-
Notifications
You must be signed in to change notification settings - Fork 8
/
pgd_attacks.py
184 lines (138 loc) · 7.92 KB
/
pgd_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import tensorflow as tf
import scipy.io
import numpy as np
def project_L0_box(y, k, lb, ub):
''' projection of the batch y to a batch x such that:
- each image of the batch x has at most k pixels with non-zero channels
- lb <= x <= ub '''
x = np.copy(y)
p1 = np.sum(x**2, axis=-1)
p2 = np.minimum(np.minimum(ub - x, x - lb), 0)
p2 = np.sum(p2**2, axis=-1)
p3 = np.sort(np.reshape(p1-p2, [p2.shape[0],-1]))[:,-k]
x = x*(np.logical_and(lb <=x, x <= ub)) + lb*(lb > x) + ub*(x > ub)
x *= np.expand_dims((p1 - p2) >= p3.reshape([-1, 1, 1]), -1)
return x
def project_L0_sigma(y, k, sigma, kappa, x_nat):
''' projection of the batch y to a batch x such that:
- 0 <= x <= 1
- each image of the batch x differs from the corresponding one of
x_nat in at most k pixels
- (1 - kappa*sigma)*x_nat <= x <= (1 + kappa*sigma)*x_nat '''
x = np.copy(y)
p1 = 1.0/np.maximum(1e-12, sigma)*(x_nat > 0).astype(float) + 1e12*(x_nat == 0).astype(float)
p2 = 1.0/np.maximum(1e-12, sigma)*(1.0/np.maximum(1e-12, x_nat) - 1)*(x_nat > 0).astype(float) + 1e12*(x_nat == 0).astype(float) + 1e12*(sigma == 0).astype(float)
lmbd_l = np.maximum(-kappa, np.amax(-p1, axis=-1, keepdims=True))
lmbd_u = np.minimum(kappa, np.amin(p2, axis=-1, keepdims=True))
lmbd_unconstr = np.sum((y - x_nat)*sigma*x_nat, axis=-1, keepdims=True)/np.maximum(1e-12, np.sum((sigma*x_nat)**2, axis=-1, keepdims=True))
lmbd = np.maximum(lmbd_l, np.minimum(lmbd_unconstr, lmbd_u))
p12 = np.sum((y - x_nat)**2, axis=-1, keepdims=True)
p22 = np.sum((y - (1 + lmbd*sigma)*x_nat)**2, axis=-1, keepdims=True)
p3 = np.sort(np.reshape(p12 - p22, [x.shape[0],-1]))[:,-k]
x = x_nat + lmbd*sigma*x_nat*((p12 - p22) >= p3.reshape([-1, 1, 1, 1]))
return x
def perturb_L0_box(attack, x_nat, y_nat, lb, ub, sess):
''' PGD attack wrt L0-norm + box constraints
it returns adversarial examples (if found) adv for the images x_nat, with correct labels y_nat,
such that:
- each image of the batch adv differs from the corresponding one of
x_nat in at most k pixels
- lb <= adv - x_nat <= ub
it returns also a vector of flags where 1 means no adversarial example found
(in this case the original image is returned in adv) '''
if attack.rs:
x2 = x_nat + np.random.uniform(lb, ub, x_nat.shape)
x2 = np.clip(x2, 0, 1)
else:
x2 = np.copy(x_nat)
adv_not_found = np.ones(y_nat.shape)
adv = np.zeros(x_nat.shape)
for i in range(attack.num_steps):
if i > 0:
pred, grad = sess.run([attack.model.correct_prediction, attack.model.grad], feed_dict={attack.model.x_input: x2, attack.model.y_input: y_nat})
adv_not_found = np.minimum(adv_not_found, pred.astype(int))
adv[np.logical_not(pred)] = np.copy(x2[np.logical_not(pred)])
grad /= (1e-10 + np.sum(np.abs(grad), axis=(1,2,3), keepdims=True))
x2 = np.add(x2, (np.random.random_sample(grad.shape)-0.5)*1e-12 + attack.step_size * grad, casting='unsafe')
x2 = x_nat + project_L0_box(x2 - x_nat, attack.k, lb, ub)
return adv, adv_not_found
def perturb_L0_sigma(attack, x_nat, y_nat, sess):
''' PGD attack wrt L0-norm + sigma-map constraints
it returns adversarial examples (if found) adv for the images x_nat, with correct labels y_nat,
such that:
- each image of the batch adv differs from the corresponding one of
x_nat in at most k pixels
- (1 - kappa*sigma)*x_nat <= adv <= (1 + kappa*sigma)*x_nat
it returns also a vector of flags where 1 means no adversarial example found
(in this case the original image is returned in adv) '''
if attack.rs:
x2 = x_nat + np.random.uniform(-attack.kappa, attack.kappa, x_nat.shape)
