We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
class VisionTransformerUpHead(BaseDecodeHead): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=768, embed_dim=1024, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, num_conv=1, upsampling_method='bilinear', num_upsampe_layer=1, conv3x3_conv1x1=True, **kwargs): super(VisionTransformerUpHead, self).__init__(**kwargs) self.img_size = img_size self.norm_cfg = norm_cfg self.num_conv = num_conv self.norm = norm_layer(embed_dim) self.upsampling_method = upsampling_method self.num_upsampe_layer = num_upsampe_layer self.conv3x3_conv1x1 = conv3x3_conv1x1 out_channel = self.num_classes if self.num_conv == 2: if self.conv3x3_conv1x1: self.conv_0 = nn.Conv2d( embed_dim, 256, kernel_size=3, stride=1, padding=1) else: self.conv_0 = nn.Conv2d(embed_dim, 256, 1, 1) self.conv_1 = nn.Conv2d(256, out_channel, 1, 1) _, self.syncbn_fc_0 = build_norm_layer(self.norm_cfg, 256) elif self.num_conv == 4: self.conv_0 = nn.Conv2d( embed_dim, 256, kernel_size=3, stride=1, padding=1) self.conv_1 = nn.Conv2d( 256, 256, kernel_size=3, stride=1, padding=1) self.conv_2 = nn.Conv2d( 256, 256, kernel_size=3, stride=1, padding=1) self.conv_3 = nn.Conv2d( 256, 256, kernel_size=3, stride=1, padding=1) self.conv_4 = nn.Conv2d(256, out_channel, kernel_size=1, stride=1) _, self.syncbn_fc_0 = build_norm_layer(self.norm_cfg, 256) _, self.syncbn_fc_1 = build_norm_layer(self.norm_cfg, 256) _, self.syncbn_fc_2 = build_norm_layer(self.norm_cfg, 256) _, self.syncbn_fc_3 = build_norm_layer(self.norm_cfg, 256) # Segmentation head def init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): x = self._transform_inputs(x) if x.dim() == 3: if x.shape[1] % 48 != 0: x = x[:, 1:] x = self.norm(x) if self.upsampling_method == 'bilinear': if x.dim() == 3: n, hw, c = x.shape h = w = int(math.sqrt(hw)) x = x.transpose(1, 2).reshape(n, c, h, w) if self.num_conv == 2: if self.num_upsampe_layer == 2: x = self.conv_0(x) x = self.syncbn_fc_0(x) x = F.relu(x, inplace=True) x = F.interpolate( x, size=x.shape[-1]*4, mode='bilinear', align_corners=self.align_corners) x = self.conv_1(x) x = F.interpolate( x, size=self.img_size, mode='bilinear', align_corners=self.align_corners) elif self.num_upsampe_layer == 1: x = self.conv_0(x) x = self.syncbn_fc_0(x) x = F.relu(x, inplace=True) x = self.conv_1(x) x = F.interpolate( x, size=self.img_size, mode='bilinear', align_corners=self.align_corners) elif self.num_conv == 4: if self.num_upsampe_layer == 4: x = self.conv_0(x) x = self.syncbn_fc_0(x) x = F.relu(x, inplace=True) x = F.interpolate( x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) x = self.conv_1(x) x = self.syncbn_fc_1(x) x = F.relu(x, inplace=True) x = F.interpolate( x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) x = self.conv_2(x) x = self.syncbn_fc_2(x) x = F.relu(x, inplace=True) x = F.interpolate( x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) x = self.conv_3(x) x = self.syncbn_fc_3(x) x = F.relu(x, inplace=True) x = self.conv_4(x) x = F.interpolate( x, size=x.shape[-1]*2, mode='bilinear', align_corners=self.align_corners) return x
When "self.num_conv == 4:" F.interpolate only do on the last dimension,WHY the final shape would not be (B,num_classes,H/16,W)?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
When "self.num_conv == 4:" F.interpolate only do on the last dimension,WHY the final shape would not be (B,num_classes,H/16,W)?
The text was updated successfully, but these errors were encountered: