5cx6IcOPiOjeMY4mxZAltKLKmx+oU4Om6gkw46S0x0TVoI1wOnvOXdGWRf+7TZ2hitCoo0okgiVGp0VUUaobO+xiqL0VkMAzIUI/qVenKpYk/f3qj/Ro8TeqnicIlMIUnDCfSRJ27r598MhqTpPsBcI+K1y9BNlzyVTJQmsBV1t2DUKzg8mrN31JxY6zoZXwN5TfouSgq6UY4lxap03Mr3Ot2wePGCiQhYQnOglnJkJGZfrUBaNsr2Saw6s7HNN04pzi0akabvCJ7b53Fk2jGhYK2xszZaOsThNIVbRmtNs5MigCP7Rtk2vjm/nSHuHIRXwhrbRT53BhW1VpWkV0OXOM1ZaCWrRMAqHFv1HuGJr2A3L9B78IfI67sRQhC4S+ea5s/f7bCt5vLCkc1XxwgB5WpImhXMxQXNXFK3Rinli7ihj9hEVFb4ZawdD1NceJv8wtu4UwcHhCUUPu3FCOVuoqWHEGgvRMQNpHR4cFuNqarNTCvnpZM9vv/w9aNNlpD4gcPcYhdbCmrrCJiXoIuc/PSrpnKpNoVz4BNYOx++KfPLJaLUi3PacbqKKFVuhijZPkVpwrTJccMV7TTW2VQbjY/dfyA6emaRr795CQDbEjywvcbhvSMc2lXb0Fz0dkFrTZYb+UKWaywJvmczNeJTCmxC3x60ZtJaQ5Gi0x46jkyD5CyiKHITNbE9hF/eUvPRTR2TKtDdRVR7Ft2e609n0XHHkKE+wV6C4NaIgEaYdkKWh+pPtbAQWiEoEFojUIZgaTMVA5uDwpy3ul8NqBRiHSm5qcgrjLlrf57TvQrq1lLYtwND0nQf4P/zh8fopoaohK6gUH1n1lwS5ZLLPYepcsT+vItA853ZEt+6ElD3NSOepu6rwesRX3NtZHs5fWeQKzjVkBybt/Ck5of3RUiVc6SiOF6p8NBIysFRsH0PZY2QSwclHaIMXjmT8M6lDI2xB3l8p8szuz08Z8n8TeGkLQo7JC5No2xTTdWJMkBzcGednZN3R7w5xI0h/DLW2G6KubMmktMv7xdCMFrx+5GKdfq2wXK/uaRF+a3fId7xNPHeFwYNe49eSvjWiQhBRCl0ODRxc7cn1zGFDmlWMBe5xvcobRDWauYB4Qaw9zxJcfk9dGcedfUk1tQBwKSofccyTaM3E+kQFtr2kNE8lm3z2QdDfvvVFi+djHh+E1E1t683nG1EOLZF6NlorUzvt/Nv4n7spxDSRpZGcI58zvisTezfdApuI6Lk3ApRKk+g3bLRq92AKF2e73H0zCLHzi7y4O76oM3Mkb0jXF2MeObwNDsnQpzNNo69RShl0m5xWqCUxrEtSr5DteQSeDahZw90PloVqKiFTiN03DaNkfPUZHwtD+GGW2I8uhnoIjPn6gpipFqzpmhDFTd+A8sx5saOb9omOb5pz2Mvv8bxzLyV69nmf205/VSgIldL7cqM5irNFXmhyfLCrFNoCq1AL1XmaaSUOLakUvKI4qxPtnSfcKkBmWIF2dJZSpTDjrv0nQPDNiq3G1vRRuU7783wq398jF5qQqKWgIMTgn0jEommEWn2jiimPKN5+uuzNt+Z2zhSMx0W/N0jPTCnJx8s2IwEkBTGT+n4okVS9EuhheaXHmtiu66xIrBclOWghT0IQRVK8/bFlFfPJiT9B4D94zaf2O8x4iuEKhA6R6oCUOROhaQ0jbI8slzRS3LKvkXouzy4e2SV2/PdaCdyL+BeP27VXaSYP4eQNmKFC3c3yrg418VzJI6zzuibpwSn/hrvylsAFMEovYd+mKKyDaU1f/hGm9fOxkgBX/p4nQe33brIN+82UQuXwCtTKrmUA/eG5Ck/+xr56e8g/Arux392YF3Q7KUstOJ1yeCGyCJAklem+Lff6HK1VfDZB0O+7zrRJktKSiWPbjeh0UnwpWIqOok+9ZIZDAH36b+FvfuJze8Hpv1NnBVESbYs5sYQJc+2boooKb+yaaJ0aa7L0bOLHDuzSKOzrEscr/n8n39iWZhuWZJqJaDVvsbg8TYhz03aLUn7RpuuSbtVQpfAM5qklaRTpxEqaqN7C+ikZ0LulmNIg3V72zZZlqBaNULwYh1vLp0la6JGqj2H7i6yYaG/5SAq48jKBLIybhq6hzVDfOw+GdqivoUrYcTrqi+YXxLQG3KV5ma+5zu0OzF53he9A2iNlGKNcB1VkHXb7Hz4ScLK7TV/HbZR+Qjh40em6GWKY6cXOHmxyVwz5r2rmveuFkyP+jyyp0YwEdAVxtX18WrK/naPdiei1YlpRgWNWLKYWHRziW8vh0W7ieS/nlpLsMqu5qEJwaFJB1XZTrLOzVFrzZn5nG+ejGlE5uIdD+GzexW7ailaZFBYaGFT2CUyy0NbDrlTQkuHKDGNOidqPmjBRD2gdBMC2CHuHmRpBLSimD8HqRzoZ0qBw2jVY7YRUbXctYOx7RId+gGy8QOEH/wZVrRA+fXfINn9LPHu5/nRJyooDW+ci/ntVxp88dkaD07fmpGdHVaxiogibtPqCrpRTimwr0uerJ2Pkl94Fx23KS6/h73jYQAC18K2BHmxrNm6IZwAkXSwo3k+c7DO7363y0sno01puETaZfzqa7gXX0cV/Zb1jo+97xnkxP4bfrTS2hCl1FTjRWlOViikELj2ZjRKselNxrURpdDok26Ad08v8JffuUCzu0yUHNsYfx7ZO8KBHbXrbP3hobUmzQxRynOFY0l8z2a85hP6DqFnrzHI1apAxx3T7y9qmupI20cEtTtDMJIuRWN2NTFqz6Kj1sYbOT6yMrGCIE0gqhOmtdA94DtgROXWhvp2yxKUyj6NRo80K5arEQtFpjRZtixczzNFkRd4N2F9sxUYjlD3CSwp2Ttd4ZF9I1ztCydPX25xZSHmyoJ5Aj6yd5QHd9XxSmWqpVGqwA6tkEWKlUc4aZM8iclSTerV0NKhi2RbNaMRmSqKB8YkB6dddtSdwdPUsnO+Mp4qumChnfP1M4pzzb7uw4Hn9lo8tD0AKyCyHLS0UdJMV96htdZ0owwpYHo0wHMs0lwzXhsaV95PkOUxdFGgFi+AEIM+hiMVjzgt6EQZldL6YfR8dD/tp3+e4MRXcGffwz/3EiJPiQ58Pz/5dA0hJa+f6fHbrzT528/VODB5C8RJCFRQx857lC3ItaTVzej2ckqhTSlw8a+5mwvLwd77FPnxb5KfeQ1r6hDCdnBti8Cz6fQy7JuINmm3hEjaPFp3+OuKxWy74OVT0XUNPTn+dUrHXzQPNkDuVin2fIzagx9HOht/D0vWInGa0+llJJlCKYVlSVxHEnjX0WStS5QmjUZpE0Qpywta3YyxmjkHyqFDs5vi2JJDO2vGHmBndaAP2goUSpGkBckKEXctdKiEHoFn43vW6kbRfZioUsv06Uwicy57IeIW28hsFjrpUFx6j+Tye3Sbl1HxdTIUXhlZXRE16keQ8Mr3/T3TkqY4ab3fZglKm3RfkefoGHz37rXQGpKm+wxCCKZGQqZGQrrRJEfPLvLe2QadKOeVY1d57YNZDuyo8fC+UUYqnnEstn2U7ZN5dWSYYOcRKm1j5RGTbsIXH3EobN9UuUCfHGXIvr/K0s1bC0Evt/j2OXjniim/lQIe21vl8QfGcDyX9AZPN0pp2lFG4FpMjgSEvsN8M2bbaInw2h5dQ9zzkNUJ0Aq1eNEMNraHJfs2BGlOnOYbinm1E9A7/CNk4wfwT79IvOtj5j2F4O98cpwkneHopYTffKnJ332+zr6Jm0/VacdHu1VEtIjtVygHNnmhB+QpDGzKoYtny0HTWGvbYYrzb6PjFsWFt7H3PgWYfnS9KL+5aJMQaK+EFTf57N5Rfvdt+PbJHs89EOAvpS/7AuNBawgnQOiCvDJNsvNj9OoPEGcamULtmktkKe3WizN6iUm7aQ2OIwh8C+t6ouQPSZQALs93ef2DOd4+tcBo1eMf/ugRwDi1f+lzB9i3rbqlFbBpVgxsASwpVom4A8/G3UCDplXejyo1l6NKjo8ItzaqpKIWxeX3KC4eRc2d5dr0mgjrq6NG/dc3Wwn5UYMUEtcGLTVa20NH8CFuDaXA4WMPTfLkwXFOXmzx7ukFFtoJ751r8N65BtvHSzyyb4Rdk/2nESFWE6giwSpi7KSFlUcI3QHEwCdDSYfCDSjsgByLt89HfPdkk6yvsdk7XeHjhyeplq4/mKl+qDzLC7SGSugwWQ9wHYsoyfFcm9Ha3eslNMStQwiBrE0a4tS4BIFEWA6+a9zCryxEOLY2HjQbIJt4iGz80HI0ssix3/4zvvTox/h15XJqNl3VFf1mUQQ1rLRj7A5sD9sSA/LU7mX0oj55Clw8RyKkxN73DNmxr5KffxNr+xGE6+O7NpWSS6OTUPI3UUk3+JIstOPzWG2RvyrVmOtqE216wMK98g7upTfI67uIDv2gWX/n4/ScEdLKdhACB8h1zlwjMiXvUtxa2m1pd5YMOZFo27tpohSnOe+cWuC1D+a4stBbMd+Qt9A3UepDu+qb/IJuDoVSRLEhS0si7ulRI+IOPOu6nQtWRZXSHiC3PKqkeg1jnHrxqGkqvQKyvg1758PU9h8hkhWUGD443usYkqaPAGxL8uDuOod21biy0OPd04ucvdLm0lyXS3NdqqHDkb2jHNpVW37yWkmg3JoxYcuNCeFSSk0LGw2cm+nw8tEZWj1TqjpW9Xju4Sm2jW2cYsgLRZop8kKZHl+2oFZ2CT2Hkt83s9OaXpyzY6K05aXFQ2wdhJCmXYcqUK2rENQQlk215BElOY1OeuNeZCtGevfstxAX3qR66Sh/b++nOffgw2wf+RCuz5aDDurIzizacpf7va0gT51ryJM7uR9x/k10Z5783Os4B54HDOGPk5w4LQjWMX693j4IVfB9u2JePN5j6vxLVGZPIful02IhI1KFcU20XYr6rkGnedVnjIvtmLlmTCV0kYLNpd1WIk+RWRdtuX2itHmNEkAnyvjL71zg6JlF8r5Y25KCh/aM8NShcfZOV7YsArBkNBnFBQj6RCmkFDj4rnXdz12OKi2io7ZpjOt4pu3OFul+VGeB4tJRikvHTBR2BeTITqwdR7C2H0aWTNsqtxoQt25vk+YhtgbDkeo+gurb9G9key+EYNtYiW1jJdq9lKNnFnn/fINWL+OlozN89/1ZDu6q8fDeUWpld+WGfa+N1dGe+VbMy+/OcGnePE0GnsXHHprkwM7amvzzkt/JUkWEbQk8x2Kk4g2qU66tTOj1HaRHKz5D3N8QUiJHtqNR6NYshCNIaTFWDYhTRS82IuzNINv2OG7nMmLhLOVTX+HgyEl64Q+ivQpvnY8Zr1hsr9/cE7nyKoikA3kEK/rggSFP9gry1I1yQt+isvsZOPpnFBffxd75iDGOlJJq2WW2EZErjb3ZFhRaYXev8lznKC/U5vo7BUU4TrLjSdLJwwPysnQtRUlOnOXESU6WG2fnNFe4jmSyHm7e07bIkGkXpE1RmkSFI2Bv7ppLs2LwoOU5kvfPNcgLxUTd58mDEzz2wBjhFhZvFIWprk0zhedYjNd9amWPsu9ct/2H1hqyfgXcqqhSacuiSqo9R3HpKPnFo+jmlVXL5NgerB2HDVEKtlYEP8TWYmg5cJuxFZYDliV45b1ZZhe6CCH6rRFASoFtyUHIfj1kueLExSbvnl5YVfK7a7LEw/tG2TFeWvOU1ktyvvv+LB+ca5g2mlLwyP5RHj8whrtCyFkUhiQtpetc21SolAIH37FwHbnhE6DWmoVWyp6pMuP1jfP193rp/Vbhfj1uXeQUC+fRnXnzJC8tOlHK5fkeUrKp9heWlJRCl/SDb+Gd+jpC5Sjb49TYp/k3x6bxHcnPv1Bn+lqBzw0g0g5W6wraDUybhg2QK02SmB5p4xe+ht25gpw6iHv4+8wxollox7S62abTdKLXoPz+H/W3F7yZ7uLl/DA/9MkHsfsO/WYZSEvSbMeDZriOJbFtcy1ppenGOfWKR718g+idypFJdyCIV+HoqsbJG0FrzanLLV7/YI4TF5r8X3/6UUp9veFbJ+cZqXjsnFh73/gwWGk5kOfGGiBKlqNKo1WPSuDi3UAAvDaqlCKcANzgtkeVtNbo9lXyi0cpLh5Ft2dXLBXIib1Y249gb39o4Ge2Hm5kObDVMBRA900ndf9vxev+Mr1yGf35CFbpslbuvgDTUVgiVrRQWZ5a2La8qWPXKkcnHezpB2+7zmuzlgND0nSbsVWk6fxcj8VmDylEP6JjqmRMCsxEoDRgS2Fs/vtEalABpzUX57q8e3qR81c7g/eul12O7B3l4M4aUsA7pxd548TcgAjt22Z0S5XQNU/AhSLLFLlSWNKkB8q+g+/Z+I41cPm9Edq9FNe2eGBHbU3p70rcr+Thw+J+Pm6dpxTz59G9RURpFCEkzW7C1YUIy+aGqdiVXkW6M0v4/p9gt82T+wd6D7/SeB7pePz9F0aYrN5ElENrrPYMIu2gvRsbqOZKoxpXGTv7F2Z4ePwncEfGzXWQKq40eiitcW05GF+WenlZ0Tx+8xyNsUcp+ssmZ75N6pRplPbwax+M00htnt5p89iOZfJnWYLAd1FLDsjrEJOiUCSZYrzqUwrXOX5VINIOQoPya6jSWL/ty/VJTqub8saJOd44PrfqAevHPrmXJw6O3/D7+jCwLEkYeFyZaxMnBb5rUSs71EoepZuJKnXmjQGltIzx5CabNm8WWmt084ohSpeOojvzywuFRE7ux95+GGvbQ6v8y66HrSRNWuWQZ+giA5Ut85xVZKffm1EIQA5ei6Xeb0IO2uAIadNvpoeQFgqBUsYQuUCYDhJaIVlyAM+RKkdqU1CkVdFPOxvjSksKyiWPTjemUPQ/Y6nv3EqSZSGEvCdI0zA9d59gqYGo71qrntYLZSI9Wd+BNUpykn5FydIFKITAtkzV3fbxEu1extHTC3xwoUmjk/Ktd67wnfev4tpW35nbmM899/AUk/WANC9o91JTlWNJQn9lNMm66S7ZSpk0w47x8nUJ0xD3J4TtYo3tpNDaGPCVRkw7EA1XFnsIihtGDJagwjE6T/xtvHMv45/7NvtKEePa40JD82vfbPD3P1VnvLzJ21g/4mLlPShysK6/nS0FjE6RNnbjNs8Rn3yFub2fGZjvpVlBo5Ph2Ka6B62o9C4y0jlJkBojyrY7ThpOIxDMTj0/GJ+e25bxp2dtjl7JeXpvgGv3K/ekIPAdotj41awHy5LYSrHYibHsYLn8WitE2kWoAuVXKcIxtFu+IVn64HyD774/y4mLzaVWfHiOxWMPjPLkoQmmR28cnbpVaK2J04IkL8i0IPRspkdCKqGzYeXbYNs8RSddE1WK21DkpgKudHu1Slpr1OJFo1G6eBTdaywvlBbW5ANGo7QFA/lN7acqTIuUIkMXqeFElmX0dH65716+gpD0CdEqctSfKi2MN5ISptmv0saUUvUfnOOCpK9ZNY7fxktp6fyRwkIKGyE9pBAmM4LGkhpbgC0Vlq3xLNChT7foovIMqXJTsV3kWBQIUgQaqRV6ieTdRTdwGJKm+wJCCMZqPs1WxEIrwfdMawUhRL8FisTvP1CNVDyU0uTFMplKspwoNSZvcaoRwMP7Rjmyd4QzV9q8f87ontJMEXo2Tx0aZ+dkybRriXMcRzJS8Qk8C9+1PrTXSifKqIbual3VEB8pCNszxGlOmUEmHKFW9tBaM9OITH+zzXqtCEmy53nysf1oafN37BF+9cUGcbvFb72Y8rc/NcloaXO3Mu34KL+K7C6iZWWpxeJ1kW5/HKd5Hr9zkaQ7S1GeQEjT/kFrSHsdJuOzlFunsPpGlBpJr7wT6ZVXpbSXcHgSXrpS0Egsjl7o8cTem+u16Do2UZzTaKeM1VzcIkKoDOVVDFnyKptu5P3qe1c5edEYKO6eKvPUoQkO7xnZUquAvN8JIMsVvmezbbTE7h0jZEmK2iDaorWGPEEnPVTcNkQpS5ajSsHtvZ+o7iL5qVcpLr6z2mDSsrGmDmJtP4I1fXDgT3YnobWCPDO98IrMhDKlNATJDZDeeL8litt3/zbXh1KaQvU9j/pGkkWhyJUxj0zzot8CZT0ypEELhDTkXkphPJYsgeWY1jNSGvnIctRVo1TfGVxDngsirdFaoLRx/G5oSafrUhQ20CdYQgwiVpZQCBR2n3S5wKRwuFvUaUia7hPsmKxgoZlvRMw1YxZaCa4j1w1dSylwpbXiSc0MVqYXkOqn2AqiJOfB3XX2b69yaa5LnBbsnCgPhNvl0MV3zeubjSZthKIwF+xEPbhuafAQ9z+E4/eJ01l01ICgTq3soYCri5Gpqlyv1coGKMpTgGlX/XOfqJG/9F+p6jZf/tYLfPaTD1MPNxm98mqIuAt5DJsY8LRfIxt7AHf+BJXzLxId+BwqqAMw1Xgbb/79QbPR3PLp1B6gU92PsjeOOkgBz25X/Nlpi+9eyHhkR4rt3NygH3iSuN2mmxfYo6NQ3YbyqhtWw/XijPfONXjn9AIff2iSh/aMAPDxwyai/OShCcZrW0cAtNZEiZEVWNLYI4xUPCqhQ9Dv/baYZqgVwhitFaQROu2hek3T0qRIQdqGrJTC265VKhbOk5/4NsXFY7AiumFNHzIRpamDtz3tdz1orZYjSHlmNEVCmHYujocsj/X7w3lgu4NeeKofxYu7BVGa0I0yslwNCoryPqkxreA2IEOuvUrmsRmIQWTpxtssadlcSwza52it++1XVr9OtCF5OoVRxZA0DXFjeI7F5EjISMWn1U2Zb8U0OylSGs+m66W6lsr+r316zAtFniu2j5fIcoVtyX40aWMR961CKU2rl1EvuVTDYZTpewHCDU2D34Xz6O4CojTCSD/iNNuIQXBLEY2y6BEGMU7S4+etP+f8e5ex9x4y7vPSNs1ESyt0OP2B1owMDjqsIztX0dq7YfoKIN3+BFZ3DituEH7wZ/QOfA5VGkc4LgJNzx2jN3KQXnnHdUXmK3FkvOClSxbNRHLsXJtH99fZ1C1Za2QRY+UxIvC5qseIrQnG/fKaQ+nGGe+dbXD0zAJnrrQH6RO7bxUAcHBnjYM7t66iK8tNc+BcaQLXZnqsRK3kDqLlaw5P5f0GuV101EJnS+lU15CDLah+01pRXHqP/MS3V3kpycn92Ps+hjV14I405tVar0ixZabxrhAmgmS7yLCOcAPTVNd2zfz+d6jUEkmKiZKcTpSRpAW5UgjMvd+yBK4jB8ToXnQTF0JgCcF6w1lRKDpRfud3agWGpOk+hGNLxmo+9YpLu5cx34xp9VIEEPobu+Cuh6Xqu616vlRKE6U5SaJAQuhaTI6Gty1yNcS9D+GVsMb3UixcMMQprDNS8VEa5poRJbG2D9iNoL0K3Wd+Duv416hcfZNdnbfhnbcHywunRPv5fzT4v/at/80IURGGVEnbpOaEREuHZPuTFLUdANgLp7GbF0BaaGGZqbQoSuPIuIlQGeGJvyTa/1my8UNk1Z3MFyVTFr9JwgRL0aaCPz8tefWyxaPTDaiMXX+bPMYuIgrLIy5tI/eqOMpioZPjuSnVfsr7/fMNXjk6s4ooAUyPhhzZO8Ij+0Y3vZ+3AhNVyomSAseSVEKXkYpPOXDWJck6T8k7Kfn8VYpOA53FoDXC9hBuacsIi84S8nOvk594aVmrJCTWrsdwDjyPrE1tyeeu2oc8Ie8kFJ0uulB9guQgg1GEG5r0mu2uaRScF4okyYmTgm6c0elHkvJCIyXGw8u3tzTN+r2IIWm6j2FJSb3sUS25dKKMxX7kqdPLCQPrrhlGLvXAGhAlz2bbuE8p6BtbDtNy33MwqbrdFNJBt+cQQYWxqo9WmvlW3I+U3iSRtlyKh75AZ+og3vlXEFlMkmbEcUa38Pmr11s8tSdgZ90atAISaFAZQmWr908tP71a0QJO4+yGH6uljVA5wcmvEu37NEVtJ6VMkeYJRb+qdLM4Mlbwcj/adPRSjyf2dcBf645v+kd20dIlDibJvLox6gRsCUWUcuZKiwM764S+zWIr4fTlNgDbxkIO7xnhyN4RRqtbq79ZSsFFfQ+27RMlaqHbN+AUq9Yb6JOiNjrrEvuguikId8ub5KqoSX7yFfIz3zG6KAAnwN7/MZz9H7uuRcDtwCDtmEVI18MancR2xyiE048iOWvSjkv61LgfRTL+VabJrWUJXNuiFNz8A8gQN4chafoIQApBNXSpBA69ek6jnbDYTpiPEgLPIvCu75h7O1AoRZyYqj0hTBXM6Lh5sgyHRGkIlqvqlGWjmlcQXonxemB8j1op5cDGulniBOQje8lH9gLwzoWYr77XZb5TQDPmtbMxkxXJM7v/Ox7bYRNapuk0SxU63VlE2qYoTy6/X20XyikZoqUK0AVCFaA1RWWavDKNf/abOM0LBKe+RrznEzC6j5Lv0OqmhL6pdN0MLAkf31bwF2ckL8+EPDm9gAh8lm7NQmXYWRctbNJggsyrD0xoe0nOmctt07h7vse+bVXqZZ/pcRNNKpTi8J6tJ0pLMK1dCnzPYtdkmZGKvyrKsb4+KTMaLD/ArtSQJOgt9CpSjUtkJ75NceHdvt8QiNIo9oHnsXc/vuVaJV1k6KRrbCHcADm6C7tSx58aJ1rsolfYiyz1FYzTgk4vJUrN/VUrsG3TNqdScob31juMIWn6CEEIQcl3KPkOYzWfRidhoWX+PNdU3N3OtNi6RKk6JEpDbAwhLeTINrBsVOMSQhVM1AO0hsV2QiV01tUybBaP7PR5eIfHufmM756NefdizNW24o/fjfmzY/DCwZDvP1wfrK/COlbrsknX9VGUJ1eRqPUQ7/s0nHsJZ+EU/tlvkhQp4diDxu4jV3g3UWH68HjBy5dsWqnkjRmHT7pXcHPjeaMsj8QfJwtGUXZAL845c36B05fbXJnvrfISTHOTpplrREyPhnzy0W2b3ocPgywvaHdzbFuybTxkrOIPLCU2q08SltiyliZaK4orx41eae7MYL4c34N94BOmAm6LPnvp88li4x9lWYigiiyNIPwKwrIRtmkplaQFnSgjSjI6vZw4K0izAq01jm088eoldyhtuMsYkqaPKHzXZnrUZqzq0+ymzDdjFjsJjiUHvd9uBUXRT71lBVIIAs80Zi0H7m0nZUN8NCGERFYnEZZDsXAB4jYT9QpaaxqdlFrlw51DQgj2jLvsGXf54UfLvH0x5rUzMZebORV/mcwsdgukdBjxq8juPFo6mw0QgZDEu59HWw7u7Pv4F15FFBnZ6GEa7fSm0nSWhI9vz/nLMw4vzQQ8u62Bm8bkwkZZDlaRoNMu75xv8fV3F1ZtO1Hz2be9yr5tFSqhi1LmO3Rsi/Gav/mmwreAvFB0ejlCwHjdZ7wWEHgSsgTVjdFJDx01r9EnlRE38Me6XdB5Sn7+TaNXWjKhFBJrx8NGrzSyfWs/v8jRadeQRNdH1rchwxq4IUIIlNb04ow4Lbi0GDE3byqY0eA4AtexKPnuPSnW/l7GkDR9xGFungH1srcsGu+mCGEq7jYjEiwKZULDaWHM94ZEaYgPCSEEojxqIk4LFyBuMFGvoTW0uxml8PaklAJX8vF9IR/fF3KpkTFaWiZNf/1elzfPxxyccnhmPOTBkRjLu4nPFYJkxzNoy8W78jbe5TeoFilp7WHaUXFTabpHxnJevmjRziSvztfYOzHJ+/MWdlfz6GSBF82wyzbvN1m12T9dYu/2Ecrl1bYGUgpKvs1CK8az5UAYfjuhlKYdZahCUy/bjJcsQiuDqEWx2EZnqXGfRiBsf8v1SddCx22yU6+Sn34V0sjMdDzsvU9j73/WEJet+mytTVQpi4yrtldBlkeNuaRtSG0vzulGGc1uSi8x39PYSAnPvTNSituNpShZs5eSZQrL6tsWiGX7gqWpJVdW7t3tPb81DEnT9whsSzJS8aiVXNpLovFuilKaMLDxrqm4y5ciSmlhWju4NhMTAaXAGRKlIW4bZFBFjO+hWLiIjBaZqNUQUtDqJti3+RRb2eRXa003NY5AH8xkfDDjUnZsntwGT++A8c2aYAtBuu1xtOXgX3wN7+pRxvOUpPr4ptJ0WkOUFnTjlP01yZtzHn9xyoJTOZBT9QWHt5cRIqTu5Pz9j6XU7QxYROU98m6JwilR2IGJlGGqa4tCMduMsW152xrqaq3p9lLSJKLmasZLmpAImhlqQJJcUxJvbU1T3OtBNWf6eqW3jRYNEGEd+8Bz2LufND5GWwStCkh76DwF20NWpww580K0FnSTnG6rR6OTEKU5RaGNF17g4Lk21ZJLSxUDr6J7BSsJUaub0eqmtHqpmXb783rpoO3WzcJaQaoGBEtcS7SWl0shmKwHHNpVv70HehMY9p67zdiK3nNb0YdMa9P4c7Eds9hOyfKC0LcpCk2SGaIUeg61kntXidL93IPtw+B77bh1llAsXjQd6f0a7Qxm5rqUg801xL1VzHVyXj8b88a5iE6yfCvcW9f88EHNjpsY+535E3jnXkagiau7OVN5mlza9DJJOxW0U0EnE2wrKw6OKNCKYzOKPz63fh+8sZLkoWmHx3a4axtya4UsUmSRINAo6VI4IblTNgTKcun0MpOmHw9xb7XsXCvIE+Juj7TXoSxi6oGg5IKU0ginbe9DWwLcav81rTXq6kmyE99GXT05mC9Hdxq90vaHtlavlCXorAsahFc2UaWggpYuvSSnE6U0OylRklMobaJJrrVKHrGyWfGdJE03IkTtnomGbZYQBZ6N58i+67j5W/n6dsGSgv/XL33CtGa6jRj2nhviuhBCUA4cyoHDeC1nsZPQaCe4jsXkiIkoBZ6NvF9jqEPcVxCOZywJLAurM8+2+ijdrk27m1EpOVtGnMbLNl94uMz3Hy5x/EKL1053+GDR5kxD4FrLN/puCqUVmS6loZNAM4FWAgfHgLEDaOngnvkmfuscar7gV9ufIbvmNvvYRM6haoylYsJ+aXvoCsqeoORKFiNFo6eIMs0D485awgSmP5jto2zfmF2qFDtt4SQNtLTJ7RDHLbPYtZmzYHqstLmHHq2gSBF5gsgi8m6TpBfj2orx0KVcKWN7/h0xerzubuYpxYV3yE58G92e7c8VWNsPYx94Hmts19Z9tipMFWAeG8JYHkOGI2inRC9TdFopzU5vFVGqhM4t60g/LKIk59SlFlcbEe1uSvMWCVE1NK7t1ZK7+nX//xu111pyIi/0MpkCCEKPVisiy1WfYKnB8munea4oBc66rYnuFIakaQgCzybwbCZqgclHD4nSEHcBwrKxRnYhXA87W2SqIsgLm04voxxuHXEC8/T60K4aD48mtJotjnfKTPTbwSkN//YVQeCAIw1R6qSg9PIO/V+eVUyXIR/Zw1fPuXyh+GuOOBf5R5W/5D/Hn8VzXSqupuwq9oQRQhek3jgTpTL/aNoaECNLCoRl85+/vchcR/Hlt3r89JMhgXudAVcIlOUZKwKtBzYFTtpiUli0rjq0inHqo3XTNmZl5OUakiSTDqJIybOEKFEIx2NkrEatUrop09ytgurMk5/+DvnZ1yEzff6wXew9T2I/8ByyNLJln73UIBgUwg2R1d1ov0ysHBNRmm3RS3K0Nqm3u0WUtNbMLEYcv9DkxIUmF2Y7XC+fFHgW1dD9UIRoM1hKsa0kHYM2KpJNRdmGjuBD3FMYOscOcbchpMSqb8MRFdwzJ5gKNTPaohNllIOtJU4IUH6Natrl6VIKmNDSTMeQpGZyTY9Hoal4UPMMsVrCwf3buNj7HHuu/BUPOFf5f4R/zuyOTyEAqXNyp0Li1VCWx3pDke9IfvzxEr/znQ7NSPGHb/f4W4+XcDcj8hICbbnkfeNLoTLKKiK7eoY0LhFUymivirbdVSSJIgMhyIVDL7dB+lTHHepl766Z5C5Bq8JYBpx+dVUKToR17H0fw977FMLduM/fh/rsgQllDJaNKNUhqBPh0Uk0rZmEXtIdEKXqXfJNSrKC05dahihdbNLurTZvnawH7Jw07WuWyZBLtXR7CNH3EoakaYghhrinIITAHZnG6ua4V88zGSRcUTadKKMSbm1aSNse2q/1LQhcELCtAv/DC5rj8xrXgqpviFLJNa1QrsW2ClCZJKp8geDkV/CzBlPnv8rc9hdIStvInXB1tGcdlD3Jjz0e8nuv9bjaVvzZ0Yi/8UiwfqruescjHfAdCpmzEBdM2BF+2sU0ohWmR5/toZ0y3SRHF5pyyWGk7K1x8b7T0HGH/Oxr5Ke/g45ag/ly6iDO/o8hpw5sqbcTaQ+dJggvQNe3kYiQTm7TWsj6RAk8V94VoqS1Zr6VcOJCg+MXmpyd6aBWMHfHluzbVuHAjhoHdtaol7dOBP+9hiFpGmKIIe5JyNII1oTEX7jAlGpzJXLoRDnlYGtvW8qvIpIu5LFJZ2EI0hM36RWpgjrR3hcIznwLN+8ycfmbXHzgb92QMC1hJLT4kccC/ssbPc4u5Hz1/ZjPP+TfEpFxXZsohoXEYrzuD1rWaA1xkpMWKSXfYbTiEfrOXUvRa60p5s6Sn36V4uLRgWs3boC95ynsfc9sbQpOa0OWshhteyTlbbQJabW1sQdQGZ53d4hSnivOXGlz4mKT4xeaLLaTVctHKh4HdxqStHeqgj3MHGwJhqRpiCGGuGch/QpifC+BvMC0mudy5NKNckpbSZykjQ7ryPYVtHY3TXJWIU8QeYIqTdJ59KcIjv4RTtJg58nf4+K+HycNxjf1NtNVmx96OOC/vh3x/kxGyRV84oFb87AKfItOz7RZGq16pLkiSQtCz2a8HlAJHeQWVppdDzpL6Bx7g96730S1rg7my9Gd2Ps+hrXjyJaKz5fIkkp6JMKja43RzEO6sRgQpdpdIEqNTsKJC4Yknb7cJl+h+5FSsGeqzMGdNQ7urDNa9e47j6f7EUPSNMQQQ9zTEG6ANb6HwLKZmpvhSmSiJsFt8h9aD8opIdwyZF1w17cEWH/DApH10NJBlSZQfhWkRefx/4bgrd/Bj+fZeer3ubT3R4hLmwtd7R1z+P4HNV95P+a18yklT/D4zltJtwhC32KxFRMlObWSy+RIQK3k3bUmr6o1Q37qO+Tn34Q8NTMtB2vXozj7Poasb20rGK21IUrdDpG2aVGnI0ooaeO5FrWSdUeJUqEU5692OX6hwYkLTWYb8arlldAx0aQdNfZtr67x1xti6zEkTUMMMcQ9D9PsdxdlaTN19SIz3YIoMZWfWwIpUX4NK+uhVQ7yBp+jNSKPQBUor4IKRsBeJjbCL9F4+GepvPt/UIpn2HHqy1za+zeJKpsrjT+8zaWbal46nfCNEwmBIzk0tfnIS14o0kwZwbJng+gbayYFtswIPAvXuUPtTVROcek98lOvoubPDubbtQmsvc8gdz62ZcLuJRRKkfQ6xJ02ncyia9VInSpe4FPx7ixR6kQZ751r8taJWU5caJJkxWCZELBzojxIu02NBN/T0aR7wVVySJqGGGKI+wJC2siRHVQsG335PLOtiFgEW1bdpZ0Q7VURcQPtVTZescgQWYS2fVRlAu2WWa/MzwtLzB78CYoTf0Q1usD2M3/Ild0/SLf2wKb25+ndLr1U89bFlL98LyJwBbtGNj52rTRJXpAXCtsyzuAl30RQLCnIC02U5LR7KY4tCT2bcugSeha2dfsjGKrXJD/zXfIz34WkbwAsBNa2h3APfJyRB47Qbsc3ZW55U5+vNUmaE3U79FotIm2TOiNY1VGCwKd8h6NtF+e6vHJ0hqNnFleZP4aezQM7qhzcWeeBHdWtezC4R1AoTZYrsrwYeDkpvezPpDWmJY2Z4LvWXW3B8tH+NYYYYoiPFISUyNo0NdtFnz/N1WabhCqeuwVpCmFE4TLtmtSRfU0fN60QaQ8tBCocRfk1uI7uRggoV0tc2vs30Rf+glr7FNvO/ikzO7+f9ujhG++OEHzqgEcvVZyYzfnjd3r85BMlJiorjl2bASjNFUIIPEf2bQOsNZYitiWw+9qwLFe0o4xmL8V1LMq+Tdl3CXzrQ+mctFao2dPkp16luPw+pmoPhF/G2vs09t6nkUEVyxJbEkHR2nQ4iOKMTrtN1uuQCQ9ZnsKujeK7t6fH4WZRKMWxMw1ePjbDxdnlzhE7Jsoc2FHlge1Vto9v0oj0HoXWhvQoxRoCZP5fWhGkLci0IEpytDbVqLYlcW2JbUscW2JbEkvKQTsV2xJ31QZjSJqGGGKI+wqm2e8Y9T0W+twp5hYXSXUddwueyI0FQR3ZvYq23OX+u3mCKFK0E6LCEbSzuWZ1tiWolAPOTH2ePdbXqTfeY/rCV5AqpTn++A23F0LwhcMBUdbjYqPgD9/q8VNPlSi5hvioQuE4klrJEB7PtjelY3f6A5TWkGYFjXZKo50O3KwDz8F3rU1X1ek0Ij/3BvmpV9HdhcF8Ob4Xe//HsLY9tGVNfLXWpHlBFOe0o5yk20GnXaTn44zuwCmPrSXAW4xunPHa+7N85/3ZgYeSJQUP7xvl+UemeWjf+B1vo3Kr0FpTFH2HbqUGr5XSgwiQ6RO3RHTAta0+ERK4tjVo3Ou5FmOjJdrtCK30YP69jCFpGmKIIe5LyLDOyN5DKHmShdkFtK7huisMMG9T5EL5ZUTahjwCy10t9PYqcJODf+jblEsup/Wn2Wt7jMy9yeSlb2AVCc3pj99we0sK/sYjIf/H613mu4r/8kaXH3vUZ6RkE/o+vmthWbd27EKA51p4roVWEOc5s40IIWJ816YWOgS+jWtbqyJDushRixcoZk+jZk+jFi4s2wXYHvbux41dQHXylvbrRhgQpSSnE+VEcY5Ke7g6wfcDxMhuVFBfpTO7E7gy3+OVYzO8fWphkIIrBw5PPzjB0w9OUA7uXnuVjaD1cr+4ojCtTfJCmwpDLUBobCmxLBMFCl2J59m4lokOWYNGu4YAXa/LhG1LyqFLlmT3TY/NIWkaYogh7ltIv8zY3kNocYr24jxRz9x4HYtBWB+xlA9YunHrFa9ZMY/+oHDNOlqb6FbcRDsByq9/qAFYCKiWXOK04NLYcyjLZ2zmZcZmXsFSKdH+7994Y63JCkWeK77woMd/fTemnWi+ejzj518o4Tu3bwAWEgLXJnCN7iRJCy4vZGag9CSVbAG3dQ7mzxpBd7G6vYWoTeHs+xjWrkcRW0BWlNZkeUGcFHSijF6SkxcKR6eEIkaGASrYiQrq6DtIlpTSvH/OpODOzXQG87ePhzx7eIoje0fuKlHSK3q/5YXp9VYUJp1mTn9DiqQlsaXA820Cx8ZxDEly+sRoafq9JkwfkqYhhhjivoZ0Ayb2P0gt6hKnim6c0u2l9FJFXhRYlsCzJY5jXePgvVpwLLReO78/r9AK6ZaRWQ9VmoAPWV3l2JJayWO2ETE/8QyF5TJ56RvUZ9+g0jxB7I+TeGMkwRipP0bkVElzQaE0riWohS5ToxY/Vw/4jy8ucrmZ8zuvtvjbz9WwtyC9YQkoFw3s5jmsxbM4zQvIImFVbMArYU3sw5rYh5zYhyyN3vTnaPqD+AoNTKE1qjDTLC/Ic01eKIp+mmhJ6O6JjIqM0baLCraTX1PBuNWIkpzXPpjlO+/N0uwa+wQpBIf3jvDs4Ul2TJTuCsEoCkWcFiSZMuezEMvRIEsQeg6eK/EcG9uSRuvWjyLZW6Q1u58xJE1DDDHEfQ9h2XjlGh5Qw0Qh4qQgTnNa3ZRuktNJC9DgOhJvHWH0jWq2tBtC8yIyaRrR94c0giz5NlFo04sKxPjjKOkyefGvsdIOpbRDiTODdZWQpN4IqjSJrkyg7QkKPUFQKfF3nq/zqy8ucvJqypdfa/ETT1dvi6O3jJvYjXPYi+ewm+eMIH4FtOWSVnfSK+8iqeyEygSVkkfJs/Gv0ZctiYOLYlkYbIhRnyBpWOhmtNrxiioqUEspvn4EUAhDRKQ0U8+VlHSBTNtoy6UoTfbtHu6cwPvqYsQrx2Z46+TCwHwy9GyeenCCZx6coFq6s/opMEQpSguStMCSgsCzGav6uI6FbUtsKXFsgWXJYYP2m8SQNA0xxBAfOUghCH2b0LcZrfpkuSJKc3pxRqubEcU5rUJjyb6Gx7FuKEDVTkhe343VvoyMGkbP9CFcqoWEWugSpxFZXtAePUxvZD9hukjRuIIXzRNmC/jJAlJl+PE8xPMwf2zwHsoOeLA0zj/dO8pfXwi5eHmEr76j+PyjN99qRKRd7MZ57MZZ7MY5rLi5+vilTV7dQV7fTV7fTVGZAiERgKcgyQvmmzELAnzHIvQdCqXIC02eFxSA6pMmrVmRAdXYlqSsBUWhkIA1SP3YG0vT8gSZ9tCWQ1G5s2RJKc3xC01eOTbD6cvtwfypkYBnj0zxyL7RO97GJC8UcVKQZCa6Grg2ExMBpcAh9Ox7XmB9v2BImoYYYoiPPEx1mOnsPjWiidMl0XBGJ8podFO00iYK5Zgo1LppCdujqO0E6SJ7c2jbRzubG6i1ol+KrSm0QimjFbKEYLGdEHo2tm0hwh1Q2o50JIljkwqNjJvI7hxWd7b/N4eMFpF5hGyeZ5rzfKlkPkctQPTNGs7IJEVpAlWaoCiNo/z6anF8nmA3z+MsnjMkqTe3en8RFNVtA5KUV7dvaPIppPHP8V0LpUyZ/0I7RgiBJUBIgS0EwpVYQqwJ0llSUgodhFYU6gaC4CJFpl1DlkqT6KCOdrbWDHMJcZrzxvE5Xn1vdtD7TQh4aPcIHz88ye6p8h1NZ11LlELPYXIkIPSHRGmrMCRNQwwxxPcUhDDpisAzUai8UERJTpTkNLspUV9YbHyOLDxXrnaIljZFdRptOVjdq5DkKLe8QoOzTIiWIipaaJNWEsZrxhIC17VwbMFoxafcjEmynHrVp1rxSeNsBXkQqMCIz/PxA8v7UWRYvXlDoPpESrWu4qmIUtGEuSbMHR+srqVDURpDBaPIaAGrPYO4JimZlybJ67vIR/aQV3feUmm+7KeDbjuKzKQIpYUKJ/pWD3eGLM01Y149NsMbJ+bJ+lVevmvx1KEJnnlognr5zmmn8n7UNM00tmW+68kRE1EKPHuYbttiDEnTEEMM8T0N25JUQpdK6DJRD4wZYlLQjVNa3Yx2N0PpvhmkJQZ6HK2qSAlO9wpWdxbt1ZG2XEWIHNsaiG6llNiSgY5kZUSi5NtcnO0ihMCxJOlmdtxyKCrTFJXpwSytNX/81lUunb/MTrvBJ7d1qRcLWL15hMqw21egfWWwfhGMLEeS6rs27Td1R7FEloQ0JqLBqNGXbTG01py82OLlYzOcvNgazJ+o+3z88BSP7h/FvUO937JcEfeJkmMJfM9metSj5Bv92JAo3TkMSdMQQwwxRB9CGLdh37UZqXgUY4ooKYj7Uag0Lwg9e5DGs2QFuxhDti9hpR1kWMd2nJtO0YS+Q73qsdBKUNVbbyMihOAzj03ye6nPVy8mvHhe8PdfqLO9ZiGjRROV6s2jvCp5fTfar97yZ205VI5MusaZPRhBhaOG1G0xQYiSnDdPzPGd92ZZ6KfgAA7tqvHxw1Ps21a5Iym4JaKUZaY6MPBtto16hEOidFcxJE1DDDHEEBvAkpJyICkHDuP1AN33bFoNH10NKRYvoztzIMrg3Hy6ZqRsvJu6vZwPIyGWQvATT1XppQ1OzWb85283+G8/PcJoaQwVjn2Id75DUAUi7SC0aWOjwtEN+/ndTsws9Hj1vau8fWphkILzHIsnDo7xsYcmGa1uvcg8y02UM8sVjiUJ///t3Xt8VPWd//HXmfslM5OEXCAJEC4mhkoQ5FoEJWy2ou6K1S62K7KKgLWg4vKodyqWrUq3i2t8dKUC1VW3aBdqC0aqqxa0ouKl4v2nBjAXSSAhmSQzk5k55/z+GDIy5DaB3Cb5PB8PHo/Md845+X7nOzN5c873fL82MyNSLThsZuxWo9z+PwBIaBJCiDh19EdLMVkwDstBM5nRGo6AFkaxOrt1bJPRSJrHxvHmMIFguM2UCN07lsKi6R4ef72ebxrCPPlGA0vnpJBkG1izT8fQVJSAF4MaRrO5Ue2p6NakM57aoTOqpvHZ4Xr2f1YTMxFlRoqdaWdn9MkluLCqUd/UwvGGAAbAaTfjSbLgtJlPLE4rQWkgkdAkhBA9QDEYMSSPQDFbUY9XofvqUeyebv3RS7KbsdktfPl1AF3Xz+gPts1s4J9nediy9zh1zSpP7avn2vOTsfbgrOE9QtdQWpoBI7rFQdiWgm519WpYavQFee//HePdz4/S5I+sBacoUDA6hWln981dcKqm0eSPzKKeM9yOx+bCajZKUBrgJDQJIUQPaV1MGJMFra4islitI7lbi9OmuKykJ9uorvVHBoafwRknl83I4u8ms2VvZNbwbW838M+zkntl1vBu0zWUoA9FC0XGVqVlo4Yt0SXrevzX6TrlNU3s/7SGTw/Xo+nfrgU3JS+NKXl9MxGlpuk0+UOEVR23w8LwYQ5G5aTgbfAlzPprQ5mEJiGE6GEGmwslfQxqXSW67zjYPShxToSpKMqJCTl1jjX4cSpmTKe5AC/AsCTTiVnDI2OcnnvPy/d7aNbw06LrKCEfihpENztR3SNQHMngSIJGP9CzwSEYUvnoYB37P62h+rg/Wj4yI4lpZ2dQMDq5T9aC0/VIWAqGNVz2yJ2abqcZq8WEcSCEWBGXhA9Nr7zyCg899BAHDx4kKyuL5cuXc8UVV3S6TzAY5KGHHuKDDz7g448/xu/3s2/fPlJTu79WkhBCtEcx2zCmjUart6B5a8DiQLHEN6+QgsIwtw1N06jztuBymM9oosLsFDOLZrh5el8DH1a00BSo55wcG/nDLbhsfXPbfDQshYPoZgeqJzOyHI3BGDsPVg+p8wbY/9lRPvjyGIGgCkSml5g4NpVpZ2cwfFjfTK+g6zq+QBh/UMVlN5OdloTbacHUj4v2itOX0KHpnXfeYeXKlVx55ZXceeedvPnmm9x11104nU4uuuiiDvcLBAL8/ve/Z+LEiZx33nm8/vrrfVhrIcRQoRhNGFKzI5frGr5B94cw2OO7zd+gKKR57GiaTn1TELfDckbDfMZnWLl8ipsd73o5eCzEwWMhdgE5qWbOHmGhYISVYUm98CdB11HCfpRQIBKWknPQrO4zWoKm41+l82VlA/s/reHLk+ZWSnFZmXp2OueOT+udiTc7qEtk0lQVh81M7nAHyUlWCUsJLqFD03/9139RWFjIfffdB8DMmTMpLy/n4Ycf7jQ0ud1u3n77bRRFYceOHRKahBC9RlEMGD2ZJwaIV6I116E4klHiSEBGg4H0ZAeaBl5fELfTckZ33heOtJGVYuKTqhY++6aFyuNhyutClNeFeOnjZtJdRgpGWDl7hJWsZNMZD0hWQifCksmG6s5Gsyf3Sljyt0SWN3nn82+XNwEYn+Nh2tnpjM/u3oD8nqiPLxDGbjUxMiOJFJcVs6mPzuiJXpWwoSkYDPLWW2+xZs2amPKLL76YXbt2UVFRQU5OTof7y90JQoi+ZHAkoxjNqMcrIwPE7ckoxq6/gk1GA+kpdlRdp9EXwuUwn1FwSksyMTfPxNw8J16/ymffRALUwWMhjjaqHG30sff/+XDbDZw93EpBlpXRw8zxjbvRNVBDKFo4chnOZEV1j4ise3caS7J05Ujtt3MrhdVvrAQ8CwAAHhtJREFUlzc596w0puan98ncSicLtIRpDqjYLEay052kumx9Nmu46BsJG5q+/vprQqEQY8eOjSkfN24cAGVlZZ2GJiGE6GuK1YkxLffbiTCtSShxTIRpMRnJTLFzpNZHkz+My9EzX91uu5HpYx1MH+vAH9T4ojrIp9+08GV1EK9f4+2Dft4+6MdmVsjLjFzCG59pxWJSQNcj81GpIRQtFAlMKOhGM7rJGlnyxJYMpjNfly0U1qhrDFDbEKDW20JtQ4Ca436O1Pmi22Sm2JlWEJlbqa/P6rQEI+sVWs1GRqQ5GOayYbVIWBqMEjY0NTQ0AJFLbSdrfdz6fH8wncEtwu1pvbOjL+7wGGiGatuHarthCLTdZMOUOQrVZkWrPwKKiuHERJixbY+9i8xhNDMizck3tc34W8Ik2Xv2zE2SzcDk0SYmj3YQUnXKalr45MRZqOYWjQMVLRyoaMFkgPFpBgoyDJw93ILTaUU3eyKL5xot6CYrGM0oQLyxwWgwoGk63uYgNcd9HGs4EZAaAtR6AzQ0BWlvcRmDojBhTAozJmQyMqP351Y6VUtIpckfxGI0kp2exDCPrdtjpgb9+70Tidj2ARWaGhsbqamp6XK7kSNH9kFtTo/BoJCS0r2ZgOPldvfNit4D0VBt+1BtNwz+tuupLtTGFIJHy9G1AEZncvSPvtPZ/tkZ94nnKmqa0InMMdQ7ldOYYleYkmNAC5s4dCzMh0c0PqwKUdus8VlN5J/ycZgxI0xMHG9j4rhUhnm67rNmf4ia4z6OHvdztN5HzXF/9Oew2vG6ew6rifQUO+kpDjJS7KQnOxib7emTuZVOFQypeH1BzBYzZ6W7SE9x4DzDvhjs7/fOJFLbB1Ro2r17N3fffXeX25WWluLxeIBI0DqZ1xu5Y6L1+b6maTper6/rDbvBaDTgdtvxev2o6tCa/Gyotn2othuGWtvtaPYRqHUV6N5KTK5UklwOmptbOm27y2bim7pmAoEgdssZfo3rOmghFDUEagjQQDGgGy2RM0eWFNJH2pg3xsqFBjM1DUE+PXyczw4f55taH2VVXsqqvPxx71dkpto5e3QKZ49KwWhQqG0IcMz77VmjYw1+/C1qh1UxGiJTLQzzRP6leb792WFtZ2C6puJt9Ld/sF4QCms0+YIoBgOpLgtpHitOu4lgIEgwEDytYw6t93usgdR2t9se1xmvARWafvCDH/CDH/wgrm2DwSBms5mysjLmzJkTLS8rKwNoM9apL/XWrK6qqg3ZGWOHatuHarthCLXd7ITU0Wh1lYS9dWhWA+GWFtR2z7pEyuxGSLMbqK73oYQMmC1G2r1+ddI+J1NaB2zrGqCjG81gsKDZXWC2oxstJ0JT27MnaR4bcwpHMKdwBA1NLXxeXs9nh+s5XN1IdZ2f6jo/e96v6rTJbqeFYW5rJBC5baSn2MnNSsaIjq633xBN09ttS18IqxpNvhA6kJJkJS3ZjtMWCXE99R4dMu/3diRS2wdUaOoOi8XCjBkz+POf/8ySJUui5aWlpYwbN04GgQshEkbrRJhKUzV62A/hFvROLlUBuKygJhk51hBA0U2YTSefhelibI9iQLe50cxOdJMlelapu7fleZKsTC/IZHpBJr5AmC8q6vn863q+qvLGnjU6EZBS3ZGfTx2obTQacLvseBv9HYTF/qFpOo2+IJoGniQLaR77ibsX5e7roSphQxPAj3/8Y6655hruvfdeFixYwFtvvcWuXbvYuHFjzHYTJkxg4cKF/OIXv4iW7dmzB7/fz0cffQTAq6++itPpZPz48YwfP75P2yGEEIrRhDE1B5vLTOB4M8QRHobpEDru40htMy6HpeN16k79I68YenxBXIfNxKTxaUwanxY9W5TI4cIXCOFvUfE4I2sBupyW/lt6RgwYCR2apk6dSklJCQ899BD/+7//S1ZWFuvXr2fBggUx26mqiqbFnvpbt24dlZWV0cd33nknACtXrmTVqlW9X3khhDiFoigYzFYUcxhF6fpyhQIMTzOjKUaq6/x4kowDYsbpRA5LobCGtzmIzWJidKaLFLe1V5Z5EYkpoUMTwPz585k/f36n23z++edtyl555ZXeqpIQQvQZg0FhxDAnqqpzrCFAsssif+RPg35i8lBV00lPtpOebO+zJVdE4pB3hBBCJDijwUBWWhKarlPnbSHFZT2jBX6HmshM3mFcDguZKfYTy9XI6yfaktAkhBCDgNlkIDstCVWF+sYgKW75w98VVdXwNocwGg1kpTtJc9s7HhcmBBKahBBi0LCYjeRkOPm6WqehKYgnSYJTe3RdpzkQJhjSSHFZyExx4LD10kShYlCRSC2EEIOIzWIiJ92JxWzE23x6Ey4OZsGQSp03iEFRyB3uYnSmWwKTiJuEJiGEGGQcNjMjM5IwGY00+iQ4QWTOpfqmFvwtKsNT7YzL9pDqtsnYL9EtEpqEEGIQcjks5KQ70XWF5kCov6vTr3yBMMcbW0iyWRiT5SYrzYnVHO9ywkJ8S8Y0CSHEIOVJspKj6Xxd04i/JTzkbqEPhzUamoNYLSZGZiSR6rYNiHmsROIaWp8gIYQYYlLdNsKqRuXRZgwGZUicYYnOuaTqpHlsZKQ4hlxgFL1D3kVCCDHIpSfbUTWdqmPNGJy0WfttMAkEwzT7wiQ5zGRmOnDL8ieiB0loEkKIQU5RFDJTHWiazjd1PpKTlEF3mUpVNRp9IQyGE3MueWTOJdHzJDQJIcQQYFAUhg9zoGo6Rxv8GBQFm8WI1WxM6DvIdF3HFwgTCKqkuq2kJztIsssUAqJ3SGgSQoghIrLcihOXw0JzIIi3OUR9cxBd07GYDdgsxoS6dBcMqTT6QtitJnKHu2X5GNHrJDQJIcQQYjIaSHFZSXFZCadq+FvC+FvCNDQH8beoeJvDGA1gHWBnoXRdJ6xqBMMaobCGpoLRqJCZaifd48BqSZywJxKXhCYhhBiiTEYDLocFl8NCerKdQFDF3xKmyR+iyR+ioSmIjo7FZMRqMfbpGKFwWCN0IiSFwxoGRcFoNGA1G3C7LditJmwWE06bSZaKEX1GQpMQQggURcFuNWG3mqLTFPhawvgDJ85CBcJ4VQ2jUcFmjoSongorqqZFjt8cpCWooqNjNhgwmQx4HBacdjNWsxGL2YDFbJS74US/kdAkhBCiDZPRgNthwe2wkJ5ip+Wks1CN/hDHGyPLs1jMBmxmI6Y4z0Jpmk4orBEMq4TDOpoeOYbZYibJbibNbYteGhxIlweFAAlNQgghumA45SxUKBwZC9UcCOFtDuILhAmpGiajEg08iqKg65GAFAlJGpqmYzAoWExGbBYTSR4zNosJh93E8Aw3jV4/4bDW380VokMSmoQQQnSL2WTAbLLgdlrITHUQaImchWr0BWkOhKkPBNF1HUVRMJkMWEwGkpOs2K0mLGYjVrMh5i49k8kw6OaNEoOThCYhhBCnzaAoOGwmHDYTwzw2QmEVX4tKOKxhNhsiY5FMBhmsLQYFCU1CCCF6jNlkxJNAcz0J0R1yPlQIIYQQIg4SmoQQQggh4iChSQghhBAiDhKahBBCCCHiIKFJCCGEECIOEpqEEEIIIeIgoUkIIYQQIg4SmoQQQggh4iChSQghhBAiDhKahBBCCCHiIKFJCCGEECIOEpqEEEIIIeIgoUkIIYQQIg6Krut6f1diMNF1HU3r+ZfUaDSgqlqPHzcRDNW2D9V2g7R9KLZ9qLYbpO0Doe0Gg4KiKF1uJ6FJCCGEECIOcnlOCCGEECIOEpqEEEIIIeIgoUkIIYQQIg4SmoQQQggh4iChSQghhBAiDhKahBBCCCHiIKFJCCGEECIOEpqEEEIIIeIgoUkIIYQQIg4SmoQQQggh4iChSQghhBAiDhKahBBCCCHiIKFJCCGEECIOpv6uwFD31VdfsX79et5//32cTieXXXYZt9xyCxaLpdP9dF3nscce43/+53+oq6ujoKCAO+64g3PPPbdvKn6GXnjhBf70pz/x8ccf4/V6GT16NIsXL+aKK65AUZQO9ysqKqKysrJN+YEDB7Barb1Z5R6xY8cO7rjjjjbly5YtY82aNR3ul+j9DbB48WLefvvtdp/7j//4Dy655JJ2n0u0Pj98+DBbtmzhgw8+4IsvvmDs2LHs2rWrzXa///3v2bx5M1VVVYwZM4bVq1czb968Lo9fXV3N+vXref311zGbzRQXF3PHHXeQlJTUG83plq7a3tTUxG9/+1v27NnDoUOHsFgsFBYWsnr1avLz8zs99ltvvcU111zTpvziiy9m48aNPd6W7oqn3zv6DJSWljJu3LhOjz9Q+72rdldUVDB//vx297VYLHz44YcdHnsg9rmEpn7U0NDAkiVLyM3NpaSkhOrqah544AECgQBr167tdN/HHnuMhx9+mDVr1pCfn8/TTz/Nddddxx//+EdGjhzZRy04fY8//jjZ2dncfvvtpKSk8MYbb3DPPfdw5MgRVq5c2em+3/ve97juuutiyroKmQPN5s2bcblc0ceZmZmdbp/o/Q3ws5/9jKamppiyJ554ghdffJFZs2Z1