forked from math-comp/finmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiset.v
973 lines (712 loc) · 32.6 KB
/
multiset.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
(*************************************************************************)
(* Copyright (C) 2013 - 2015 *)
(* Author C. Cohen *)
(* DRAFT - PLEASE USE WITH CAUTION *)
(* License CeCILL-B *)
(*************************************************************************)
From mathcomp
Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.
From mathcomp
Require Import choice path finset finfun fintype bigop.
Require Import finmap.
(*****************************************************************************)
(* This file provides a representation of multisets based on fsfun *)
(* {mset T} == the type of multisets on a choiceType T *)
(* The following notations are in the %mset scope *)
(* mset0 == the empty multiset *)
(* mset n a == the multiset with n times element a *)
(* [mset a] == the singleton multiset {k} := mset 1 a *)
(* [mset a1; ..; an] == the multiset obtained from the elements a1,..,an *)
(* A `&` B == the intersection of A and B (the min of each) *)
(* A `|` B == the union of A and B (the max of each) *)
(* A `+` B == the sum of A and B *)
(* a |` B == the union of singleton a and B *)
(* a +` B == the addition of singleton a to B *)
(* A `\` B == the difference A minus B *)
(* A `\ b == A without one b *)
(* A `*` B == the product of A and B *)
(* [disjoint A & B] := A `&` B == 0 *)
(* A `<=` B == A is a sub-multiset of B *)
(* A `<` B == A is a proper sub-multiset of B *)
(*****************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Lemma sumn_map I (f : I -> nat) s :
sumn [seq f i | i <- s] = \sum_(i <- s) f i.
Proof. by elim: s => [|i s IHs] in f *; rewrite ?(big_nil, big_cons) //= IHs. Qed.
Lemma sumn_filter s P : sumn [seq i <- s | P i] = \sum_(i <- s | P i) i.
Proof. by rewrite -big_filter -sumn_map map_id. Qed.
Lemma sumn_map_filter I s (f : I -> nat) P :
sumn [seq f i | i <- s & P i] = \sum_(i <- s | P i) f i.
Proof. by rewrite sumn_map big_filter. Qed.
Delimit Scope mset_scope with mset.
Local Open Scope fset_scope.
Local Open Scope fmap_scope.
Local Open Scope mset_scope.
Local Open Scope nat_scope.
Definition multiset (T : choiceType) := {fsfun T -> nat with 0}.
Definition multiset_of (T : choiceType) of phant T := @multiset T.
Notation "'{mset' T }" := (@multiset_of _ (Phant T))
(format "'{mset' T }") : mset_scope.
Notation "[ 'mset[' key ] x 'in' aT => F ]" := ([fsfun[key] x in aT => F] : {mset _})
(at level 0, x ident, only parsing) : mset_scope.
Notation "[ 'mset' x 'in' aT => F ]" := ([fsfun x in aT => F] : {mset _})
(at level 0, x ident, only parsing) : mset_scope.
Notation "[ 'm' 'set' x 'in' aT => F ]" := ([fsfun[_] x in aT => F] : {mset _})
(at level 0, x ident, format "[ 'm' 'set' x 'in' aT => F ]") : mset_scope.
Identity Coercion multiset_multiset_of : multiset_of >-> multiset.
Notation enum_mset_def A :=
(flatten [seq nseq (A%mset x) x | x <- finsupp A%mset]).
Module Type EnumMsetSig.
Axiom f : forall K, multiset K -> seq K.
Axiom E : f = (fun K (A : multiset K) => enum_mset_def A).
End EnumMsetSig.
Module EnumMset : EnumMsetSig.
Definition f K (A : multiset K) := enum_mset_def A.
Definition E := (erefl f).
End EnumMset.
Notation enum_mset := EnumMset.f.
Coercion enum_mset : multiset >-> seq.
Canonical enum_mset_unlock := Unlockable EnumMset.E.
Canonical multiset_predType (K : choiceType) :=
PredType (fun (A : multiset K) a => a \in enum_mset A).
Canonical mset_finpredType (T: choiceType) :=
mkFinPredType (multiset T) (fun A => undup (enum_mset A))
(fun _ => undup_uniq _) (fun _ _ => mem_undup _ _).
Section MultisetOps.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Definition mset0 : {mset K} := [fsfun].