x2 = np.clip(x2, 0, 1)
else:
x2 = np.copy(x_nat)
adv_not_found = np.ones(y_nat.shape)
adv = np.zeros(x_nat.shape)
for i in range(attack.num_steps):
if i > 0:
pred, grad = sess.run([attack.model.correct_prediction, attack.model.grad], feed_dict={attack.model.x_input: x2, attack.model.y_input: y_nat})
adv_not_found = np.minimum(adv_not_found, pred.astype(int))
adv[np.logical_not(pred)] = np.copy(x2[np.logical_not(pred)])
grad /= (1e-10 + np.sum(np.abs(grad), axis=(1,2,3), keepdims=True))
x2 = np.add(x2, (np.random.random_sample(grad.shape)-0.5)*1e-12 + attack.step_size * grad, casting='unsafe')
x2 = project_L0_sigma(x2, attack.k, attack.sigma, attack.kappa, x_nat)
return adv, adv_not_found
def sigma_map(x):
''' creates the sigma-map for the batch x '''
sh = [4]
sh.extend(x.shape)
t = np.zeros(sh)
t[0,:,:-1] = x[:,1:]
t[0,:,-1] = x[:,-1]
t[1,:,1:] = x[:,:-1]
t[1,:,0] = x[:,0]
t[2,:,:,:-1] = x[:,:,1:]
t[2,:,:,-1] = x[:,:,-1]
t[3,:,:,1:] = x[:,:,:-1]
t[3,:,:,0] = x[:,:,0]
mean1 = (t[0] + x + t[1])/3
sd1 = np.sqrt(((t[0]-mean1)**2 + (x-mean1)**2 + (t[1]-mean1)**2)/3)
mean2 = (t[2] + x + t[3])/3
sd2 = np.sqrt(((t[2]-mean2)**2 + (x-mean2)**2 + (t[3]-mean2)**2)/3)
sd = np.minimum(sd1, sd2)
sd = np.sqrt(sd)
return sd
class PGDattack():
def __init__(self, model, args):
self.model = model
self.type_attack = args['type_attack'] # 'L0', 'L0+Linf', 'L0+sigma'
self.num_steps = args['num_steps'] # number of iterations of gradient descent for each restart
self.step_size = args['step_size'] # step size for gradient descent (\eta in the paper)
self.n_restarts = args['n_restarts'] # number of random restarts to perform
self.rs = True # random starting point
self.epsilon = args['epsilon'] # for L0+Linf, the bound on the Linf-norm of the perturbation
self.kappa = args['kappa'] # for L0+sigma (see kappa in the paper), larger kappa means easier and more visible attacks
self.k = args['sparsity'] # maximum number of pixels that can be modified (k_max in the paper)
def perturb(self, x_nat, y_nat, sess):
adv = np.copy(x_nat)
if self.type_attack == 'L0+sigma': self.sigma = sigma_map(x_nat)
for counter in range(self.n_restarts):
if counter == 0:
corr_pred = sess.run(self.model.correct_prediction, {self.model.x_input: x_nat, self.model.y_input: y_nat})
pgd_adv_acc = np.copy(corr_pred)
if self.type_attack == 'L0':
x_batch_adv, curr_pgd_adv_acc = perturb_L0_box(self, x_nat, y_nat, -x_nat, 1.0 - x_nat, sess)
elif self.type_attack == 'L0+Linf':
x_batch_adv, curr_pgd_adv_acc = perturb_L0_box(self, x_nat, y_nat, np.maximum(-self.epsilon, -x_nat), np.minimum(self.epsilon, 1.0 - x_nat), sess)
elif self.type_attack == 'L0+sigma' and x_nat.shape[3] == 3:
x_batch_adv, curr_pgd_adv_acc = perturb_L0_sigma(self, x_nat, y_nat, sess)
elif self.type_attack == 'L0+sigma' and x_nat.shape[3] == 1:
x_batch_adv, curr_pgd_adv_acc = perturb_L0_box(self, x_nat, y_nat, np.maximum(-self.kappa*self.sigma, -x_nat), np.minimum(self.kappa*self.sigma, 1.0 - x_nat), sess)
pgd_adv_acc = np.minimum(pgd_adv_acc, curr_pgd_adv_acc)
print("Restart {} - Robust accuracy: {}".format(counter + 1, np.sum(pgd_adv_acc)/x_nat.shape[0]))
adv[np.logical_not(curr_pgd_adv_acc)] = x_batch_adv[np.logical_not(curr_pgd_adv_acc)]
pixels_changed = np.sum(np.amax(np.abs(adv - x_nat) > 1e-10, axis=-1), axis=(1,2))
print('Pixels changed: ', pixels_changed)
corr_pred = sess.run(self.model.correct_prediction, {self.model.x_input: adv, self.model.y_input: y_nat})
print('Robust accuracy at {} pixels: {:.2f}%'.format(self.k, np.sum(corr_pred)/x_nat.shape[0]*100.0))
print('Maximum perturbation size: {:.5f}'.format(np.amax(np.abs(adv - x_nat))))
return adv, pgd_adv_acc