um8i9fkXX3zBnj17mDRpEpqmoet6m22ef/557rnnHm644QZmzpxJaWkpK1eu5Omnn+40CIdCIa6//noAfvWrXxEIBHjwwQf513/9VzZt2tRbTYpbV22vqqrimWee4YorruCWW26hpaWFrVu3smjRIrZv395lcAC4//77GTt2bPRxSkpKj7fjdMTT7wBTpkzhtttuiynLycnp9NgDud+7andGRgbPPPNMTJmu61x//fXMnDkzrt8xoPpcF/3m0Ucf1c8991z9+PHj0bJt27bpBQUF+pEjRzrcLxAI6FOmTNF/9atfRctaWlr0efPm6T/72c96scY9p7a2tk3Z3XffrU+ZMkVXVbXD/ebNm6evW7euN6vWq7Zv367n5eW12/6ODIb+7khRUZG+bNmyTrdJtD4/+f1722236Zdcckmbbf7+7/9ev/XWW2PKFi1apF9//fWdHnvnzp16fn6+/tVXX0XLXnvtNT0vL0//4IMPzrDmZ66rtjc3N+s+ny+mrKmpSZ8+fbp+3333dXrsN998U8/Ly9MPHDjQcxXuQfH0+9VXX60vX76828ceyP0eT7tP1dqXpaWlcW03kPpcxjT1o7179zJr1iySk5OjZQsWLEDTNP761792uN97771HU1MTCxYsiJZZLBaKi4vZu3dvb1a5x6SmprYpKygooKmpCZ/P1w81GrgGQ3+357333qOiooJ/+Id/6O+q9CiDofOv1fLycg4dOhTTnxC55LBv3z6CwWCH++7du5f8/PyY/3XPnj2b5ORk9uzZc2YV7wFdtd3hcGC322PKnE4no0aNoqampjer1uu6avuZGMj9fjrt3rVrF0lJSRQVFfVCjXqXhKZ+VFZWFvMhAHC73aSnp1NWVtbpfkCbfceNG0dVVRWBQKDnK9sH3n33XTIzM7u8Rr9z507OOeccJk+ezLJly/j888/7qIY959JLL6WgoID58+ezadMmVFXtcNvB2t+7du3C4XB0ON7hZIOhz1u19ueYMWNiyseNG0coFKK8vLzTfU99HyiKwpgxYzr9zhjIvF5vdCxMPJYvX05BQQFz587lwQcfTLj3/9tvv825557LxIkTufrqq9m/f3+X+wymfg+FQrz44osUFxfHPSZxIPW5jGnqR16vF7fb3abc4/HQ0NDQ6X4Wi6XNG87tdqPrOg0NDdhsth6vb2965513KC0tbXOt/1RFRUUUFhaSlZVFeXk5jz76KD/60Y947rnnEmJsT3p6OqtWrWLSpEkoisIrr7zCQw89RHV1dYfj2AZjf4fDYV544QWKiopwOBydbpvofX6q1s/2qZ/91sddffZPHgvXqqvvjIHsl7/8JYqi8MMf/rDT7VwuF9dffz3Tpk3DarXy5ptvsnXrVsrKyvp9XE+8pk2bxmWXXUZubi41NTVs2bKFa6+9lieffJLJkyd3uN9g6ve9e/dSX1/PpZde2uW2A7HPJTSJfnfkyBFWr17NjBkz2r1T4mR333139OepU6cye/ZsFixYwJYtW7j33nt7uaZnbs6cOcyZMyf6+Pzzz8dqtfLEE09www03kJGR0Y+16zt//etfqauri+uLM9H7XHRs+/btPPvsszzwwAMMHz68020nTJjAhAkToo9nzZpFRkYG9913HwcOHKCwsLC3q3vGbrrpppjHF154IZdeeim//vWveeyxx/qpVn1r586dpKWldXnzBwzMPpfLc/3I7XbT2NjYpryhoQGPx9PpfsFgkJaWlphyr9eLoiid7jvQeL1eli1bRnJyMiUlJd2+Pp6RkcF5553Hxx9/3Es17H0LFixAVVU+/fTTdp8fTP3dateuXSQnJ3P++ed3e99E7/PW/jr1s+/1emOeb4/b7W5zByJ0/Z0xEO3Zs4e1a9dy4403cvnll5/WMVrHhX300Uc9WbU+43A4uOCCC7p8Lw+Wfm9ububVV19lwYIFGI3G0zpGf/e5hKZ+NHbs2DbXoxsbGzl69Gin1/dbnzt48GBMeVlZGVlZWQlzqSYQCLBixQoaGxvb3IIvvjVY+rtVIBDg//7v/7joooswm839XZ0+19qfp372y8rKMJvNnV5ybO87Q9d1Dh48GPeYoIHgb3/7GzfffDMLFy7k5ptv7u/qDHiDpd9feuklAoFAQt/8IaGpH82dO5c33ngj+j9MgN27d2MwGJg9e3aH+02ZMoWkpCReeOGFaFnr4Lq5c+f2ap17Sjgc5pZbbqGsrIzNmzd3OU9RR6qrq3n33XeZOHFiD9ew75SWlmI0GmNOQ59sMPT3yV555RV8Pt9pf3Emep+PHDmS3Nxcdu/eHVNeWlrKrFmzOp1/au7cuXz22WccOnQoWrZv3z7q6+u54IILeqvKPerLL79kxYoVzJw5k3Xr1p3RsZ5//nmAhH0v+Hw+/vKXv3RZ/8HQ7xA5wzxq1CgmTZp02sfo7z6XMU396KqrruLJJ5/kJz/5CStWrKC6upoNGzZw1VVXxYSIJUuWUFVVxUsvvQSA1WplxYoVlJSUkJqaSl5eHr/73e+or69n6dKl/dWcblm3bh2vvvoqt99+O01NTfztb3+LPjdhwgQsFkubdu/atYtXX32VCy64gIyMDMrLy/nNb36D0Wjk2muv7aeWdM/SpUuZMWNGdPbjl19+mWeffZZrrrmG9PR0YHD298l27txJVlYW5513XpvnBkOf+/3+6G3glZWVNDU1RQPS9OnTSU1NZdWqVaxZs4ZRo0YxY8YMSktLOXDgAE899VT0OJWVlRQXF3PjjTdGJ3z93ve+x6ZNm1i1ahW33norfr+fDRs2cOGFFw6IMT1dtV3XdZYuXYrVamXJkiUxl1iSkpIYP358dN9T275mzRpGjx7NhAkTooOCH3/8cf7u7/5uQISmrtre+h/E4uJisrOzqamp4be//S1Hjx7lP//zP6PHSbR+j+f9DlBXV8e+fftYtmxZu8dJlD6X0NSPPB4PTzzxBD//+c/5yU9+gtPp5Morr2T16tUx22ma1uaW9GXLlqHrOlu3bo0uq7Fly5aEuZuodR6qBx54oM1zL7/8Mjk5OW3anZOTQ01NDb/4xS9obGzE5XIxc+ZMbrrppoRp95gxY9i+fTtHjhxB0zRyc3O58847Wbx4cXSbwdjfrRoaGnjttddYsmRJu8vlDIY+r62tbXPJqfXxf//3fzNjxgwuvfRS/H4/jz32GL/5zW8YM2YMjzzySMwdVLquo6pqzAzLZrOZzZs3s379em699VZMJhPFxcXceeedfdO4LnTVdojc+AHwL//yLzHbTZ8+nSeffBJov+1nnXUWO3fuZOvWrYRCIbKzs7nhhhtYvnx5bzWnW7pq+/DhwwmFQmzcuJH6+nrsdjuTJ09m3bp1McEn0fo9nvc7RJbOCofDHZ5hTpQ+V3S9g7nehRBCCCFElIxpEkIIIYSIg4QmIYQQQog4SGgSQgghhIiDhCYhhBBCiDhIaBJCCCGEiIOEJiGEEEKIOEhoEkIIIYSIg4QmIURCKCoq4vbbb+/vavSIiooK8vPz2bFjR39XRQjRDRKahBADynvvvUdJSUnMmoziW36/n5KSEt56663+rooQQ47MCC6EGFC2bNnChg0bosvptAoGgyiKgtls7sfa9Qxd1wkGg5hMJoxGY7f2raurY9asWaxcuZJVq1b1Ug2FEO2RteeEEAnBYrH0dxV6jKIoWK3W/q6GEKKb5PKcEGLAKCkpYcOGDQDMnz+f/Px88vPzqaioaDOmaceOHeTn5/POO++wfv16Zs6cydSpU1m7di3BYBCv18tPf/pTpk2bxrRp09iwYQOnnljXNI3HH3+cSy65hIkTJ/Ld736XtWvX0tDQELNdUVERK1as4PXXX+eyyy5j4sSJXHzxxbz44ott2lBeXs5NN93E9OnTmTRpEv/0T//EX/7yl5ht2hvTdPvttzN58mSqq6u58cYbmTx5MjNnzuTBBx+MLmJcUVHBrFmzAHjkkUeir09JScnpv+hCiLjJmSYhxIBRXFzMoUOH2LVrF3fccQcpKSkApKamdrjP+vXrSUtLY9WqVXzwwQc888wzuFwu3n//fUaMGMHq1avZu3cvW7ZsIS8vj4ULF0b3Xbt2LX/4wx/4/ve/z+LFi6moqODpp5/mk08+4Xe/+13MpcBDhw6xevVqrrrqKi6//HK2b9/OzTffzObNm5k9ezYAx44d46qrrsLv97N48WJSUlL4wx/+wI9//GMefvhhiouLO22/qqosXbqUwsJCfvrTn7Jv3z62bt3KyJEj+dGPfkRqair33nsv9957L8XFxdHj5efnn+5LLoToDl0IIQaQzZs363l5eXp5eXlM+bx58/Tbbrst+nj79u16Xl6eft111+mapkXLFy1apOfn5+tr166NloXDYX3u3Ln61VdfHS3bv3+/npeXp//pT3+K+T179+5tUz5v3jw9Ly9P//Of/xwta2xs1GfPnq0vXLgwWvZv//Zvel5enr5///5oWVNTk15UVKTPmzdPV1VV13VdLy8v1/Py8vTt27dHt7vtttv0vLw8/ZFHHompz8KFC/XLL788+ri2tlbPy8vTH3744Y5eQiFEL5HLc0KIhHbllVeiKEr0cWFhIbquc+WVV0bLjEYj55xzDuXl5dGy3bt343K5mD17NnV1ddF/3/nOd3A4HG3uTsvIyIg5U5SUlMTChQv55JNPOHr0KAB79uyhsLCQqVOnRrdzOp0sWrSIyspKvvzyyy7b88Mf/jDm8XnnnUdFRUWcr4YQojfJ5TkhRELLysqKeexyuQAYMWJEm/KTxyodPnyYxsbG6BihU9XW1sY8Hj16dEw4A8jNzQWgsrKS9PR0qqqqmDRpUptjjR07FoCqqiry8vI6bIvVam1zKdLj8bQZYyWE6B8SmoQQCc1gaP+EeUflrTRNY9iwYfz7v/97u893No6qt3R3+gEhRN+S0CSEGFBOPZvTW0aNGsW+ffuYMmUKNputy+0PHz6Mrusx9Tt06BAA2dnZQOSs18GDB9vsW1ZWFn3+TPXV6yOEaEvGNAkhBhS73Q5AY2Njr/6eBQsWoKoqv/71r9s8Fw6H28xIXlNTw0svvRR93NTUxHPPPUdBQQHp6ekAXHDBBRw4cID3338/up3P5+PZZ58lOzub8ePHn3G9W18fmTFdiL4nZ5qEEAPKd77zHQA2btzIxRdfjNlsZt68eT3+e6ZPn86iRYvYtGkTn376KbNnz8ZsNnPo0CF2797NXXfdxUUXXRTdPjc3l7vuuosPP/yQYcOGsX37dmpra7n//vuj2yxfvpznn3+eZcuWsXjxYjweD8899xwVFRWUlJR0eckwHjabjfHjx/PCCy+Qm5tLcnIyZ511VqdjpYQQPUNCkxBiQCksLOTmm29m27ZtvPbaa2iaxssvv9wrv+u+++7jnHPOYdu2bWzcuBGj0Uh2djb/+I//yJQpU2K2zc3N5Z577mHDhg0cPHiQnJwcNm7cyJw5c6LbpKWlsW3bNn75y1/y1FNP0dLSQn5+Po8++igXXnhhj9V7/fr1/PznP+f+++8nFAqxcuVKCU1C9AFZe04IIbpQVFTEWWedxaZNm/q7KkKIfiRjmoQQQggh4iChSQghhBAiDhKahBBCCCHiIGOahBBCCCHiIGeahBBCCCHiIKFJCCGEECIOEpqEEEIIIeIgoUkIIYQQIg4SmoQQQggh4iChSQghhBAiDhKahBBCCCHiIKFJCCGEECIOEpqEEEIIIeLw/wGrUwEt6qeCgAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "sns.set_theme(style=\"darkgrid\")\n", + "\n", + "# Load an example dataset with long-form data\n", + "fmri = sns.load_dataset(\"fmri\")\n", + "\n", + "# Plot the responses for different events and regions\n", + "sns.lineplot(x=\"timepoint\", y=\"signal\",\n", + " hue=\"region\", style=\"event\",\n", + " data=fmri)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAIwCAYAAACoUYILAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRRElEQVR4nO3deVyVZf7/8fdhFYUDamQ2bkCJpqBoiQTiViq4TYua329maS6jaDI64zIuWY1aWZpLbmFatprNr1GJLDMtR50xbbEsU0jR3FLZBFkO5/eHw/l6ArfjgXPueD0fDx6dc9/Xfd2fG6/w7cV17ttktVqtAgAAAAzAw9UFAAAAANeK8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDcMvw+o9//EN//OMfFRERoejoaD3++OO6cOGCbf+nn36qPn36KCIiQt27d9e6devK9VFUVKRnn31WsbGxat26tR577DGlp6eXa3fo0CE99thjat26tWJjY/Xcc8+pqKioUq8PAAAAjvFydQG/tWTJEq1YsUIjR45U69atde7cOe3YsUMWi0WStHv3biUlJenBBx/UlClTtHPnTv3tb39TrVq11KNHD1s/zzzzjFJTUzVp0iTVq1dPS5cu1aOPPqqNGzcqICBAkpSdna3BgwerSZMmWrhwoU6ePKk5c+bowoULmj59ukuuHwAAAJdnslqtVlcXUSY9PV29e/fWyy+/rI4dO1bYZujQoTp//rzefvtt27bx48dr//79Sk1NlSSdOHFCXbp00YwZMzRgwABJUlZWljp37qxRo0Zp2LBhkqRly5Zp6dKl2rJli4KCgiRJ77zzjmbOnKktW7aoXr16lXi1AAAAuF5utWzg/fffV4MGDS4bXIuKirRr1y67GVZJSkxM1KFDh3T06FFJ0hdffKHS0lK7dkFBQYqNjdW2bdts27Zt26aYmBhbcJWkhIQElZaWavv27U68MgAAADiDW4XXr7/+Wk2bNtXLL7+smJgYtWzZUg899JC+/vprSdKRI0dUXFys0NBQu+PCwsIkybamNT09XXXr1lVgYGC5dpeue01PTy/Xl9lsVnBwcIXrYwEAAOBabrXm9fTp09q3b58OHDigGTNmyM/PT0uXLtWQIUO0adMmZWdnS7oYMC9V9r5sf05Ojm1d62/blbUpa/fbviQpMDDQrt31KiwstK3RBQAAVatmzZquLgGVyK3Cq9VqVX5+vl566SU1a9ZMktSqVSt16dJFa9asUVxcnIsrvDb79u1zdQkAAFRbbdu2dXUJqERuFV7NZrOCgoJswVW6uFb1jjvu0MGDB9WzZ09JUm5urt1xOTk5kmRbJmA2m5WXl1eu/5ycHLulBGazuVxf0sUZ3N8uObgeLVu2ZOYVAACgErhVeL3tttt05MiRCvcVFhaqUaNG8vb2Vnp6ujp06GDbV7Y+tWz9amhoqH799ddyIfS3a1xDQ0PLrW3Nzc3V6dOny62FvR6+vr4OHwsAAIDLc6sPbHXu3FlZWVnav3+/bdu5c+f03XffqUWLFvLx8VF0dLQ++ugju+NSU1MVFhamBg0aSJLi4uLk4eGhTZs22dpkZ2friy++UHx8vG1bfHy8/vWvf9lmbiUpLS1NHh4eio2NrazLBAAAgIPc6j6vpaWl6t+/v7Kzs5WcnCxfX18tX75cP//8szZs2KDg4GDt3r1bjzzyiPr376+EhATt2rVLL7/8subNm6eEhARbX9OnT9eHH35oe0jBsmXLdPjw4XIPKejZs6dCQkI0YsQI20MKevfuzUMKAAAA3JBbhVdJOnv2rGbPnq0tW7aouLhYd955pyZPnqzbbrvN1mbz5s2aP3++MjIydOutt2r48OF68MEH7fopKirSvHnz9MEHH+j8+fNq06aNpk6darutVplDhw7p6aef1t69e1WrVi317dtXycnJ8vHxqZLrBQAAwLVzu/AKAAAAXI5brXkFAAAAroTwCgAAAMMgvAIAAMAwCK8AAAAwDMIrAAAADIPwCgAAAMMgvAIAAMAwCK8AAAAwDC9XFwAAgLvIzMzUokWLJElJSUlq2LChiysC8FvMvAIA8F+LFy/W7t27tXv3br388suuLgdABQivAAD815EjR2yvDx8+7MJKAFwO4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACG4eXqAgAA+K2s7Hzl5F2o8vOWWErtXh85drbKa5Aks38NBQXWdMm5AXdHeAUAuJ2cvAtat+FLZedWbYDNO3/B7vXKt7ZX6fklKTCghh7o1ZbwClwG4RUA4Jaycy8oKzu/Ss9ZWmq1e13V5wdwdax5BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQDgv3z9alf4GoD78HJ1AQAAuItbQ2L0S4bV9hqA+yG8AgDwX75+QQq5I9HVZQC4ApYNAAAAwDAIrwAAADAMwisAAAAMg/AKAAAAwyC8AgAAwDAIrwAAADAMtwqv77//vsLDw8t9zZ07167d2rVr1b17d0VERKhPnz7asmVLub5yc3M1ZcoUtWvXTlFRURo7dqxOnTpVrt2ePXs0YMAARUZGqnPnzlq+fLmsVmulXSMAAAAc55b3eX3llVcUEBBge1+vXj3b640bN2ratGkaOXKk2rdvr9TUVCUlJemNN95Q69atbe3GjRungwcP6sknn5Svr6/mz5+vYcOGad26dfLyunjZhw8f1tChQxUbG6tx48bpxx9/1Ny5c+Xp6amhQ4dW2fUCAADg2rhleG3RooXq1KlT4b4FCxaoZ8+eGjdunCSpffv2OnDggBYvXqwVK1ZIkvbu3asvvvhCKSkpiouLkySFhIQoMTFRmzZtUmLixRtQp6SkqHbt2nrxxRfl4+OjmJgYnT17VkuXLtWgQYPk4+NT+RcLAACAa+ZWywauJjMzUz///LMSEhLsticmJmrHjh0qKiqSJG3btk1ms1mxsbG2NqGhoWrevLm2bdtm27Zt2zZ17drVLqQmJiYqJydHe/fureSrAQAAwPVyy5nXXr166dy5c7r11lvVv39/Pf744/L09FR6erqki7OolwoLC1NxcbEyMzMVFham9PR0hYSEyGQy2bULDQ219ZGfn6/jx48rNDS0XBuTyaT09HRFR0c7VH9hYaEsFotDxwJAdWcymWSxWGQpKVFJSYmry6lylpISWSwWFRQU8BkMB9WsWdPVJaASuVV4DQ4O1pgxY9SqVSuZTCZ9+umnmj9/vk6ePKnp06crOztbkmQ2m+2OK3tftj8nJ8duzWyZwMBA7du3T9LFD3RV1JePj4/8/PxsfTmi7BwAgOvn7e0tD+8A5eTkKCsrz9XlVDlPU4nOn8/TT1nHVVxc7OpyDKlt27auLgGVyK3Ca4cOHdShQwfb+7i4OPn6+mr16tUaOXKkCyu7Pi1btmTmFQAcZDKZdOJ0nsxmsyxWt/prqkqYzTVVq5a/bgm+pcpnXo8eParly5dLkoYPH64GDRpU6fmBa+H2PxUSEhK0cuVK7d+/X4GBgZIuzpoGBwfb2uTk5EiSbb/ZbNaJEyfK9ZWdnW1rUzYzWzYDW6aoqEgFBQW2do7w9fV1+FgAgOTpWSBPLy/b3WGqE08vL3l6esrPz6/Kz71y5UrbZz5effVVzZ49u8prAK7GUB/YKlufWrZutUx6erq8vb3VsGFDW7uMjIxy/2LNyMiw9VGzZk3Vr1+/XF9lx/12LSwAAL93R44csb0+fPiwCysBLs/tw2tqaqo8PT11xx13qGHDhmrSpInS0tLKtYmJibHdNSA+Pl7Z2dnasWOHrU1GRoa+//57xcfH27bFx8dr8+bNdmuKUlNTZTabFRUVVclXBgAAgOvlVr+PGTp0qKKjoxUeHi5J2rx5s95991098sgjtmUCY8aM0YQJE9SoUSNFR0crNTVV33zzjdasWWPrJyoqSnFxcZoyZYomTpwoX19fzZs3T+Hh4erWrZvd+davX6/x48dr4MCBOnDggFJSUpScnMw9XgEAANyQW4XXkJAQrVu3TidOnFBpaamaNGmiKVOmaNCgQbY2vXr1UkFBgVasWKHly5crJCREixYtKjdTOn/+fM2ePVvTp09XSUmJ4uLiNHXqVLv1U40bN1ZKSormzJmj4cOHq06dOho7dqyGDBlSZdcMAACAa2eychM5AICbOXLsrFa+tV1Z2fmuLqXKBQXW1JCBsWr0h4qfNFmZ/ud//kcnT56UdPHR7G+++WaV1wBcjduveQUAAADKEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAADcjIfJ5OoSALfl5eoCAADA//Gr4a2aXiXKPXmsys9darHYvXZFDZLkU8tfvv6BLjk33B/hFQAAN+Lj7SVLQZ4yd6ap6HxulZ67uCDP7vUPG9+o0vNLkk+tAIV26kN4xWURXgEAcENF53NVlJddtSctLbV7XeXnB64Ba14BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIbh5eoC4F4yMzO1aNEiSVJSUpIaNmzo4ooAAAD+DzOvsLN48WLt3r1bu3fv1ssvv+zqcgAAAOwQXmHnyJEjtteHDx92YSUAgKp2U4Cf7XVwQE0XVgJcHuEVAABIkhJbNlFYcKDCggOV0LKxq8sBKsSaVwAAIOnizOvgu5u7ugzgiph5BQAAgGEQXgEAAGAYhFcAAAAYBmteAbgN7jMMALgaZl4BuA3uMwwAuBrCKwC3wX2GAQBXQ3gFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABiG24bX8+fPKz4+XuHh4fr222/t9q1du1bdu3dXRESE+vTpoy1btpQ7Pjc3V1OmTFG7du0UFRWlsWPH6tSpU+Xa7dmzRwMGDFBkZKQ6d+6s5cuXy2q1Vtp1AQAAwHFuG15ffvllWSyWcts3btyoadOmKSEhQStWrFDr1q2VlJSkr776yq7duHHjtH37dj355JOaO3euMjIyNGzYMJWUlNjaHD58WEOHDlVwcLCWLVumwYMHa8GCBVq5cmVlXx4AAAAc4OXqAipy6NAhvfnmm5o4caJmzJhht2/BggXq2bOnxo0bJ0lq3769Dhw4oMWLF2vFihWSpL179+qLL75QSkqK4uLiJEkhISFKTEzUpk2blJiYKElKSUlR7dq19eKLL8rHx0cxMTE6e/asli5dqkGDBsnHx6fqLvoSWdn5ysm74JJzl1hK7V4fOXbWJXWY/WsoKLCmS84NAADcl1uG12eeeUYPPfSQQkJC7LZnZmbq559/1l/+8he77YmJiXruuedUVFQkHx8fbdu2TWazWbGxsbY2oaGhat68ubZt22YLr9u2bdO9995rF1ITExO1bNky7d27V9HR0ZV4lZeXk3dB6zZ8qezcqg+weecv2L1e+db2Kq8hMKCGHujVlvAKAADKcbvwmpaWpgMHDmjhwoX67rvv7Palp6dLUrlQGxYWpuLiYmVmZiosLEzp6ekKCQmRyWSyaxcaGmrrIz8/X8ePH1doaGi5NiaTSenp6Q6H18LCwgqXPFwLk8kki8Wis+fydC4736E+bkSpxWr3+tczOVVeg6WkRBaLRQUFBaw/rmYu/fO2Wq3Kz6/6/wfgemU/By0lJXZLvaoLi6VEVkkWi6VaXr+nxaLSG/w7oGZNJj9+z9wqvBYUFGjOnDlKTk6Wv79/uf3Z2dmSJLPZbLe97H3Z/pycHAUEBJQ7PjAwUPv27ZN08QNdFfXl4+MjPz8/W1+OKDuHI7y9veXhHaCcnBxlZeU53I+jSktL7V5nZWVVeQ2ephKdP5+nn7KOq7i4uMrPD9e59M+7uLhY+/fvd2E1cBVX/xx0tbwgX1ksJcrNzdH5c+dcXU6V8ys1Ke98ns78muXw3wFt27Z1clVwJ24VXpcsWaK6devqgQcecHUpN6Rly5Y3NPN64nSezGazLNaq/+P51cNDZZV7eHgoKCioymswm2uqVi1/3RJ8CzOv1Yy3t7fd6+bNm7uwGriKq38Oupp/gL88Pb0UEGCWj0qvfsDvjG9AoPxr+atOg2D+DkCF3OanwrFjx7Ry5UotXrzYNita9ivD/Px8nT9/XoGBgZIuzpoGBwfbjs3Jufir7bL9ZrNZJ06cKHeO7OxsW5uymdmyc5UpKipSQUGBrZ0jfH19HT5Wkjw9C+Tp5SUvLxf88ZjsX7uiBk8vL3l6esrPz6/Kzw3XunSpj8lk4ld/1ZhLfw66mKenl0ySPD09q+n1e8qDvwNwBW7zf8XRo0dVXFys4cOHl9v3yCOPqFWrVnrhhRckXVz7eula1fT0dHl7e6thw4aSLq5b3bFjh6xWq91fhhkZGWratKmki+th6tevb1sDe2kbq9Vabi0sAAAAXM9t7vPavHlzvfbaa3ZfkydPliTNnDlTM2bMUMOGDdWkSROlpaXZHZuamqqYmBjbXQPi4+OVnZ2tHTt22NpkZGTo+++/V3x8vG1bfHy8Nm/ebLemJjU1VWazWVFRUZV5uQAAAHCA28y8ms3my366v0WLFmrRooUkacyYMZowYYIaNWqk6Ohopaam6ptvvtGaNWts7aOiohQXF6cpU6Zo4sSJ8vX11bx58xQeHq5u3brZ2g0dOlTr16/X+PHjNXDgQB04cEApKSlKTk522T1eAXfgqnsNc59hAMDVuE14vVa9evVSQUGBVqxYoeXLlyskJESLFi0qN1M6f/58zZ49W9OnT1dJSYni4uI0depUu/VDjRs3VkpKiubMmaPhw4erTp06Gjt2rIYMGVLVlwW4FVfda5j7DAMArsatw2t0dLR+/PHHctv79eunfv36XfHYgIAAzZo1S7NmzbpiuzZt2ujdd9+9oTqB36Ps3AvKquJ7DZeWWu1eV/X5AQDuz23WvAIAAABXQ3gFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYbj1rbIAoLrJzMzUokWLJElJSUm2x14DAC5i5hUA3MjixYu1e/du7d69Wy+//LKrywEAt0N4BQA3cuTIEdvrw4cPu7ASAHBPhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhnFDDyk4e/aszp07J5PJpNq1a6t27drOqgsAAAAo57rCa35+vtLS0rR582bt3btX586ds9tfu3ZttW7dWvfcc4969OihmjVrOrVYAAAAVG/XFF7PnTun5cuX6+2331ZRUZHCw8PVtWtXNWzYUGazWVarVTk5OTp69Ki+++47TZs2TU8//bQeeughDRs2THXq1Kns6wAAAEA1cE3htUuXLmrcuLH++te/qnv37lcNo2fPntVHH32kd999V++884727NnjlGJR+Xz9aqu4MM/2GgAAwJ1cU3hdsGCBOnTocM2d1qlTRwMHDtTAgQP1+eefO1wcqt6tITH6JcNqew0AAOBOrim8Xk9wdeaxqHq+fkEKuSPR1WUAAABU6IbuNgD83mRmZmrRokWSpKSkJDVs2NDFFQEAgEs5FF4nT558xf0mk0m+vr665ZZb1K5dO0VFRTlUHFDVFi9erN27d0uSXn75Zc2ePdvFFQEAgEs5FF537dqlCxcu6OzZs5KkwMBASVJ2draki2teS0tLlZWVJZPJpLi4OC1YsEB+fn5OKhuoHEeOHLG9Pnz4sAsrAQAAFXHoCVsrVqyQj4+PkpKStGvXLtvXzp07lZSUpBo1auitt97Sf/7zH40aNUqff/65XnrpJWfXDgAAgGrGofD61FNPKT4+XklJSbZZV0kKCgpSUlKS4uLi9PTTTysgIEBjxoxRz5499dFHHzmtaAAAAFRPDoXXr7/+Ws2aNbvs/mbNmmnv3r22923bttWvv/7qyKkAAAAAG4fCa0BAgLZv337Z/Z9//rn8/f1t7/Pz8+3eAwAAAI5wKLz2799fmzdv1tixY7Vjxw4dO3ZMx44d044dOzR27Fh99tln6t+/v6391q1b1bx5c6cVDeD36dKnuvGENwBARRy620BSUpIuXLig1atX6+OPP7bb5+npqUcffVRJSUmSpMLCQt1///0KDw+/8WoB/K7xhDcAwNU4FF5NJpP+8pe/aMiQIdqxY4d++eUXSdKtt96qmJgY1a1b19bW19dX9913n3OqBfC7xhPeAABXc0NP2Kpbt6569erlrFoAwC14mEyuLgEAcBnXFF6PHz+u+vXrO3SCGzkWAKqaXw1v1fQqUe7JYy45f6nFYvfaVXX41PKXr3/g1RsCQBW7pvB67733qnfv3ho4cKAiIyOvqeM9e/bo7bff1ocffqhvv/32hooEgKri4+0lS0GeMnemqeh8bpWfv7ggz+71DxvfqPIafGoFKLRTH8IrALd0TeH1zTff1Pz589W/f3/deuutat++vVq0aKEGDRrIbDbLarUqJydHR48e1b59+7Rz506dPHlS0dHReuONqv/BCwA3quh8rorysqv+xKWldq9dUgMAuLFrCq+RkZFauXKl9u/fr3Xr1unTTz/V+++/L+nih7ckyWq9+Anh+vXr65577tEDDzzA7bEAAADgVNf1ga3mzZtr6tSpmjp1qk6ePKn09HRlZWVJuvho2NDQUNWrV68y6gQAAAAcv9tAvXr1CKoAAACoUg49YQsAAABwBcIrAAAADIPwCgAAAMMgvAIAAMAwCK8AAAAwDKeG16KiIuXn5zuzSwAAAMDGofC6ceNGzZo1y27bokWL1KZNG911110aPXq0zp8/75QCUT15/PfhFwAAAJdy6D6vK1eu1B133GF7v2fPHi1atEidOnVSaGio1qxZo6VLl2r8+PFOKxTVh18Nb9X0KlHuyWNVfu5Si8XutStqkCSfWv48Vx4AgAo4FF4zMzN133332d5v2LBBN910kxYtWiQvLy9ZrVZt2rSJ8AqH+Hh7yVKQp8ydaSo6n1ul5y4uyLN7/cPGN6r0/JLkUytAoZ36EF4BAKiAQ+G1qKhIvr6+tvfbt29XfHy8vLwudhcWFqY333zTORWi2io6n6uivOyqPWlpqd3rKj8/AAC4IofWvDZo0ED/+te/JEnffvutDh8+rA4dOtj2nzlzRjVr1nROhQAAAMB/OTTzOmDAAP3973/XwYMHdfLkSd1yyy3q3Lmzbf+ePXt02223Oa1IAAAAQHIwvA4aNEi+vr7aunWrWrZsqccff1w1atSQJGVlZen06dMaOHCgUwsFAAAAHAqvktS/f3/179+/3PagoCC9//77N1QUAAAAUBGHw+tvWa1W7dy5U0VFRWrbtq38/f2d1TUAAAAgycHwOm/ePO3Zs0evv/66pIvBdciQIdq5c6esVqtuvfVWrVq1So0aNXJqsQAAAKjeHLrbwEcffaTIyEjb+7S0NO3YsUPjxo3TsmXLZLFYtHDhQqcVCQAAAEgOzryePHlSjRs3tr3/+OOPddttt2nEiBGSpIEDB+qtt95yToUAAADAfzk08+rl5aWioiJJF5cM7Nixw+4+r3Xr1tW5c+ecUyEAVCM3BfjZXgcHcL9sAPgth8Lr7bffrn/+85/Kzs7WunXrlJWVpY4dO9r2//LLL6pdu7bTigSA6iKxZROFBQcqLDhQCS0bX/0AAKhmHFo2MHr0aI0cOVLt27eXJLVp08b2WpK2bt2qiIgI51QIANXITQF+Gnx3c1eXAQBuy6HwGhsbq3/84x/avn27zGazEhMTbfuys7N15513qmvXrk4rEgAAAJBu4D6vt912W4WPgA0MDNSUKVNuqCgAAACgIg6teQUAAABcweGZ161bt2rVqlX6/vvvlZubK6vVWq7N/v37b6g4AAAA4FIOP6Rg5MiR+vXXX5WYmKjS0lL17NlTiYmJqlGjhsLDwzV69Ghn1woAAIBqzqGZ12XLlikyMlJvvvmmsrOz9dZbb+mBBx5QTEyMjh49qgEDBqhBgwbOrhUAAADVnEMzr4cOHVJiYqI8PT3l5XUx/5aUlEiSGjRooIEDB2rFihXOqxIAAACQg+G1Ro0a8vb2liSZzWb5+Pjo9OnTtv033XSTjh496pwKAQAAgP9yKLyGhITo0KFDtvfNmzfXBx98oJKSEhUWFmrDhg2qX7++04oEAAAAJAfD67333qvNmzerqKhIkjRy5Ej9+9//1l133aX27dtr9+7dGj58uFMLBaoCz5UHALijhQsXKjw8XB06dFBpaWm5/Q899JDCw8M1adKka+7z6NGjCg8PV1pamjNLrXQOfWBr6NChGjp0qO19586d9frrr2vTpk3y9PRUx44d7R4XCxhFYssm2vjtz5LEc+UB4HcqKztfOXkXXHJus38NBQU6Njni7e2tc+fO6T//+Y+io6Nt248dO6avvvpKNWtWj0kXh+/z+lt33nmn7rzzTmd1B7gEz5UHgN+/nLwLWrfhS2XnVm2ADQyooQd6tb2h8BoTE6ONGzfahdeNGzfq9ttvl4dH9Xj2lFtd5datW/Xwww+rffv2atmypbp27arZs2crNzfXrt2nn36qPn36KCIiQt27d9e6devK9VVUVKRnn31WsbGxat26tR577DGlp6eXa3fo0CE99thjat26tWJjY/Xcc8/ZlkMAAIDfp+zcC8rKzq/SL2eE5V69eumjjz5ScXGxbduGDRvUq1cvu3aHDh1ScnKyOnbsqFatWikxMVErV66scMnBb73//vvq3bu3IiIi1KFDB82bN08Wi+WGa3cWh2deP/jgA61bt05Hjx5VdnZ2uSdsmUwmffnll9fVZ1ZWliIjIzVo0CAFBQXpp59+0sKFC/XTTz9p5cqVkqTdu3crKSlJDz74oKZMmaKdO3fqb3/7m2rVqqUePXrY+nrmmWeUmpqqSZMmqV69elq6dKkeffRRbdy4UQEBAZKk7OxsDR48WE2aNNHChQt18uRJzZkzRxcuXND06dMd/dYAAABUis6dO+tvf/ubtm/frk6dOungwYP68ccftXjxYqWmptranTp1SiEhIerdu7dq1aql/fv3a+HChcrPz1dSUtJl+3/11Vf1/PPPa/DgwZo0aZIOHTpkC68TJkyoiku8KofC6/PPP6+VK1eqXr16atmypS0M3qi+ffvavY+OjpaPj4+mTZumkydPql69elqyZIkiIyP11FNPSZLat2+vzMxMLViwwBZeT5w4offee08zZszQgw8+KEmKiIhQ586d9fbbb2vYsGGSpLffflvnz5/XokWLFBQUJEmyWCyaOXOmRowYoXr16jnlugAAAJzBz89PXbp00caNG9WpUydt2LBBUVFRatiwoV27mJgYxcTESJKsVqvatm2rCxcuaM2aNZcNr3l5eVqwYIEef/xx/fnPf5YkxcbGytvbW3PmzNHQoUNVu3btyr3Aa+BQeF27dq06deqkxYsXV/r6irJQWVxcrKKiIu3atatc8k9MTNSGDRt09OhRNWjQQF988YVKS0vtZmKDgoIUGxurbdu22cLrtm3bFBMTYzuHJCUkJGjGjBnavn277r///kq9NgAAgOvVq1cvjR8/XhcuXFBqaqoGDRpUrk1hYaGWLVum9evX6/jx43bLDM6fP69atWqVO2bv3r3Kz89Xjx49bA+fkqS7775bFy5c0E8//aR27dpVzkVdB4eXDXTs2LHSgqvFYlFJSYkOHjyoxYsXq0uXLmrQoIEOHjyo4uJihYaG2rUPCwuTJKWnp6tBgwZKT09X3bp1FRgYWK7de++9Z3ufnp6uBx54wK6N2WxWcHBwhetjr1VhYaHDa0NMJpMsFossJSV2A6c6sVhKZNX/jYPqxtNiUanFooKCgnLLcapCdR+D1X38SYxBV6vuY9AZ4+/3/qn7uLg4eXt766WXXtLRo0eVkJBQrs3zzz+vtWvXavTo0bbfkm/evFlLlixRYWFhheH13LlzkqT77ruvwvMeP37cuRfiIIfCa6dOnfTll1/qoYcecnY9ki6u5zh58qQkqUOHDnrhhRckXVyjKl0MmJcqe1+2Pycnp8KlDGaz2damrN1v+5KkwMBAu3bXa9++fQ4f6+3tLQ/vAOXk5CgrK8/hfowsL8hXFkuJcnNzdP6//yNVJ36lJuWdz9OZX7Ps/qVcVar7GKzu409iDLpadR+Dzhh/bdu2dXJV7sXb21vdunXTqlWrFBMTo5tuuqlcm7S0NA0YMMDuvvtbt269Yr9lk36LFi3SLbfcUm5/gwYNbrBy53AovE6bNk0jR47UU089pQceeED169evcBb20l/HX4/ly5eroKBABw8e1JIlSzRy5Ei9+uqrDvXlCi1btryhmdcTp/NkNptlsTrtTmaG4h/gL09PLwUEmOWjq38q8vfGNyBQ/rX8VadBsMtmvarzGKzu409iDLpadR+Drh5/RtGvXz+dOXNG/fv3r3B/YWGhvL29be8tFos2btx4xT6joqLk5+enEydO6N5773Vqvc7k0E8FPz8/RUVFKSUlRW+99dZl2+3fv9+hopo1aybp4jcxIiJCffv21ccff6zbbrtNksrdOisnJ0fS//2LwWw2Ky+v/L/Wc3Jy7JYSmM3mcn1JF2dwf7vk4Hr4+vo6fKwkeXoWyNPLS15e1e+HtiR5enrJJMnT07Nafg88PT3l4ekpPz+/qzeutBqq7xis7uNPYgy6WnUfg+4w/owgMjJSL7/88mX333333Vq7dq1uu+021a5dW2+++eZVbwVqNps1duxYPf/88zpx4oTatWsnT09PZWZmavPmzVq4cKFb/Lk49H/FU089pbVr16pVq1Zq1aqV0+42UJHw8HB5e3vryJEj6tKli7y9vZWenq4OHTrY2pStTy1bCxsaGqpff/21XAhNT0+3Wy8bGhpabm1rbm6uTp8+XW5dLQAA+P0IDKjxuz7ntGnTNGPGDD399NPy8/PTfffdp3vvvVdTp0694nFDhgxRvXr19Oqrr2rNmjXy8vJSo0aN1KlTJ7uZXFdyKLx++OGH6tu3r+bMmePsesr5+uuvVVxcrAYNGsjHx0fR0dH66KOPNHjwYFub1NRUhYWF2dZixMXFycPDQ5s2bVK/fv0kXZxN/eKLLzRq1CjbcfHx8Vq6dKnd2te0tDR5eHgoNja20q8NAABUPbP/xSdduercjhgzZozGjBlzxTYffPCB7fVNN92kxYsXl2tTlouki2tYf/zxx3JtevbsqZ49ezpUZ1VwKLx6eXmpVatWzq5FSUlJatmypcLDw1WjRg398MMPSklJUXh4uO655x5J0p/+9Cc98sgjevLJJ5WQkKBdu3Zpw4YNmjdvnq2fW265RQ8++KCee+45eXh4qF69elq2bJkCAgLsPmT20EMP6fXXX9fo0aM1YsQInTx5Us8995weeugh7vEKAMDvVFBgTYcf0QrXcyi89uzZU1u2bNHAgQOdWkxkZKRSU1O1fPlyWa1W/eEPf1C/fv00dOhQ+fj4SJLuvPNOLVy4UPPnz9d7772nW2+9Vc8880y520RMnTpVtWrV0gsvvKDz58+rTZs2evXVV+2WOAQGBmr16tV6+umnNXr0aNWqVUsPPvigkpOTnXpdAAAAcA6HwmtCQoKeeeYZDR8+3Ha3AU9Pz3LtWrRocV39Dh8+3O6WDpfTtWtXde3a9YptfHx8NHHiRE2cOPGK7cLCwrRq1arrKRMAAAAu4lB4/d///V9JF+8m8Pnnn5fbb7VaZTKZHL7bAAAAAFARh8Lr7NmznV0HAAAAcFUOhdfLPTYMAAAAqEzlH4sFAAAAuCnCKwAAAAyD8AoAAADDILwCAADAMAivAAAAbm7hwoUKDw8v99WrVy9Xl2YTHh6ulJSUSj+PQ3cb+Prrryvl8bAAAACVrTAvW0Xn81xybp9a/vL1D3To2Bo1amj16tXltlU3DoXXAQMGqHHjxurTp4/69Omjhg0bOrsuAACASlF0Pk/pn/1TRedzq/S8PrUCFNqpj8Ph1cPDQ61bt3ZuUQbk0LKB559/Xo0bN9aSJUvUrVs3PfTQQ3rrrbeUlZXl5PIAAACcr+h8rorysqv2qxLD8meffaZ+/fopMjJS7du314wZM5Sfn2/bv2vXLoWHh+vzzz/XE088oaioKHXq1Enr16+XJL322mvq1KmT2rVrp7/97W8qKiqyHXvq1ClNnjxZXbt2VWRkpLp166YXX3zRro2jdTnCoZnX3r17q3fv3jp79qxSU1O1YcMGzZw5U7NmzVKHDh3Up08fdenSRT4+PjdUHAAAAP5PSUmJ3XtPT0999NFHSk5O1v33368xY8bo9OnTeuGFF5STk6N58+bZtX/yySd13333qX///nr33Xf117/+VT/88IN++uknzZw5U5mZmZozZ44aNmyokSNHSpLOnTunoKAgTZ48WWazWT///LMWLlyo06dPX/Gpq2lpaddc1/VwKLyWqVOnjh5++GE9/PDDOnLkiNavX6/169crOTlZAQEB6t69u/r27as777zzRk4DAABQ7eXn56tFixZ225599lktWLBAiYmJ+vvf/27bHhwcrOHDh2vUqFG6/fbbbdt79OihpKQkSVJkZKQ+/vhjbdy4UR9//LG8vb0lSf/+97+VlpZmC6/h4eGaOHGirY82bdrIz89PkyZN0vTp0+Xn51euVqvVqueee+6a67oeNxReL+Xr6ys/Pz/5+vrKarXKZDJp8+bNeu+993THHXfo2Wef1W233eas0wEAAFQrNWrU0Jo1a+y2lZaW6tixY5oyZYrdrGy7du3k4eGhffv22YXE2NhY2+uAgADVqVNHd955py24SlKTJk20a9cu23ur1arVq1fr3Xff1dGjR1VYWGjbl5mZqaZNm5arNSMj47rquh43FF7z8vL00Ucfaf369frPf/4jk8mk+Ph4jR49Wp07d5aHh4c+/vhjPfvss5o8ebLWrl17I6cDAACotjw8PBQREWG37csvv5QkjR49usJjjh8/bvc+ICDA7r2Pj4/MZrPdNm9vb7v1rKtXr9azzz6rxx9/XNHR0TKbzfr222/11FNP2QXZS507d+666roeDoXXTz75ROvXr9dnn32mwsJCRUREaMqUKUpMTFTt2rXt2vbo0UM5OTl66qmnHC4SAAAA5QUFBUmSpk+frsjIyHL7b7755hs+R1pamrp06aLx48fbth06dMhldTkUXpOSklS/fn09+uij6tu3r0JDQ6/YvlmzZurdu7dDBQIAAKBioaGhuuWWW5SZman//d//rZRzXLhwwW5ZgSTbXQpcUZdD4XX16tWKjo6+5vaRkZEVpm4AAAA4zmQyadKkSZowYYLy8/PVqVMn+fn56ZdfftHWrVuVnJyskJCQGzrH3Xffrddee01r1qxRkyZN9M9//lOHDx92WV0OhdfrCa4AAADuxqdWwNUbGeScCQkJMpvNWrp0qW1G9A9/+IM6dOigm2666Yb7Hz16tM6dO6cFCxZIkrp3766pU6fa7kZQ1XVdU3hdtGjRdXdsMpkuu0gXAADAVXxq+Su0Ux+XndsRY8aM0ZgxYy67PzY21u5OAr8VHR2tH3/8sdz2Tz/99KrnqlWrVoX3c/1tfxX1f7W6HOFweDWZTJIu3j7ht9vLbpVFeAUAAO7G1z/Q4Ue0wvWuKbz+8MMPdu9Pnjyp4cOH6/bbb9fgwYNtaxbS09O1evVqHTp0SMuWLXN+tQAAAKjWPBw5aObMmWrcuLHmzp2riIgI+fv7y9/fX5GRkXrhhRfUqFEjbo0FAAAAp3MovO7cuVPt27e/7P727dtrx44dDhcFAAAAVMSh8Orr66uvvvrqsvv37t0rX19fR2sCAAAAKuTQrbJ69+6t119/XWazWQ8//LAaNWokSTpy5Ihef/11bdiwQYMGDXJqoQAAAIBD4XXChAk6d+6c1qxZozfeeEMeHhcncEtLS2W1WtWzZ09NmDDBqYUCAAAADoVXHx8fPf/88xo6dKi2bt2qX375RdLFG8/Gx8erWbNmTi0SAAAAkBwMr2WaNWtGUAUAAECVuaHwmpmZqW3bttnNvHbo0EENGzZ0SnEAAADApRwOr3PmzNFrr72m0tJSu+0eHh4aPHiwJk6ceMPFAQAAAJdyKLyuXLlSq1atUvfu3TVkyBCFhYVJkg4dOqRVq1Zp1apVqlevnh599FFn1goAAIBqzqHw+u6776pLly566aWX7La3atVK8+bNU2Fhod5++23CKwAAAJzKoYcUHDt2THFxcZfdHxcXp2PHjjlcFAAAAFARh8Jr3bp19cMPP1x2/w8//KA6deo4XBQAAABQEYfCa48ePfTee+9p+fLlys/Pt23Pz8/X8uXL9d577ykxMdFpRQIAAACSg2ten3jiCe3fv18vvviiFixYoJtvvlmSdOrUKZWUlCg6Olpjx451aqEAAACAQ+HVz89Pq1ev1ieffGJ3n9e4uDh17NhRXbp0kclkcmqhAAAAwA09pOCee+7RPffc46xaAAAAgCu6ofBapqSkRIcPH9b58+cVFhamWrVqOaNbAAAAwM51hdetW7dqw4YN8vLyUp8+fRQTE6NPPvlETz31lE6fPi1J8vb21mOPPabk5ORKKRgAAADV1zWH123btmnEiBHy8vJSjRo19M9//lN///vfNXXqVIWFhalHjx6yWCz64osvtHz5cv3hD39Q//79K7N2AAAAVDPXHF5feeUV3X777XrjjTdkNps1ffp0zZgxQ3fffbeWLVtm+4BWSUmJ+vfvr7fffpvwCgAAAKe65vu8Hjx4UPfff7/MZrMk6ZFHHlFhYaH69Oljd2eBsiUF6enpzq8WAAAA1do1h9ezZ8+qbt26tvdlT9C6dNul+woLC51QHgAAAPB/rusJW5fOsHIfVwAAAFS167rbwLFjx/Tdd99JknJzcyVJhw8fti0lKHP06FEnlQcAAAD8n+sKry+99JJeeuklu20zZ84s185qtTIzCwAAAKe75vA6e/bsyqwDAAAAuKprDq/33XdfZdYBAAAAXNV1fWALAAAAcCXCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAzCKwAAAAyD8AoAAADDILwCAADAMAivAAAAMAy3Cq8ffvih/vSnPyk+Pl6tW7dW37599d5778lqtdq1W7t2rbp3766IiAj16dNHW7ZsKddXbm6upkyZonbt2ikqKkpjx47VqVOnyrXbs2ePBgwYoMjISHXu3FnLly8vdz4AAAC4B7cKr6tWrZKfn58mTZqkJUuWKD4+XtOmTdPixYttbTZu3Khp06YpISFBK1asUOvWrZWUlKSvvvrKrq9x48Zp+/btevLJJzV37lxlZGRo2LBhKikpsbU5fPiwhg4dquDgYC1btkyDBw/WggULtHLlyqq6ZAAAAFwHL1cXcKklS5aoTp06tvcxMTHKysrSq6++qlGjRsnDw0MLFixQz549NW7cOElS+/btdeDAAS1evFgrVqyQJO3du1dffPGFUlJSFBcXJ0kKCQlRYmKiNm3apMTERElSSkqKateurRdffFE+Pj6KiYnR2bNntXTpUg0aNEg+Pj5V+w0AAADAFbnVzOulwbVM8+bNlZeXp/z8fGVmZurnn39WQkKCXZvExETt2LFDRUVFkqRt27bJbDYrNjbW1iY0NFTNmzfXtm3bbNu2bdumrl272oXUxMRE5eTkaO/evc6+PAAAANwgtwqvFfnyyy9Vr149+fv7Kz09XdLFWdRLhYWFqbi4WJmZmZKk9PR0hYSEyGQy2bULDQ219ZGfn6/jx48rNDS0XBuTyWRrBwAAAPfhVssGfmv37t1KTU3VxIkTJUnZ2dmSJLPZbNeu7H3Z/pycHAUEBJTrLzAwUPv27ZN08QNdFfXl4+MjPz8/W1+OKCwslMVicehYk8kki8UiS0mJ3frc6sRiKZFVksViqZbfA0+LRaUWiwoKClzy4cHqPgar+/iTGIOuVt3HoDPGX82aNZ1cFdyJ24bXEydOKDk5WdHR0XrkkUdcXc51KQvIjvD29paHd4BycnKUlZXnxKqMIy/IVxZLiXJzc3T+3DlXl1Pl/EpNyjufpzO/Zqm4uLjKz1/dx2B1H38SY9DVqvsYdMb4a9u2rZOrgjtxy/Cak5OjYcOGKSgoSAsXLpSHx8XVDYGBgZIuzpoGBwfbtb90v9ls1okTJ8r1m52dbWtTNjNbNgNbpqioSAUFBbZ2jmjZsuUNzbyeOJ0ns9ksi9Ut/3gqnX+Avzw9vRQQYJaPSl1dTpXzDQiUfy1/1WkQ7LJZr+o8Bqv7+JMYg65W3cegq8cf3J/b/VS4cOGCRowYodzcXL3zzjt2v/4vW5+anp5ut1Y1PT1d3t7eatiwoa3djh07ZLVa7da9ZmRkqGnTppIu/kqhfv365da2ZmRkyGq1llsLez18fX0dPlaSPD0L5OnlJS8vt/vjqRKenl4ySfL09KyW3wNPT095eHrKz8/PhTVU3zFY3cefxBh0teo+Bt1h/MG9udUHtkpKSjRu3Dilp6frlVdeUb169ez2N2zYUE2aNFFaWprd9tTUVMXExNjuGhAfH6/s7Gzt2LHD1iYjI0Pff/+94uPjbdvi4+O1efNmu19LpKamymw2KyoqqjIuEQAAADfArf5JN3PmTG3ZskWTJk1SXl6e3YMH7rjjDvn4+GjMmDGaMGGCGjVqpOjoaKWmpuqbb77RmjVrbG2joqIUFxenKVOmaOLEifL19dW8efMUHh6ubt262doNHTpU69ev1/jx4zVw4EAdOHBAKSkpSk5O5h6vAAAAbsitwuv27dslSXPmzCm3b/PmzWrQoIF69eqlgoICrVixQsuXL1dISIgWLVpUbqZ0/vz5mj17tqZPn66SkhLFxcVp6tSpdr+Cady4sVJSUjRnzhwNHz5cderU0dixYzVkyJDKvVAAAAA4xK3C66effnpN7fr166d+/fpdsU1AQIBmzZqlWbNmXbFdmzZt9O67715zjQAAAHAdt1rzCgAAAFwJ4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYbhVeD18+LCmT5+uvn376o477lCvXr0qbLd27Vp1795dERER6tOnj7Zs2VKuTW5urqZMmaJ27dopKipKY8eO1alTp8q127NnjwYMGKDIyEh17txZy5cvl9Vqdfq1AQAA4Ma5VXj96aeftHXrVjVu3FhhYWEVttm4caOmTZumhIQErVixQq1bt1ZSUpK++uoru3bjxo3T9u3b9eSTT2ru3LnKyMjQsGHDVFJSYmtz+PBhDR06VMHBwVq2bJkGDx6sBQsWaOXKlZV5mQAAAHCQl6sLuFSXLl10zz33SJImTZqkffv2lWuzYMEC9ezZU+PGjZMktW/fXgcOHNDixYu1YsUKSdLevXv1xRdfKCUlRXFxcZKkkJAQJSYmatOmTUpMTJQkpaSkqHbt2nrxxRfl4+OjmJgYnT17VkuXLtWgQYPk4+NTBVcNAACAa+VWM68eHlcuJzMzUz///LMSEhLsticmJmrHjh0qKiqSJG3btk1ms1mxsbG2NqGhoWrevLm2bdtm27Zt2zZ17drVLqQmJiYqJydHe/fudcYlAQAAwIncKrxeTXp6uqSLs6iXCgsLU3FxsTIzM23tQkJCZDKZ7NqFhoba+sjPz9fx48cVGhparo3JZLK1AwAAgPtwq2UDV5OdnS1JMpvNdtvL3pftz8nJUUBAQLnjAwMDbUsRcnNzK+zLx8dHfn5+tr4cUVhYKIvF4tCxJpNJFotFlpISu/W51YnFUiKrJIvFUi2/B54Wi0otFhUUFLjkw4PVfQxW9/EnMQZdrbqPQWeMv5o1azq5KrgTQ4VXo6hore618vb2lod3gHJycpSVlefEqowjL8hXFkuJcnNzdP7cOVeXU+X8Sk3KO5+nM79mqbi4uMrPX93HYHUffxJj0NWq+xh0xvhr27atk6uCOzFUeA0MDJR0cdY0ODjYtj0nJ8duv9ls1okTJ8odn52dbWtTNjNbNgNbpqioSAUFBbZ2jmjZsuUNzbyeOJ0ns9ksi9VQfzxO4x/gL09PLwUEmOWjUleXU+V8AwLlX8tfdRoEu2zWqzqPweo+/iTGoKtV9zHo6vEH92eonwpl61PT09Pt1qqmp6fL29tbDRs2tLXbsWOHrFar3brXjIwMNW3aVNLFXynUr1+/3NrWjIwMWa3Wcmthr4evr6/Dx0qSp2eBPL285OVlqD8ep/H09JJJkqenZ7X8Hnh6esrD01N+fn4urKH6jsHqPv4kxqCrVfcx6A7jD+7NUB/YatiwoZo0aaK0tDS77ampqYqJibHdNSA+Pl7Z2dnasWOHrU1GRoa+//57xcfH27bFx8dr8+bNdr+WSE1NldlsVlRUVCVfDQAAAK6XW/2TrqCgQFu3bpUkHTt2THl5ebag2q5dO9WpU0djxozRhAkT1KhRI0VHRys1NVXffPON1qxZY+snKipKcXFxmjJliiZOnChfX1/NmzdP4eHh6tatm63d0KFDtX79eo0fP14DBw7UgQMHlJKSouTkZO7xCgAA4IbcKryeOXNGTzzxhN22svevvfaaoqOj1atXLxUUFGjFihVavny5QkJCtGjRonIzpfPnz9fs2bM1ffp0lZSUKC4uTlOnTrX7FUzjxo2VkpKiOXPmaPjw4apTp47Gjh2rIUOGVP7FAgAA4Lq5VXht0KCBfvzxx6u269evn/r163fFNgEBAZo1a5ZmzZp1xXZt2rTRu+++e111AgAAwDUMteYVAAAA1RvhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4BAABgGIRXAAAAGAbhFQAAAIZBeAUAAIBhEF4lHTp0SI899phat26t2NhYPffccyoqKnJ1WQAAAPgNL1cX4GrZ2dkaPHiwmjRpooULF+rkyZOaM2eOLly4oOnTp7u6PAAAAFyi2ofXt99+W+fPn9eiRYsUFBQkSbJYLJo5c6ZGjBihevXqubZAAAAA2FT7ZQPbtm1TTEyMLbhKUkJCgkpLS7V9+3bXFQYAAIByqn14TU9PV2hoqN02s9ms4OBgpaenu6gqAAAAVKTaLxvIycmR2Wwutz0wMFDZ2dnX3d+PP/6owsLCG6rJYinVPTH1VFpqvaF+jMrTy0PHzmbJo3msfK2lri6nyplMHko/fkqmk2dcVkN1HoPVffxJjEFXq+5j0Bnjz9fXV+Hh4U6sCu6k2ofXymAymW7oeC8vTwWa/ZxUjXF5+pf/RwWqBmOQ8edqjEHGIHA51T68ms1m5ebmltuenZ2twMDA6+6Pf+kBAABUnmq/5jU0NLTc2tbc3FydPn263FpYAAAAuFa1D6/x8fH617/+pZycHNu2tLQ0eXh4KDY21oWVAQAA4LdMVqu1+q2Gv0R2drZ69uypkJAQjRgxwvaQgt69e/OQAgAAADdT7cOrdPHxsE8//bT27t2rWrVqqW/fvkpOTpaPj4+rSwMAAMAlCK8AAAAwjGq/5hUAAADGQXgFAACAYRBeAQAAYBiEVwAAABgG4RUAAACGQXgFAACAYRBe4RR9+vRReHi4du/efU3t77zzTi1cuPC6zrFr1y6Fh4fr22+/tW0LDw9XSkrKdfUD97Z582YNGTJE7dq1U8uWLdWlSxdNnz5dGRkZkq7tz/z9999XeHi4zp4969Tadu3apaVLlzq1TxjT1q1bNWzYMLVv314tWrTQ3XffreHDh2vDhg0qLS11+vk++eQTvfHGG07vFzAiwitu2E8//aQff/xRkrR+/foqPfc777yj3r17V+k5UXnmzp2rUaNGyd/fX08//bReffVVjR49WgcPHlRycvI199OpUye98847MpvNTq3v3//+t5YtW+bUPmE8L774ooYPHy5fX19Nnz5dq1at0rRp0xQQEKC//OUv2r59u9PP+cknn+itt95yer+AEXm5ugAY3/r16+Xh4aG77rpLaWlpmjp1qry9vavk3K1bt66S86Dybd26VStWrNCoUaP0xBNP2LbfddddeuCBB7Rly5Zr7qtOnTqqU6dOZZR5zS5cuKAaNWq4tAY432effaZly5YpKSlJY8aMsduXkJCgwYMHy8uLv1qBysTMK26I1WrVhg0b1L59ez322GPKysrS559/btfmk08+UY8ePRQREaEHH3xQ33zzTYV9ffbZZ+rXr58iIyPVvn17zZgxQ/n5+Vc8f0W/QnakH7jeypUrddNNN2nUqFEV7u/cubPtdWlpqRYuXKi7775b0dHRmjx5st2f8W+XDRw9elTh4eH64IMP9NRTT+muu+5SXFycnn32WZWUlNiOO3HihJ544gndfffdioiIUJcuXTRr1ixJ0sKFC7Vo0SLl5+crPDxc4eHhGjRokG1fVFSUvvnmGw0YMEARERG2X/HOnTtXvXv3VlRUlDp06KA///nPOnXqlN21DRo0SCNGjND/+3//T/fcc48iIyM1aNAgpaenO+E7C2d69dVXFRwcrD/96U8V7o+MjNQdd9xhe3+1n0dly6G2b9+u8ePHKyoqSp07d9aKFStsbSZNmqR//OMf+umnn2xjb9KkSbb9mzZtUt++fRUREaG4uDjNnj1bhYWFdnUdO3ZMY8eOVdu2bdW6dWsNHTrU9hszwGj45yFuyJ49e3Ts2DGNHj1acXFxCgoK0oYNG9SlSxdJ0v79+zV27FjFx8dr8uTJOnr0qMaNG6eioiK7ftLS0pScnKz7779fY8aM0enTp/XCCy8oJydH8+bNu+Z6nNUPqlZJSYn27Nmjbt26XdOs/RtvvKG2bdtqzpw5+vnnn/Xcc8+pbt26mjBhwhWPmz9/vrp27ar58+dr7969WrhwoRo1aqSBAwdKkv7617/q1KlTmjp1qurWravjx49r3759kqR+/frpxIkT2rBhg1avXi1J8vf3t/VdXFys8ePH69FHH1VycrKCgoIkSWfOnNGIESN088036+zZs3r11Vc1aNAgbdy40W6G7rvvvtORI0c0fvx4W62PP/640tLS5OPjc+3fTFSasnHavXv3a5pdvZ6fRzNmzFDfvn21ePFiffLJJ5o7d67Cw8MVHx+vUaNG6ezZs0pPT9fcuXMlyfabhc2bN2vs2LHq2bOnxo8fr/T0dM2bN0/Hjx/XggULJEl5eXkaNGiQPDw8NHPmTPn6+mrJkiV6+OGH9c9//lP169d38ncKqGRW4AY8+eST1oiICGtOTo7VarVap02bZm3VqpU1Ly/ParVarePGjbN26dLFWlJSYjtm7dq11qZNm1oXLFhgtVqt1tLSUmvnzp2tf/7zn+363rp1qzU8PNx64MABq9Vqte7cudPatGlT6zfffGNr07RpU+srr7xyXf3A/Zw+fdratGlT69y5c6/atmnTptYHH3zQbtvEiROt99xzj+39unXrrE2bNrWeOXPGarVarZmZmdamTZtax44da3fcww8/bB08eLDtfevWra2vvfbaZc+9YMECa+vWrSvc3rRpU+vGjRuvWHtJSYn1xIkT1qZNm1o///xzuzqaNWtmzcjIsG37+eefrc2aNbO+9dZbV+wTVedy47S0tNRaXFxs+7JYLNf9c+3ZZ5+1669z587WKVOm2LZNnDjR2rNnz3I1/fGPf7QOGDDAbtvbb79tbdq0qfWHH36wWq1W6+rVq63h4eHWgwcP2tqcO3fO2rp1a+vs2bMd/G4ArsOyATispKREaWlp6tixowICAiRJvXv3VkFBgT7++GNJ0tdff63OnTvL09PTdlyPHj3s+snIyNCxY8eUkJCgkpIS21e7du3k4eFhm/m6Gmf1A9cxmUzX1O7uu++2ex8WFqYTJ05c9bi4uLgrHnfHHXdo5cqVevPNN3X48OFrquVSHTt2LLdt69ateuihh9S2bVvdcccdio+PlyT9/PPPdu1uv/12NWnSxPa+cePGatasmb7++uvrrgOV67fj9KOPPlKLFi1sX88888x1/zy6dGyaTKZrGtPnz5/X/v371b17d7vtiYmJkqQvv/xSkrR7927dfvvtCgsLs7UJCgrS3XffbWsDGAnLBuCw7du36+zZs+rcubNycnIkSU2bNlVwcLA2bNigP/7xjzp9+rTq1q1rd5y/v798fX1t78+dOydJGj16dIXnOX78+DXV46x+UPWCgoLk6+urX3755Zra//YuAt7e3uWWolSk7B9Zlztu3rx5mjdvnubPn6+ZM2cqJCREf/7zn9WtW7er9u3n56datWrZbfvmm280atQode3aVcOGDVPdunVlMpnUv3//cmsSf/v/Sdm206dPX/XcqBpBQUHy8fEpFypjYmL03nvvSZJtLez1/jyqaGzm5uZesZ7c3FxZrdZyYycgIEA+Pj7Kzs6WJOXk5Oimm24qd3zdunX1008/XfEcgDsivMJhZbfFmjx5siZPnmy379y5czpz5oyCg4N15swZu315eXl2f3GXrQ2cPn26IiMjy53n5ptvvqZ6nNUPqp6Xl5fatGmjnTt3qqSkxGWf1r755ps1e/ZslZaWat++fVqyZImSk5OVlpamhg0bXvHYimaNP/nkE/n7+2v+/Pny8Lj4i65jx45VePxv/z8p29asWTMHrgSVoWyc7tixQxaLxfYbpcDAQEVEREiSbX1yVfw8CggIkMlkKnc/49zcXBUVFSkwMNBWX9l9ki915swZWxvASFg2AIcUFBRo8+bNuueee/Taa6/Zfb344osqKSlRamqqIiMjtWXLFlksFtuxaWlpdn2FhobqlltuUWZmpiIiIsp91atX75pqclY/cI3HHntMp0+fvuxDALZu3VpltXh4eCgyMlLjxo1TSUmJbQnBtc7wlrlw4YK8vb3tgu3l7oX8008/2S1VOHz4sH744Qe1atXKwatAZXjsscd06tSpqz6swtk/j7y9vcvN1teqVUvNmzcv9zP1ww8/lCS1bdvW9t8DBw7Y3b0iOztb//rXv2xtACNh5hUO2bx5s/Lz8zVo0CBFR0eX2//KK69ow4YNmjFjhh588EGNHj1aAwcO1NGjR5WSkmK3bMBkMmnSpEmaMGGC8vPz1alTJ/n5+emXX37R1q1blZycrJCQkKvW5Kx+4BodO3bU448/roULF+rgwYPq2bOnateuraNHj2rdunXKzc2tcE2ps+Tm5mro0KHq27evQkJCVFxcrNdff11ms9l266OwsDCVlJRo9erVioqKkr+/v0JDQy/bZ2xsrFavXq2nn35a9957r/bu3asPPvigwrZ169bVyJEjNXbsWEnSSy+9pHr16un+++93/sXCYZ06ddLw4cO1YMEC/fDDD0pISNDNN9+s3Nxc7d69W6dPn1atWrWc/vMoLCxM69at04YNG9S4cWPVrl1bDRo0UFJSkkaPHq0JEyaoT58+ysjI0Lx589S9e3eFh4dLku6//36tWrVKI0aM0Lhx42x3G/Dy8tLgwYMr61sFVBrCKxyyYcMG3XrrrRUGV0n64x//qFmzZsnf318vvfSS5s6dq6SkJN1+++2aN2+ehg4datc+ISFBZrNZS5cutc1M/eEPf1CHDh0qXKt1Oc7qB67xl7/8RVFRUXrjjTc0ZcoUFRQU6Oabb1ZcXFy5MeNsvr6+atq0qV5//XUdP35cNWrUUMuWLZWSkmK7LVHnzp31P//zP1q+fLnOnDmju+66S6+//vpl++zYsaMmTJigNWvW6P3331ebNm20bNmych+wkaQWLVqoW7duev7553X69Gm1atVKM2fO5DZZbmj8+PFq27at3njjDc2cOVN5eXkKDAxUixYtNGvWLPXs2VOSc38eld0j++mnn1ZWVpbuu+8+zZkzR127dtVLL72kxYsXa9SoUQoKClL//v1tt1yTLn7O4PXXX9ecOXM0bdo0lZaWqk2bNlqzZg23yYIhmaxWq9XVRQBAdTZo0CDVrFmTR88CwDVgzSsAAAAMg/AKAAAAw2DZAAAAAAyDmVcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYBuEVAAAAhkF4BQAAgGEQXgEAAGAYhFcAAAAYxv8HLv+G0zE2c1cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "sns.set_theme(style=\"whitegrid\")\n", + "\n", + "penguins = sns.load_dataset(\"penguins\")\n", + "\n", + "# Draw a nested barplot by species and sex\n", + "g = sns.catplot(\n", + " data=penguins, kind=\"bar\",\n", + " x=\"species\", y=\"body_mass_g\", hue=\"sex\",\n", + " errorbar=\"sd\", palette=\"dark\", alpha=.6, height=6\n", + ")\n", + "g.despine(left=True)\n", + "g.set_axis_labels(\"\", \"Body mass (g)\")\n", + "g.legend.set_title(\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9BUlEQVR4nO3deXxU1f3/8fdMyCBrZAlh1xAhKJu4BSqLkFgaFkEhVkFWLSBCqoKVtkYacUEtrQ1GFBQBg1tELUJESUCqqFCxiogsFVBUCClLEgScJHN/f/DN/BiTK8lkZu7M5PV8PHjI3Hvn3s/MROadc849x2YYhiEAAABUYLe6AAAAgGBFUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBRx+oCaouysjKVlJRYXUbIiIyMVEREhNVlAABqOYKSnxmGoUOHDun48eNWlxJyzj//fLVs2VI2m83qUgAAtRRByc/KQ1KLFi1Uv359vvSrwDAMnTx5UocPH5YktWrVyuKKAAC1FUHJj8rKytwhqVmzZlaXE1Lq1asnSTp8+LBatGhBNxwAwBIM5vaj8jFJ9evXt7iS0FT+vjG2CwBgFYJSANDd5h3eNwCA1QhKABAitm/frvT0dG3fvt3qUoBag6AEACHA6XQqOztbx44dU3Z2tpxOp9UlAbUCQQkVvP7664qPj9cXX3xhdSkA/k9ubq6KiookSUVFRcrNzbW4IqB2ICgBQJArKChQbm6uDMOQdGYKjby8PBUUFFhcGRD+CEoAEMQMw9DKlStNt5eHJwD+EVRBqbzL5+d//vrXv3ocl52drUGDBqlbt2667rrrtGHDBosqhjdcLpd++uknq8sAQkJ+fr527twpl8vlsd3lcmnnzp3Kz8+3qDKgdgiqoFTu2Wef1SuvvOL+M2bMGPe+NWvWKC0tTcnJyVq8eLEuvfRSTZ8+XZ999pl1BfvIiRMn9NBDD2ngwIHq2rWrevfurYkTJ+rLL7+UJI0dO1ZDhw7Vzp07dcstt6hHjx669tprtXbtWknSli1blJKSou7du2vQoEH68MMPK1xjx44duu2223TZZZepZ8+eGj9+fJXeu8LCQo0aNUr9+vXT3r17JZ0ZXJqRkaFrr71WXbt2Vf/+/fXYY49VGGQaHx+vBx54QKtWrdKQIUPUrVs3vf/++zV8t4DaISYmRp07d5bd7vnPtd1uV+fOnRUTE2NRZUDtEJQzc3fp0kVNmzatdF9GRoaGDBmiO++8U5LUq1cv7d69W5mZmVq8eHEAq/S9OXPm6J133tEtt9yiuLg4HT9+XFu3btXXX3+tLl26SDoTWKZOnarBgwfrN7/5jV566SXdfffdcrlcevjhh3XTTTdp6NCheu6555Samqr33ntPDRs2lCTt2bNHY8aMUYMGDXTbbbepTp06euWVVzR27FhlZWWpR48eldZ19OhRTZo0SYWFhcrKylL79u3lcrl0++23a+vWrbrxxhsVFxen3bt3a9myZdq/f7+eeuopj3N8/PHHevvttzVmzBg1adJEbdq08e+bCYQJm82mkSNH6pFHHqmwfdSoUcw3BvhZUAYlMwcOHND+/ft1zz33eGwfPHiwuyXD4XBYVF3Nbdy4UTfeeKNmz57t3va73/3O45jDhw9r/vz5Gjp0qCTpV7/6lZKTkzVz5ky9/PLL7rATFxenW2+9Ve+++65uuOEGSdITTzyhkpISvfTSS2rXrp0kacSIEfrNb36jxx9/XFlZWRVqKigo0MSJE3X69GllZWW5A85bb72lDz/8UC+88IKuuOIK9/EdO3bUnDlz9Omnn+qyyy5zb9+3b5/eeustXXTRRb54q4BaJTo6WklJSVq3bp0Mw5DNZlNiYqKaN29udWlA2AvKoDR06FAdO3ZMrVu31o033qjbbrtNERER7i6f2NhYj+Pj4uJUUlKiAwcOKC4urtJzJiYmml7v8OHD6tGjR6VBIZAaN26szz//XPn5+abN6fXr19eQIUPcjzt06KDGjRsrJibGo0Wo/O8HDhyQdGbduU2bNikpKckdkiSpRYsWGjp0qLKzs3XixAl365N0ZmzErFmzJEkrVqzwqGnt2rWKi4tThw4ddPToUff2Xr16SZI2b97sEZSuvPJKQhJQA0lJSdq8ebMKCwsVFRWlpKQkq0sCaoWgCkrR0dGaMWOGevToIZvNpvXr1+uJJ55Qfn6+7r//fhUWFko6EyjOVv64fH91lZWV6eDBgzUr3gdmzZql2bNn65prrlGXLl3Uv39/jRgxwiPYtGzZskJTe6NGjdSyZcsK2yS55105evSoTp06VSFkSmeCpsvl0sGDB9WxY0f39nvuuUd16tRRTk6OoqOjPZ7zzTff6Ouvv1bv3r0rfS1HjhzxeNy2bdtzvXwAv8DhcCglJUUrV67UyJEjQ7r1HAglQRWU+vbtq759+7of9+nTR3Xr1tWyZcs0derUGp07Ly/PdN8vtTYF0uDBg3XFFVdo3bp12rRpk5577jktXrxYCxYsUP/+/SVJERERlT7XbHtNbh3+9a9/rTfffFPLly/XzJkzPfa5XC516tRJf/zjHyt97s+D23nnned1HQDO6Nq1q7p27Wp1GUCtElRBqTLJyclasmSJvvrqK0VFRUmSiouLPVo4yltNyveHshYtWmjMmDEaM2aMjhw5ouuvv15PP/20Oyh5q2nTpqpXr5727dtXYd/evXtlt9vVqlUrj+233HKL2rdvr4yMDDVq1EiTJ09272vfvr127typ3r17M5gUABC2gnJ6ADMdOnSQJPdYpXJ79+5VZGSkRxdVqCkrK1NxcbHHtmbNmqlFixY+WdMpIiJCV199tfLy8vTdd9+5t//vf//T6tWrdfnll3uMTyp3xx13aNKkSZo/f75efPFF9/bk5GTl5+fr1VdfrfCc06dP6+TJkzWuGQAAqwV9i1JOTo4iIiJ0ySWXKDo6WhdeeKHWrl3rMZAxJydHvXv3Duk++x9//FH9+/fXoEGD1LlzZ9WvX18ffvihvvjiC4+74Grizjvv1IcffqjRo0dr9OjRioiI0CuvvCKn01nhTsKz3XvvvTpx4oQeeOABNWjQQMOHD9fw4cP19ttva86cOe6B22VlZdq7d6/Wrl2rZ599Vt26dfNJ3QAAWCWogtKtt96qhIQExcfHSzozrujVV1/VuHHj3F1tM2bM0KxZs9S+fXslJCQoJydH27Zts/yOtZo677zzdPPNN2vTpk169913ZRiG2rdvrzlz5mj06NE+uUbHjh21YsUKzZ8/X88884wMw1D37t31+OOPm86hVC49PV0nT57Un/70JzVo0EBJSUnKzMzU0qVL9c9//lPr1q1TvXr11LZtW40dO7bSQeMAAIQamxFECwU9+OCDev/993Xo0CG5XC5deOGFSklJ0dixYz3GwWRnZ2vx4sX64YcfFBsbq7vvvlsDBgzw+rrlg7l/acC3N06fPq19+/YpNjaWwcxe4P0DAFgtqFqU7rvvviodl5KSopSUFD9XAwDwhzVr1igvL0+JiYke88IBwSikBnMDAELbiRMnlJubK5fLpdzcXJ04ccLqkuBn27dvV3p6urZv3251KV4hKAEAAmbJkiXu+d0Mw9CSJUssrgj+5HQ6lZ2drWPHjik7O9snd3EHGkEJABAQu3btqnR6l127dllUEfwtNzfXPddhUVGRcnNzLa6o+ghKAAC/c7lcWrZsWaX7li1bJpfLFeCK4G8FBQXKzc31aEHMy8tTQUGBxZVVD0EJAOB3O3bsMJ2I9uTJk9qxY0eAK4I/GYahlStXmm4Pohvuz4mgBADwu0suuUT169evdF+DBg10ySWXBLgi+FN+fr527txZoaXQ5XJp586dys/Pt6iy6iMoAQD8zm63a/z48ZXuGz9+vOx2vo7CSUxMjDp37lzhc7Xb7ercubNiYmIsqqz6+MkEAAREfHy8e83Och06dFCnTp0sqgj+YrPZNHLkyEq3jxo1KqQWUycoAQACZtKkSe4vSZvNpkmTJllcEfwlOjpaSUlJHp93YmKimjdvbnFl1UNQsojL5VJZWZklf7y5u2Ts2LFKTk6udA6M1NRU9e/fXz/++KMv3hoAYaxhw4ZKSkqS3W5XUlKSGjZsaHVJ8KOkpCQ1btxYkhQVFeWxoH2oCKolTGoLl8ulv/wlXUVFhZZcv3HjKP3lL3OqNSYgPT1dw4cP17PPPqtp06a5t//rX//SO++8o8zMTDVo0MAf5QIIM0OGDGHpklrC4XAoJSVFK1eu1MiRI+VwOKwuqdoIShYwDENFRYWacP0DstsjAnptl6tMS9+4v9q3Znbo0EFTpkzR008/rWHDhqldu3b66aefNHfuXCUmJobkbwkAAP/r2rWrunbtanUZXqPrzUJ2e4Qlf7w1efJktW7dWunp6ZKkp59+Wv/73/90//3369ChQ5o1a5YSEhLUvXt3jRkzpsK6Pnl5ebrhhhvUs2dPXXHFFbrhhhu0cePGGr2HAAD4Ey1KqDKHw6EHHnhAY8eO1VNPPaVnn31WM2fOVL169XT99derfv36SktLU6NGjfTCCy9o/Pjxevfdd9WsWTN9++23+v3vf68hQ4Zo5syZ7rk0Cgut6X4EAKAqCEqolquuuko33HCD/vGPf6hLly4aO3asMjMzVVRUpOzsbDVr1kyS1Lt3bw0aNEjPPfec/vCHP2jHjh0qKSlRWlqae/Bm3759rXwpAACcE11vqLbJkydLkiZOnKiIiAht2rRJCQkJioqKUmlpqUpLS2W323XllVfqiy++kHRm/pSIiAjNmjVL69evV3FxsZUvAQCAKqFFCdUWGRnp8d9jx47ps88+U5cuXSoc2759e0lSbGysnn76aT3zzDOaPn267Ha7+vTpo/vvv1+tW7cOXPEAAFQDQQk1FhUVpb59++r3v/99hX1n3wrar18/9evXTydOnNC//vUvPfLII/rjH/9ouqI4AABWIyihxn71q19p1apViouLM1308mwNGzbU4MGDtW3bNq1evToAFQIA4B2CEmpswoQJeuutt3TLLbdo3Lhxat26tY4eParPP/9cMTExmjBhgl5++WV99tln6tu3r6Kjo/Xdd99p1apVuvrqq60uHwAAUwQlC7lcZWFxzSZNmuiVV17RE088ob/+9a86fvy4mjVrph49eujaa6+VdGYw94YNG/TII4/o+PHjio6O1pAhQyrtrgMAIFgQlCxgs9nUuHGUlr5xvyXXb9w4qkYrN7dt21a7du3y2BYdHa2HHnrI9Dk9e/bUM8884/U1AQCwAkHJAna7XX/5y5xqLyPiKzabrVrrvAEAUFsRlCxCUAGA2sUwDDmdzmodL6naPQAOh6NGvQbwRFACAMDPDMNQRkaG9u3b5/drxcbGKjU1lbDkIzRrAAAAmKBFCQAAP7PZbEpNTa1y15vT6VRaWpokae7cuR6T954LXW++RVACACAAbDab6tatW+3nORwOr54H36DrDQAAwARBCQAAwARdbwBgEW4XB4IfQQkALMDt4kBooOvNIi6XS2VlZZb8cblc1a53wYIFio+P15gxYyrse+ihhzRw4EBfvC0AAAQVWpQs4HK5NCd9jooLiy25fqOoRkqfk+7V7OCffPKJNm/erISEBD9UBtQe3C4OhAaCkgUMw1BxYbHiJ18pmz2w/3gZLkO7Fv3bq3Xm6tevr4suukhPPfUUQQnwAW4XB4IfXW8WstltskXYA/unhsFs2rRp+vjjj/Xpp5+aHvP9998rNTVVl19+uS699FLdeuut2rVrV42uCwCAFQhKqJYBAwbokksuUWZmZqX7T5w4obFjx2rHjh1KT0/X448/rmPHjumWW27RwYMHA1wtAAA1Q1BCtd1+++364IMPtG3btgr7Xn/9df3www965plnNHToUF177bVasmSJSktLtWzZMguqBQDAewQlVNu1116rTp06Vdqq9Mknn6hjx46Ki4tzbzv//PP1q1/9Slu3bg1kmQAA1BhBCdVms9k0depUvffee/ryyy899hUVFal58+YVntOsWTMVFhYGqkQAAHyCoASvJCcnKzY2Vk899ZTH9qioKB05cqTC8UeOHFFUVFSgygMAwCcISvCK3W7X1KlTlZeX53FH2+WXX67du3dr79697m2FhYX68MMPdfnll1tRKgAAXiMowWvDhg1Tu3bttHnzZve2G264Qa1bt9aUKVO0Zs0a5ebmatKkSapTp47Gjx9vYbUAAFQfQclChsuQUeYK7B9X9SeaNBMREaHJkyd7bGvYsKFeeOEFde7cWWlpaZo1a5aioqKUlZWlVq1a+ezaAAAEAjNzW8Bms6lRVCPtWvRvS67fKKpRtZczmDFjhmbMmFFhe0pKilJSUjy2tWnTRgsWLKhRjQAABAOCkgXsdrvS56R7tYzIL3G5XDp48KDKyspUp04dtWzZstL13Gw2m1frvAEAUNsQlCzij6ASERGh6OhoHTt2TE2aNFFkZKTPrwEAQG1CUAoz9erVU7169awuAwCAsED/CwAAgAlalBCUTp06pYKCAjmdTqtLAQDUYrQoBYCvB22HO5fLpaNHj6q0tFQnT55USUmJ1SUBAGopgpIflQ+mPnnypMWVhJbi4mK5XC6VlpaqpKREH3zwgdUlAQBqKbre/CgiIkLnn3++Dh8+LEmqX79+tecvqm1KSkp09OhR93/37NmjHTt26IorrlB0dLTV5QEAahmCkp+1bNlSktxhCb+suLhYJSUlKisr0549e/TFF1/Ibrdr5cqVmjJlCkETABBQBCU/s9lsatWqlVq0aMFYm3MoKCjQSy+9JMMwdOrUKZWWlko6M2Zp586dys/PdwdPAAACgaAUIBEREYqIiLC6jKDWtm1btW7dWrt375bL5XJvt9vt6tSpk2JiYiysDgBQGzGYG0HDZrNp5MiRlW4fNWoU3W6V2L59u9LT07V9+3arSwGAsBTUQenHH39Uv379FB8fry+++MJjX3Z2tgYNGqRu3brpuuuu04YNGyyqEr4UHR2tpKQkdyiy2WxKTExU8+bNLa4s+DidTmVnZ+vYsWPKzs5mzikA8IOgDkpPPfWUysrKKmxfs2aN0tLSlJycrMWLF+vSSy/V9OnT9dlnnwW+SPhcUlKSGjduLEmKiopSUlKSxRUFp9zcXBUVFUmSioqKlJuba3FFABB+gjYoff3113rxxRc1Y8aMCvsyMjI0ZMgQ3XnnnerVq5ceeOABdevWTZmZmRZUCl9zOBxKSUlRkyZNNGrUKDkcDqtLCjoFBQXKzc11T2ZqGIby8vJUUFBgcWUAEF6CNig9+OCDuummmxQbG+ux/cCBA9q/f7+Sk5M9tg8ePFgfffQR3Q9homvXrpozZ466du1qdSlBxzAMrVy50nQ7M8EDgO8EZVBau3atdu/erTvuuKPCvr1790pShQAVFxenkpISHThwICA1AlbJz8/Xzp07Pe4MlDynUQAA+EbQTQ9w6tQpzZs3T3fddZcaNmxYYX9hYaEkucewlCt/XL7/5xITE02vefDgQbVq1crbkoGAiomJUefOnZlGASFr+/btWrlypUaOHEmrMYJe0LUoLVy4UM2aNav0NnEATKOA0Mbdmgg1QdWi9P3332vJkiXKzMxUcXGxpP+/oOzJkyf1448/KioqStKZpS7OXvur/O6f8v0/l5eXZ3rdX2ptAoJR+TQK69atk2EYTKOAkFHZ3ZqDBw+2uCrAXFAFpe+++04lJSWaPHlyhX3jxo1Tjx49NH/+fElnxip16NDBvX/v3r2KjIxUu3btAlYvYKWkpCRt3rxZhYWFTKOAkGB2t+aVV17JotcIWkEVlC6++GItX77cY9tXX32lRx55ROnp6erWrZvatWunCy+8UGvXrvX4YsjJyVHv3r25lRy1Rvk0CuVjPfjZRzA7192aLHqNYBVUQalx48ZKSEiodF+XLl3UpUsXSdKMGTM0a9YstW/fXgkJCcrJydG2bduUlZUVyHIBy3Xt2pXBsAgJ5Xdr/hyLXiPYBVVQqqqhQ4fq1KlTWrx4sRYtWqTY2Fg9+eST6tmzp9WlAQAqwd2aCFVBH5QSEhK0a9euCttTUlKUkpJiQUUAgOoqv1vzkUceqbCduzURzIJuegAAQHhi0WuEIoISACBgWPQaoYagBAAIGBa9RqgJ+jFKAIDwwt2aCCUEJQAAUGWGYVRr6ZnyCUarM2Df4XAEzQB/ghIAAKgSwzCUkZGhffv2+fU6sbGxSk1NDYqwxBglAAAAE7QoAQCAKrHZbEpNTa1y15vT6VRaWpokae7cuVUevE/XGwAACEk2m01169at9vMcDodXz7MaXW8AAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAgIDavn270tPTtX37dqtLAc6JoAQACBin06ns7GwdO3ZM2dnZ1VqFHrACQQkAEDC5ubkqKiqSJBUVFSk3N9fiioBfRlACAAREQUGBcnNzZRiGJMkwDOXl5amgoMDiygBzBCUAgN8ZhqGVK1eabi8PT0CwISgBAPwuPz9fO3fulMvl8tjucrm0c+dO5efnW1QZ8MsISgAAv4uJiVHnzp1lt3t+7djtdnXu3FkxMTEWVQb8MoISghK3DwPhxWazaeTIkZVuHzVqlGw2mwVVAedGUELQ4fZhIDxFR0crKSnJHYpsNpsSExPVvHlziysDzBGUEHS4fRgIX0lJSWrcuLEkKSoqSklJSRZXBPwyghKCCrcPA+HN4XAoJSVFTZo00ahRo+RwOKwuCfhFdawuACh3rtuHp0yZwjgGIAx07dpVXbt2tboMoEpoUULQ4PZhAECwISghaJTfPlwZbh8GAFiBoISgYbPZNGDAgEr3DRw4kG43AEDAEZQQNAzD0IYNGyoEIpvNpvXr17PEAQAg4AhKCBrlY5R+HogMw2CMEgDAEgQlBA2WOAAABBuCEoIGSxwAAIINQQlBhSUOAADBhKCEoMMSBwCAYEFQQtBhiQMAQLBgCZMws337dq1cuVIjR44M6SUCWOIAABAMaFEKI06nU9nZ2Tp27Jiys7PldDqtLgkAgJBGUAojubm5KioqkiQVFRUpNzfX4ooAAAhtBKUwUVBQoNzcXPdkjYZhKC8vTwUFBRZXBgBA6CIohQHDMLRy5UrT7Sz9AQCAdxjMHQbKl/74OZfL5V76o2XLlhZUBgDhyTAMv44DPfvcgRhv6nA4mNTXBEEpDJQv/bF79265XC73drvdrk6dOrH0BwD4mNPp1L333huQa6Wlpfn9Go8++qjq1q3r9+uEIrrewgBLfwAA4B+0KIWJ8qU/1q1bJ8MwWPoDAAJkzLD7VKeO7yfGLR9f6q9fdktLnVrx1oN+OXc4ISiFkaSkJG3evFmFhYUs/QEAAVKnjkORfghKCA50vYURlv4AEAq2b9+u9PR0bd++3epSgHOiRSnMsPQHgGBWvoJAYWGhsrOz1alTJ36pQ1CjRQkAEDCsIIBQU+UWpR9++MGrC7Ru3dqr5wEAwovZCgJXXnmloqOjLa4OqFyVg9LAgQO9Gnn/1VdfVfs5AIDwcq4VBKZMmcJUJghKVQ5KDz/8MD/EAACvsIIAQlWVg9INN9zgzzoAAGGMFQQQqhjMDQDwO1YQQKiqcovSk08+We2T22w23XHHHVU+fuPGjVq8eLH++9//6sSJE4qJiVFSUpKmT5+uRo0auY9bv369nnjiCe3bt0+tW7fW5MmTK/0fEAAQPFhBAKEoqILS8ePH1b17d40dO1bnn3++9uzZowULFmjPnj1asmSJJOmTTz7R9OnTNWrUKP3pT3/Sxx9/rD//+c9q0KCBfvOb31S7RgBA4LCCAEJNlYNSZYPwfG348OEejxMSEuRwOJSWlqb8/HzFxMRo4cKF6t69ux544AFJUq9evXTgwAFlZGQQlAAgyJWvILBy5UqNHDmSySYR9IJ+Zu7zzz9fklRSUiKn06nNmzdr1qxZHscMHjxYq1ev1nfffae2bdtaUCUAoKpYQQChJCgHc5eVlemnn37Sl19+qczMTA0cOFBt27bVt99+q5KSEnXo0MHj+Li4OEnS3r17rSgXAACEqWpNOGm32/X2228rMjKyShNQ2mw2r6anHzBggPLz8yVJffv21fz58yVJhYWFkqTGjRt7HF/+uHx/ZRITE033HTx4UK1atap2nag6wzDkdDqrdbykat0J43A4uHMGAOBTVQ5KV111lWw2m+x2u8djf1i0aJFOnTql//73v1q4cKGmTp2q559/3i/Xgv8ZhqGMjAzt27fPr9eJjY1VamoqYQkA4DNVDkrz5s37xce+1LlzZ0lSz5491a1bNw0fPlzr1q3TRRddJEkqLi72OL58gcWoqCjTc+bl5Znu+6XWJgAAUHsF/WDu+Ph4RUZG6ttvv9XAgQMVGRmpvXv3qm/fvu5jyscm/XzsEoKDzWZTampqlbvenE6n0tLSJElz586t8l0xdL0BAHytRkHJ6XTq1Vdf1caNG/X9999Lktq0aaP+/fsrJSVFdevWrXGBn3/+uUpKStS2bVs5HA4lJCTonXfe0fjx493H5OTkKC4ujjvegpjNZvPq58HhcPjk5wgAAG94HZQOHTqkiRMnat++fYqOjtYFF1wg6cx8S++//76ysrK0dOnSai1yOH36dHXt2lXx8fE677zztHPnTj333HOKj493T0p2++23a9y4cfrLX/6i5ORkbd68WatXr9bf//53b18KAABApbwOSunp6frhhx/0xBNPVJjo8e2339bs2bOVnp6uhQsXVvmc3bt3V05OjhYtWiTDMNSmTRulpKTo1ltvdXe/XHHFFVqwYIGeeOIJvfbaa2rdurUefPBBJScne/tSgKARiLsDJbop4Vvc1Ypw5nVQ+vjjjzVhwoRKZ8NOTk7Wjh07lJWVVa1zTp48WZMnTz7ncYmJiQzARtgJ1N2BEncIwne4qxXhzusJJxs0aKCmTZua7m/evLkaNGjg7ekBAAAs53WL0g033KA33nhDN954o+rVq+ex78cff9Trr7+ukSNH1rhAoLYI1N2BEt0Y8B3uakW4q3JQevfddz0eX3zxxXrvvfeUnJysESNGuAdz79+/X//85z8VFRWl+Ph431ZbCzFmpXbh7kCEIn5uEc6qHJTK+4bP/iIu//vTTz9d4fhDhw5p5syZGjx4sI9KrX0YswIAgLWqHJSWL1/uzzoAAACCTrXWequJn376SW+//bb69Omj5s2b1+hctQVjVgAAsFbAljApLi7WH//4Ry1ZsoSgVA30/QMAYB2vpwfwRvmYJgAAgFAQ0KAEAAAQSghKAAAAJghKAAAAJghKAAAAJghKAAAAJghKAAAAJgI2j1JUVJSWL1+uiy++OFCXBICAqe66jNV19rn9eZ1yTEILnFHloPTmm296dYERI0ZIkiIjI2s8uzcABCun06l77703INcqn4Hfnx599FEmrQVUjaA0e/bsap/cZrO5gxIAAECoqXJQysvL82cdABA2xgy7T3XqVH2txaoqX93AX11ipaVOrXjrQb+cGwhVVQ5Kbdq08WcdABA26tRxKNIPQQlA4HHXGwAAgIka3fVWUFCg1157TTt27FBxcbFcLpfHfpvNpmXLltWoQAAAAKt4HZR27typcePG6fTp04qNjdXu3bt10UUXqaioSPn5+Wrfvr1atmzpy1oBAAACyuuut/nz56t+/fpau3atnn/+eRmGoT/96U/auHGj/v73v6uwsFCzZs3yZa0AAAAB5XVQ+vTTT/Xb3/5WrVu3lt1+5jTld2QkJydr2LBheuyxx3xTJQAAgAW8Dkoul0vNmzeXJDVu3FgRERE6fvy4e398fLy+/PLLGhcIAABgFa+DUtu2bfXdd9+dOYndrrZt2+qjjz5y7//000/VqFGjmlcIAABgEa8Hc/fp00dr167VXXfdJUm6+eabNW/ePB04cECGYWjLli2aOHGizwoFAAD+4a/1AwO5RqG/1if0OihNnTpVQ4YMUUlJiSIjIzV+/HidPHlS7777rux2u6ZNm6YpU6b4slYAAOAHgVg/0N/X8Nf6hF4HpaioKEVFRbkf22w2TZs2TdOmTfNJYQAAAFbzOiiNGzdOt99+u3r37l3p/o8//lhPPfWUli9f7nVxAAAgMDpOvFz2SN8v2OHPNQpdJS7teX6rz897Nq+D0pYtW5SSkmK6/+jRo/r3v//t7ekBAEAA2SPtskdGWF1G0KlRdPyldPjNN9+oQYMGNTk9AACAparVovTGG2/ojTfecD9euHChXn311QrHFRcXa9euXerXr1/NKwQAALBItYLSqVOndOzYMffjH3/80T0r99nq16+vm266SXfccUfNKwQAALBItYLS6NGjNXr0aEnSwIED9ec//1mJiYl+KQwAAMBqXg/mXr9+vS/rAAAACDpeB6VyW7Zs0XvvvacffvhBktS6dWtdc801uuqqq2pcHAAAgJW8DkpOp1MzZ85Ubm6uDMNQ48aNJUlFRUV6/vnnde2112r+/PmKjIz0WbEAAACB5PX0AJmZmVq3bp0mTpyoDz74QFu2bNGWLVu0adMmTZo0Se+++64yMzN9WSsAAEBAeR2U3nrrLV1//fX6wx/+oObNm7u3N2vWTPfcc49GjBihVatW+aRIAAAAK3jd9VZQUKDu3bub7u/evbvWrFnj7ekBAAgJJaVOq0vwSqjWHWheB6WWLVtqy5Ytuvnmmyvd/+9//1stW7b0ujAAAIJV+fplkvTiWw9aWAn8zeugNGLECC1YsECNGjXShAkTdMEFF8hms2n//v1atmyZ1q5dqxkzZviyVgAhwjAMOZ1V/23Vm0UzHQ6HXxbZBICzeR2Upk6dqgMHDujVV19Vdna2e4Zul8slwzB0/fXXa+rUqT4rFIA1vAk9Cxcu1DfffOPHqqQLL7xQU6dOJVzBEmf/HI0edp8i6zgsrMY7JaVOWsOqwOuglJ+frzlz5mjChAn617/+pe+//16S1KZNG/Xr108XXHCBDh06pNatW/usWACB53Q6de+991pdRgX79+/X7Nmzq/WcRx99VHXr1vVTRaitIus4QjIooWq8DkqJiYl6/PHHNXToUHXu3LnC/pycHM2cOVNfffVVjQoEAACwitdByTAMj8FsP1dSUlLpgrkAQlfHiZfLHun7/6+9GaNUVa4Sl/Y8v9Xn5wVQO1QrKJ04cUJFRUXux8ePH3cvXXK2oqIi5eTkKDo6uuYVAgga9ki77JERVpcBAAFTraC0dOlS92zbNptNDz/8sB5++OFKjzUMQ3feeWeNCwQAALBKtYLS1Vdfrfr168swDD3++OMaMmSIunTp4nGMzWZTvXr11KVLF3Xr1s2nxQIAAARStYJSz5491bNnT0nSqVOn9Otf/1qdOnXyS2EAAABW83ow9/Tp031ZBwAAQNDhtjQAAAATBCUAAAATBCUAAAATBCUAAAATBCUAAAATXt/1BgAIX06n0+/n9dc1yjkcDr8si4PaJaiC0ttvv61Vq1bpyy+/VFFRkS644AKNHTtWI0eO9Phhz87O1rPPPqsffvhBsbGxuuuuuzRgwAALKweA8JKWlhby13j00UdVt25dv14D4S+ogtLSpUvVpk0bzZ49W02aNNGHH36otLQ0HTp0yD1v05o1a5SWlqapU6eqV69eysnJ0fTp07VixQpdeuml1r4AAJBUUurflhJ/CdW6AX8KqqC0cOFCNW3a1P24d+/eOn78uJ5//nlNmzZNdrtdGRkZGjJkiHsduV69emn37t3KzMzU4sWLLaq8djEMw69N5jTNIxQZhuH++4tvPWhhJb7TceLlskf6fihr+Xvlj//3XCUu7Xl+q8/Pi9orqILS2SGp3MUXX6xXX31VJ0+e1LFjx7R//37dc889HscMHjxYjz32mJxOpxwOR6DKrbWcTqfuvffegFyLpnnAOvZIu+yREVaXAVgqqIJSZbZu3aqYmBg1bNhQW7ee+S0hNjbW45i4uDiVlJTowIEDiouLq/Q8iYmJptc4ePCgWrVq5buiAdQ6Z7eOjB52nyLrhN4vbSWlzrBpDQN8JaiD0ieffKKcnBx360VhYaEkqXHjxh7HlT8u3x+swqXL6uxz0zQPVBRZxxGSQQlARUEblA4dOqS77rpLCQkJGjduXI3Pl5eXZ7rvl1qbfCmcuqzK0TQPAAhnQTnhZFFRkX73u9/p/PPP14IFC2S3nykzKipKklRcXFzh+LP3AwAA+ELQtSidPn1aU6ZMUXFxsV555RU1atTIva9Dhw6SpL1797r/Xv44MjJS7dq1C3i93hoz7D7V8UPTvD+7rCSptNSpFYxhAADUEkEVlEpLS3XnnXdq7969WrFihWJiYjz2t2vXThdeeKHWrl2rpKQk9/acnBz17t07pO54q8MYBoQgV0mZ1SVUWyjWDCB4BFVQSk9P14YNGzR79mydOHFCn332mXvfJZdcIofDoRkzZmjWrFlq3769EhISlJOTo23btikrK8u6woEwdvb8QHue/9TCSmru7NcCAFURVEFp06ZNkqR58+ZV2JeXl6e2bdtq6NChOnXqlBYvXqxFixYpNjZWTz75pHr27BnocgEAQJgLqqC0fv36Kh2XkpKilJQUP1cDQPIc79Zx4mUhd5ejq6TM3RLGLOwAqiuoghIQTsJx3ix7ZETIBSUAqAmCEuAn4ThvFoDwFYo3PgSiZoISAADgZg0TBCUgAJg3CwBCE0EJCADmzQIQ7LhZo3IEJQAAwM0aJghKAIBKMbgXICgBAEwwuBeQ7FYXAAAAEKxoUQIAVIrBvQBBCQBggsG9VVNa6p+Z8QMx/QfOjaAEAEANMNdYeGOMEgAAgAlalAAAqCaHw6FHH33Ub+d3Op3uNRznzp0rh8M/E9aefR1UjqAEAEA12Ww21a1bNyDXcjgcAbsWKiIoWaQkRAfRhWrdAAB4g6AUQGdPfvYig/8AAAh6DOYGAAAwQYtSAJ09F8boYfeF5GryJaVOWsMAALUGQckikXUcIRmUfi4UF6AMxZoBANYgKKFGWDQTABDOGKMEAABgghYl1AiLZgIAwhlBCTXCopkAgHBG1xsAAIAJWpQAVJmrxOWX85YPqvdHV6i/agZQOxCUAFTZnue3Wl0CAAQUQQkAUClaEGsXPu/KEZQAVMncuXPlcPh+klSn06m0tDS/XqOcP88djmhBrF34vCtHUAJQJQ6HQ3Xr1g35awBAdRCUAAAV0IJYOzgcDj366KN+O384fN4EJQBABbQg1g42my1gn0Goft7MowQAAGCCoAQAAGCCoAQAAGCCoAQAAGCCwdwWKS11+uW8/pzYS/Jf3QAABCOCkkVWvPWg1SUggEpCNGCGat1W4xchIHwQlAA/Kf9Sk6QXwyAYn/168Mv4RQgIHwSlAAqXib3Ovg4AAOGMoBRATOxVu5zdPTJ62H2KrBN6swSXlDrdrWH+6u4JF+Hyi1A5ZrUGziAoAQEQWccRkkEJVccvQkB4YnoAAAAAE7QoAfA5wzDkdFbtDqqzj6vqc6QzrSp0BwLwN4ISAJ8yDEMZGRnat29ftZ9bnZsEYmNjlZqaSlgC4Fd0vQEAAJigRQmAT9lsNqWmplarG82biRTpegMQCAQlAD4XyDvAAMCf6HoDAAAwQYsSasRV4vLLef25ppW/av4lrP0FAKGJoIQa2fP8VqtLCAms/QUAoYmuNwAAABO0KKHawmlNK3+fO1zeJ4m1vwDUTgQlVBtrWlUN7xMAhD663gAAAEwQlAAAAEwQlAAAAEwEXVD65ptvdP/992v48OG65JJLNHTo0EqPy87O1qBBg9StWzddd9112rBhQ4ArBQAA4S7oBnPv2bNHGzduVI8ePeRyudwT6p1tzZo1SktL09SpU9WrVy/l5ORo+vTpWrFihS699NLAF+1HhmFUec2ss4+rzjpbEutmAQBQmaALSgMHDlRSUpIkafbs2dq+fXuFYzIyMjRkyBDdeeedkqRevXpp9+7dyszM1OLFiwNZrl8ZhqGMjAzt27ev2s8tv228qmJjY5WamkpYAgDgLEHX9Wa3/3JJBw4c0P79+5WcnOyxffDgwfroo4+q3ZICAABgJuhalM5l7969ks60gJwtLi5OJSUlOnDggOLi4qwozedsNptSU1OrFf68XfuLrjcAACoKuaBUWFgoSWrcuLHH9vLH5ft/LjEx0fScBw8eVKtWrXxUoW8FctJCAADgKei63qwQERERtEEJAABYJ+RalKKioiRJxcXFio6Odm8vKiry2P9zeXl5/i8OAACElZBrUerQoYOk/z9WqdzevXsVGRmpdu3aWVEWAAAIQyEXlNq1a6cLL7xQa9eu9diek5Oj3r17s8I5AADwmaDrejt16pQ2btwoSfr+++914sQJdyi66qqr1LRpU82YMUOzZs1S+/btlZCQoJycHG3btk1ZWVlWlg4AAMJM0AWlI0eO6Pe//73HtvLHy5cvV0JCgoYOHapTp05p8eLFWrRokWJjY/Xkk0+qZ8+eVpQMAADCVNAFpbZt22rXrl3nPC4lJUUpKSkBqAgAAJQLxNJawTS3X9AFJQAAEJwCtbRWMC2rFXKDuQEAAAKFFiUAAFAlgVpai643AAAQkmrb0lp0vQEAAJggKAEAAJggKAEAAJggKAEAAJhgMDcCorZNUAYACA8EJfhdbZygDAAQHghKAIAaocW4agLxPknh8V4FE4IS/K42TlAG1Ba0GFdNoN4nKfTfq2BDUEJA1LYJygAA4YGgBADwGi3GVROo90kK/fcq2BCUAAA1Qotx1fA+hSbmUQIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADDB9ABAEGGJAwAILgQlIEiwxAEABB+63gAAAEzQogQECZY4AIDgQ1ACgghLHABAcKHrDQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwEQdqwsAgNrKMAw5nc4qHXv2cVV9TjmHwyGbzVat5wA4w2YYhmF1EQBQ2xiGoYyMDO3bt8/v14qNjVVqaiphCfACXW8AAAAmaFECAItUp+ut/HhJ1W4ZousN8B5BCQAAwARdbwAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACbqWF0AQs8tt9yigwcPWl0GAMAHWrVqpaysLKvLCFoEJVTb559/rrKyMrVq1crqUhAA5aGYz7t24POuXQ4ePKjDhw9bXUZQIyih2lq0aCFJysvLs7gSBEJiYqIkPu/ags+7din/vGGOMUoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmbIZhGFYXAQAAEIxoUQIAADBBUAIAADBBUAIAADBBUAIAADBBUAIAADDBori1UHx8/DmPeeSRR9SmTRuNGzdOr732mrp16xaAymClBQsW6Mknn6ywvWPHjlq9enWlz5k9e7a2b99uuh/BZdWqVVq+fLn27dsnwzAUExOjyy67THfffbeaNWtW5fNs3rxZ//nPfzR16lQ/Vgtv+epzxhkEpVrolVde8Xj829/+VmPHjtXQoUPd29q3b689e/YEujRY7LzzztOyZcsqbDMzbdo0nTx50t9lwQcWL16s+fPna8KECUpNTZVhGNqzZ4/eeustHT58uFpfoFu2bNGSJUsISkHIl58zziAo1UKXXnpphW2tWrWqdLs/nT59+he/hBF4dru9Sj8H5Z9d+/bt/V8UfOKFF17Q9ddfr9mzZ7u39e/fX7fddptcLpeFlcGX+Jx9jzFKOKeioiLNnDlTPXv21IABA7R48WKP/WPHjtWUKVM8tn311VeKj4/X5s2b3dvi4+O1aNEiPf7447r66qvVu3fvgNSPmjP77GbPnu3REongVVRUpBYtWlS6z27//18Fb775pm6++WZdddVVuvLKKzV27Fht27bNvb+8i/bkyZOKj49XfHy8xo4d6/f6UTVV/Zzj4+P13HPPeexfunSpx9CMzZs3Kz4+Xps2bfrF74BwR4sSzmnOnDkaPny4MjMzlZubq7/+9a+Kj49Xv379qn2u5cuXq0ePHnrooYdUWlrqh2pRUz//XCIiIiTx2YW6Ll266OWXX1bbtm11zTXXKDo6utLjvvvuO40YMULt27eX0+nUmjVrNGbMGK1atUqxsbFKSUnRoUOHtHr1anc3bcOGDQP5UvALqvo5V4cvvwNCEUEJ5/TrX/9aM2bMkCT17t1b7733nt555x2v/ieJiorSk08+KZvN5usy4QMnT55Uly5dPLY99thjkvjsQt2cOXM0ffp03XfffZKktm3basCAAZowYYLatm3rPm769Onuv7tcLl199dXatm2b3njjDd19991q2bKlWrZsWeVuWgRWVT/n6vDld0AoIijhnPr06eP+u81mU1xcnA4dOuTVufr168cXbRA777zzlJWV5bGtXbt2kvjsQl2nTp20evVqffTRR/rggw/073//Wy+88IJef/11rVixQhdffLEk6euvv9bf/vY3/ec//9GRI0fcz9+/f79FlaM6qvo5V4cvvwNCEUEJ59SoUSOPx5GRkSouLvbqXNxxEdzsdrvpVBB8dqHP4XCof//+6t+/vyTp/fff15QpU5SZmaknn3xSJ06c0KRJk9S0aVPNnj1brVu3Vt26dXXffffpp59+srh6VNW5Pufq8uV3QCgiKKHGHA6HSkpKPLYVFhZWeiwtEqGLzy789O3bV507d9bXX38tSfrss8906NAhPfPMM+rcubP7uOLiYrVs2dKqMlFDP/+cpcr/3S4qKgp0aSGBu95QYy1btnRPbFZu06ZNFlYE4Of+97//Vdh2+vRpHTx4UM2bN3c/ls60GJT79NNP9f3333s8LzIyUk6n04/VwltV+ZylM/9unx2cJOnDDz/0e32hiBYl1NigQYP02muvae7cuUpKStKnn36qd955x+qyAJxl2LBhGjBggPr06aMWLVooPz9fWVlZOnbsmMaPHy/pzBxr9evXV3p6uiZPnqz8/HwtWLBAMTExHueKi4tTaWmpli1bpp49e6phw4bq0KGDFS8LP1OVz1k68+/2smXL1K1bN8XGxmrVqlXKz8+3sPLgRVBCjfXr10/33HOPsrKy9MYbb6hfv35KT0/XhAkTrC4NwP+ZPn26NmzYoHnz5uno0aNq0qSJ4uPjtXTpUvXq1UuS1Lx5c/3jH//QY489pmnTpunCCy9Uenq6nn32WY9zDRgwQKNHj9aiRYt05MgRXXnllXrhhReseFn4map8ztKZWfWPHDmizMxM2Ww2/fa3v9W4ceM0b948C6sPTjbj7P4SAAAAuDFGCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCUCttmDBAsXHx1tdBoAgRVACAAAwQVACAAAwQVACAAAwQVACUGt88sknGjlypLp166akpCS9/PLLFY5ZuXKlxo0bp969e6tr164aPHiwXnzxRY9j7r33XiUkJKikpKTC8ydNmqRBgwb57TUACKw6VhcAAIGwa9cu3XrrrWratKlmzJih0tJSLViwQM2aNfM47qWXXlLHjh01cOBA1alTRxs2bFB6eroMw9CYMWMkScOHD9ebb76pDz74QAMGDHA/t6CgQB9//LHuuOOOgL42AP5jMwzDsLoIAPC3O+64Q++//77Wrl2r1q1bS5K+/vprDRs2TGVlZdq1a5ck6fTp0zrvvPM8nnvrrbfqm2++UW5uriTJ5XJpwIABuuyyy/T3v//dfdzSpUs1b948rVu3Tu3atQvQKwPgT3S9AQh7ZWVl+uCDD5SUlOQOSZIUFxenPn36eBx7dkgqLi7W0aNHddVVV+nAgQMqLi6WJNntdg0bNkzr16/XiRMn3MevWrVKPXv2JCQBYYSgBCDsHT16VKdPn9YFF1xQYV9sbKzH461bt2rChAm69NJLdcUVV6h3797629/+JknuoCRJI0aM0OnTp92tTHv37tWXX36p4cOH+/GVAAg0xigBwP/59ttvNWHCBHXo0EGzZ89Wq1atFBkZqY0bN2rp0qVyuVzuYy+66CJ16dJFq1at0ogRI7Rq1SpFRkYqOTnZwlcAwNcISgDCXtOmTXXeeefpm2++qbBv37597r+vX79eTqdTCxcu9Oii27x5c6XnHTFihObNm6fDhw9r9erVuuaaaxQVFeX7FwDAMnS9AQh7ERER6tOnj3Jzc/XDDz+4t3/99df64IMPPI6TpLPvcSkuLtbKlSsrPe/QoUNls9n00EMP6cCBA7ruuuv89AoAWIUWJQC1wowZM/T+++9rzJgxuvnmm1VWVqasrCxddNFF7jverr76akVGRmrq1Km66aab9OOPPyo7O1vNmjVTQUFBhXM2bdpUffv21dq1a9W4cWNdc801AX5VAPyNFiUAtULnzp313HPPqUmTJsrIyNDKlSs1Y8YMXXvtte5jOnTooIyMDNlsNj366KN6+eWXdeONN2rcuHGm5y0fvJ2cnCyHw+H31wEgsJhHCQBqIDc3V3fccYdWrFihK664wupyAPgYLUoAUAPZ2dlq166dLr/8cqtLAeAHjFECAC+sWbNGu3bt0nvvvac///nPstlsVpcEwA/oegMAL8THx6t+/foaPHiw0tPTVacOv3cC4YigBAAAYIIxSgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACYISgAAACb+HzHpjDwsC3rOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "sns.set_theme(style=\"ticks\", palette=\"pastel\")\n", + "\n", + "# Load the example tips dataset\n", + "tips = sns.load_dataset(\"tips\")\n", + "\n", + "# Draw a nested boxplot to show bills by day and time\n", + "sns.boxplot(x=\"day\", y=\"total_bill\",\n", + " hue=\"smoker\", palette=[\"m\", \"g\"],\n", + " data=tips)\n", + "sns.despine(offset=10, trim=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exploritory Data Analysis" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Seaborne" + "Ще направим анализ на Titanic dataset-а, с помощта на pandas и matplotlib." ] } ], diff --git a/18 - numpy, pandas, matplotlib/titanic/test.csv b/18 - numpy, pandas, matplotlib/titanic/test.csv new file mode 100644 index 0000000..f705412 --- /dev/null +++ b/18 - numpy, pandas, matplotlib/titanic/test.csv @@ -0,0 +1,419 @@ +PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q +893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S +894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q +895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S +896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S +897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S +898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q +899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S +900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C +901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S +902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S +903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S +904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S +905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S +906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S +907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C +908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q +909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C +910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S +911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C +912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C +913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S +914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S +915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C +916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C +917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S +918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C +919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C +920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S +921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C +922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S +923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S +924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S +925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S +926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C +927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C +928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S +929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S +930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S +931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S +932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C +933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S +934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S +935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S +936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S +937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S +938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C +939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q +940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C +941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S +942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S +943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C +944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S +945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S +946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C +947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q +948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S +949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S +950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S +951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C +952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S +953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S +954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S +955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q +956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C +957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S +958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q +959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S +960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C +961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S +962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q +963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S +964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S +965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C +966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C +967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C +968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S +969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S +970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S +971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q +972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C +973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S +974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S +975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S +976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q +977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C +978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q +979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S +980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q +981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S +982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S +983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S +984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S +985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S +986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C +987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S +988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S +989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S +990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S +991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S +992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C +993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S +994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q +995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S +996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C +997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S +998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q +999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q +1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S +1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S +1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C +1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q +1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C +1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q +1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S +1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C +1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C +1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S +1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C +1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S +1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S +1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q +1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C +1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S +1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q +1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S +1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S +1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q +1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S +1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S +1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S +1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C +1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S +1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C +1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S +1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S +1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C +1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S +1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S +1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S +1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S +1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S +1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C +1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S +1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S +1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S +1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S +1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S +1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S +1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S +1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C +1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C +1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S +1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S +1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S +1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S +1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S +1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S +1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S +1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S +1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q +1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C +1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S +1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S +1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S +1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S +1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C +1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S +1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C +1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S +1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S +1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C +1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S +1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C +1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S +1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S +1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S +1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C +1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S +1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C +1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S +1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C +1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S +1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q +1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C +1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S +1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S +1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S +1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S +1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S +1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S +1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S +1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S +1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q +1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S +1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S +1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C +1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S +1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S +1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S +1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q +1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S +1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C +1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S +1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S +1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C +1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q +1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S +1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C +1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S +1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S +1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S +1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S +1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S +1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S +1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S +1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q +1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S +1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C +1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S +1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C +1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S +1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S +1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S +1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C +1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C +1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S +1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q +1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S +1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S +1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S +1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S +1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S +1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q +1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C +1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S +1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C +1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C +1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S +1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C +1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C +1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S +1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C +1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S +1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S +1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S +1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S +1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S +1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S +1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C +1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S +1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S +1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C +1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S +1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S +1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S +1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q +1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S +1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S +1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S +1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S +1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S +1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S +1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S +1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C +1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S +1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S +1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S +1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S +1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S +1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C +1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q +1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C +1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q +1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C +1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S +1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S +1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S +1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S +1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S +1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S +1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S +1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q +1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C +1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S +1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S +1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S +1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S +1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C +1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S +1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S +1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q +1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C +1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S +1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S +1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S +1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C +1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C +1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S +1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S +1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S +1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C +1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S +1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S +1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q +1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S +1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S +1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S +1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S +1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S +1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S +1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C +1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S +1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q +1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C +1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q +1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C +1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S +1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S +1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S +1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S +1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C +1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S +1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S +1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S +1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S +1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S +1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C +1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S +1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S +1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S +1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C +1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C +1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C +1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S +1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S +1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S +1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C +1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S +1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C +1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S +1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S +1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S +1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C +1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S +1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S +1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S +1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C +1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S +1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S +1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C +1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S +1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S +1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S +1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S +1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S +1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S +1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S +1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q +1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S +1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S +1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C +1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S +1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S +1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C +1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S +1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C +1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S +1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C +1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C +1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S +1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C +1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S +1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S +1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S +1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C +1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S +1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S +1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S +1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S +1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q +1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q +1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S +1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S +1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S +1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S +1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S +1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S +1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q +1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S +1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S +1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S +1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S +1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S +1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S +1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S +1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q +1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C +1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S +1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q +1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S +1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S +1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C +1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S +1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C +1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C +1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S +1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C +1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q +1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S +1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q +1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q +1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S +1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S +1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C +1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S +1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S +1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C diff --git a/18 - numpy, pandas, matplotlib/titanic/train.csv b/18 - numpy, pandas, matplotlib/titanic/train.csv new file mode 100644 index 0000000..63b68ab --- /dev/null +++ b/18 - numpy, pandas, matplotlib/titanic/train.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q