Fact msetn_key : unit. Proof. exact: tt. Qed.
Definition msetn n a := [mset[msetn_key] x in [fset a] => n].
Fact seq_mset_key : unit. Proof. exact: tt. Qed.
Definition seq_mset (s : seq K) :=
[mset[seq_mset_key] x in [fset x in s] => count (pred1 x) s].
Fact msetU_key : unit. Proof. exact: tt. Qed.
Definition msetU A B :=
[mset[msetU_key] x in finsupp A `|` finsupp B => maxn (A x) (B x)].
Fact msetI_key : unit. Proof. exact: tt. Qed.
Definition msetI A B :=
[mset[msetI_key] x in finsupp A `|` finsupp B => minn (A x) (B x)].
Fact msetD_key : unit. Proof. exact: tt. Qed.
Definition msetD A B :=
[mset[msetD_key] x in finsupp A `|` finsupp B => A x + B x].
Fact msetB_key : unit. Proof. exact: tt. Qed.
Definition msetB A B :=
[mset[msetB_key] x in finsupp A `|` finsupp B => A x - B x].
Fact msetM_key : unit. Proof. exact: tt. Qed.
Definition msetM A B :=
[mset[msetM_key] x in finsupp A `*` finsupp B => A x.1 * B x.2].
Definition msubset A B := [forall x : finsupp A, A (val x) <= B (val x)].
Definition mproper A B := msubset A B && ~~ msubset B A.
Definition mdisjoint A B := (msetI A B == mset0).
End MultisetOps.
Notation "[ 'mset' a ]" := (msetn 1 a)
(at level 0, a at level 99, format "[ 'mset' a ]") : mset_scope.
Notation "[ 'mset' a : T ]" := [mset (a : T)]
(at level 0, a at level 99, format "[ 'mset' a : T ]") : mset_scope.
Notation "A `|` B" := (msetU A B) : mset_scope.
Notation "A `+` B" := (msetD A B) : mset_scope.
Notation "A `\` B" := (msetB A B) : mset_scope.
Notation "A `\ a" := (A `\` [mset a]) : mset_scope.
Notation "a |` A" := ([mset (a)] `|` A) : mset_scope.
Notation "a +` A" := ([mset (a)] `+` A) : mset_scope.
Notation "A `*` B" := (msetM A B) : mset_scope.
Notation "A `<=` B" := (msubset A B)
(at level 70, no associativity) : mset_scope.
Notation "A `<` B" := (mproper A B)
(at level 70, no associativity) : mset_scope.
(* This is left-associative due to historical limitations of the .. Notation. *)
Notation "[ 'mset' a1 ; a2 ; .. ; an ]" :=
(msetD .. (a1 +` (msetn 1 a2)) .. (msetn 1 an))
(at level 0, a1 at level 99,
format "[ 'mset' a1 ; a2 ; .. ; an ]") : mset_scope.
Notation "A `&` B" := (msetI A B) : mset_scope.
Section MSupp.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Lemma enum_msetE a A :
(a \in A) = (a \in flatten [seq nseq (A x) x | x <- finsupp A]).
Proof. by transitivity (a \in enum_mset A); rewrite // unlock. Qed.
Lemma msuppE a A : (a \in finsupp A) = (a \in A).
Proof.
rewrite enum_msetE.
apply/idP/flattenP => [aA|/=[_ /mapP[x xA -> /nseqP[->//]]]].
exists (nseq (A a) a); first by apply/mapP; exists a.
by apply/nseqP; split=> //; rewrite lt0n -mem_finsupp.
Qed.
End MSupp.
Section MSetTheory.
Context {K : choiceType}.
Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K).
Lemma msetP {A B} : A =1 B <-> A = B.
Proof. exact: fsfunP. Qed.
Lemma mset_neq0 a A : (A a != 0) = (a \in A).
Proof. by rewrite -msuppE mem_finsupp. Qed.
Lemma in_mset a A : (a \in A) = (A a > 0).
Proof. by rewrite -mset_neq0 lt0n. Qed.
Lemma mset_eq0 a A : (A a == 0) = (a \notin A).
Proof. by rewrite -mset_neq0 negbK. Qed.
Lemma mset_eq0P {a A} : reflect (A a = 0) (a \notin A).
Proof. by rewrite -mset_eq0; apply: eqP. Qed.
Lemma mset_gt0 a A : (A a > 0) = (a \in A).
Proof. by rewrite -in_mset. Qed.
Lemma mset_eqP {A B} : reflect (A =1 B) (A == B).
Proof. exact: (equivP eqP (iff_sym msetP)). Qed.
Lemma mset0E a : mset0 a = 0.
Proof. by rewrite /mset0 fsfunE. Qed.
Lemma msetnE n a b : (msetn n a) b = if b == a then n else 0.
Proof. by rewrite fsfunE inE. Qed.
Lemma msetnxx n a : (msetn n a) a = n. Proof. by rewrite msetnE eqxx. Qed.
Lemma msetE2 A B a :
((A `+` B) a = A a + B a) * ((A `|` B) a = maxn (A a) (B a))
* ((A `&` B) a = minn (A a) (B a)) * ((A `\` B) a = (A a) - (B a)).
Proof.
rewrite !fsfunE !inE !msuppE -!mset_neq0; case: ifPn => //.
by rewrite negb_or !negbK => /andP [/eqP-> /eqP->].
Qed.
Lemma count_mem_mset a A : count_mem a A = A a.
Proof.
rewrite unlock count_flatten sumn_map big_map.
rewrite (eq_bigr _ (fun _ _ => esym (sum1_count _ _))) /=.
rewrite (eq_bigr _ (fun _ _ => big_nseq_cond _ _ _ _ _ _)) /= -big_mkcond /=.
have [aNA|aA] := finsuppP.
by rewrite big1_fset // => i iA /eqP eq_ia; rewrite -eq_ia iA in aNA.
rewrite big_fset_condE/= (big_fsetD1 a) ?inE ?eqxx ?andbT //= iter_addn mul1n.
rewrite (_ : (_ `\ _)%fset = fset0) ?big_seq_fset0 ?addn0//.
by apply/fsetP=> i; rewrite !inE; case: (i == a); rewrite ?(andbF, andbT).
Qed.
Lemma perm_undup_mset A : perm_eq (undup A) (finsupp A).
Proof.
apply: uniq_perm_eq; rewrite ?undup_uniq // => a.
by rewrite mem_undup msuppE.
Qed.
Section big_com.
Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Implicit Types (X : {mset K}) (P : pred K) (F : K -> R).
Lemma big_mset X P F :
\big[op/idx]_(i <- X | P i) F i =
\big[op/idx]_(i <- finsupp X | P i) iterop (X i) op (F i) idx.
Proof.
rewrite [in RHS](eq_big_perm (undup X)) 1?perm_eq_sym ?perm_undup_mset//.
rewrite -[in LHS]big_undup_iterop_count; apply: eq_bigr => i _.
by rewrite count_mem_mset.
Qed.
End big_com.
Lemma sum_mset (X : {mset K}) (P : pred K) (F : K -> nat) :
\sum_(i <- X | P i) F i = \sum_(i <- finsupp X | P i) X i * F i.
Proof.
rewrite big_mset; apply: eq_bigr => i _ //.
by rewrite Monoid.iteropE iter_addn addn0 mulnC.
Qed.
Lemma prod_mset (X : {mset K}) (P : pred K) (F : K -> nat) :
\prod_(i <- X | P i) F i = \prod_(i <- finsupp X | P i) F i ^ X i.
Proof. by rewrite big_mset. Qed.
Lemma mset_seqE s a : (seq_mset s) a = count_mem a s.
Proof. by rewrite fsfunE inE/=; case: ifPn => // /count_memPn ->. Qed.
Lemma perm_eq_seq_mset s : perm_eq (seq_mset s) s.
Proof. by apply/allP => a _ /=; rewrite count_mem_mset mset_seqE. Qed.
Lemma seq_mset_id A : seq_mset A = A.
Proof. by apply/msetP=> a; rewrite mset_seqE count_mem_mset. Qed.
Lemma eq_seq_msetP s s' : reflect (seq_mset s = seq_mset s') (perm_eq s s').
Proof.
apply: (iffP idP) => [/perm_eqP perm_ss'|eq_ss'].
by apply/msetP => a; rewrite !mset_seqE perm_ss'.
by apply/allP => a _ /=; rewrite -!mset_seqE eq_ss'.
Qed.
Lemma msetME A B (u : K * K) : (A `*` B) u = A u.1 * B u.2.
Proof.
rewrite !fsfunE inE; case: ifPn => //=.
by rewrite negb_and !memNfinsupp => /orP [] /eqP->; rewrite ?muln0.
Qed.
Lemma mset1DE a A b : (a +` A) b = (b == a) + A b.
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Lemma mset1UE a A b : (a |` A) b = maxn (b == a) (A b).
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Lemma msetB1E a A b : (A `\ a) b = (A b) - (b == a).
Proof. by rewrite msetE2 msetnE; case: (b == a). Qed.
Let msetE := (mset0E, msetE2, msetnE, msetnxx,
mset1DE, mset1UE, msetB1E,
mset_seqE, msetME).
Lemma in_mset0 a : a \in mset0 = false.
Proof. by rewrite in_mset !msetE. Qed.
Lemma in_msetn n a' a : a \in msetn n a' = (n > 0) && (a == a').
Proof. by rewrite in_mset msetE; case: (a == a'); rewrite ?andbT ?andbF. Qed.
Lemma in_mset1 a' a : a \in [mset a'] = (a == a').
Proof. by rewrite in_msetn. Qed.
Lemma in_msetD A B a : (a \in A `+` B) = (a \in A) || (a \in B).
Proof. by rewrite !in_mset !msetE addn_gt0. Qed.
Lemma in_msetU A B a : (a \in A `|` B) = (a \in A) || (a \in B).
Proof. by rewrite !in_mset !msetE leq_max. Qed.
Lemma in_msetDU A B a : (a \in A `+` B) = (a \in A `|` B).
Proof. by rewrite in_msetU in_msetD. Qed.
Lemma in_msetI A B a : (a \in A `&` B) = (a \in A) && (a \in B).
Proof. by rewrite !in_mset msetE leq_min. Qed.
Lemma in_msetB A B a : (a \in A `\` B) = (B a < A a).
Proof. by rewrite -mset_neq0 msetE subn_eq0 ltnNge. Qed.
Lemma in_mset1U a' A a : (a \in a' |` A) = (a == a') || (a \in A).
Proof. by rewrite in_msetU in_mset msetE; case: (_ == _). Qed.
Lemma in_mset1D a' A a : (a \in a' +` A) = (a == a') || (a \in A).
Proof. by rewrite in_msetDU in_mset1U. Qed.
Lemma in_msetB1 A b a : (a \in A `\ b) = ((a == b) ==> (A a > 1)) && (a \in A).
Proof.
by rewrite in_msetB msetE in_mset; case: (_ == _); rewrite -?geq_max.
Qed.
Lemma in_msetM A B (u : K * K) : (u \in A `*` B) = (u.1 \in A) && (u.2 \in B).
Proof. by rewrite -!msuppE !mem_finsupp msetE muln_eq0 negb_or. Qed.
Definition in_msetE := (in_mset0, in_msetn,
in_msetB1, in_msetU, in_msetI, in_msetD, in_msetM).
Let inE := (inE, in_msetE, (@msuppE K)).
Lemma enum_mset0 : mset0 = [::] :> seq K.
Proof. by rewrite unlock finsupp0. Qed.
Lemma msetn0 (a : K) : msetn 0 a = mset0.
Proof. by apply/msetP=> i; rewrite !msetE if_same. Qed.
Lemma finsupp_msetn n a : finsupp (msetn n a) = if n > 0 then [fset a] else fset0.
Proof. by apply/fsetP => i; rewrite !inE; case: ifP => //=; rewrite inE. Qed.
Lemma enum_msetn n a : msetn n a = nseq n a :> seq K.
Proof.
case: n => [|n]; first by rewrite msetn0 /= enum_mset0.
rewrite unlock finsupp_msetn /= enum_fsetE /= enum_fset1 /= cats0.
by rewrite msetE eqxx.
Qed.
Section big.
Variables (R : Type) (idx : R) (op : Monoid.law idx).
Implicit Types (X : {mset K}) (P : pred K) (F : K -> R).
Lemma big_mset0 P F : \big[op/idx]_(i <- mset0 | P i) F i = idx.
Proof. by rewrite enum_mset0 big_nil. Qed.
Lemma big_msetn n a P F :
\big[op/idx]_(i <- msetn n a | P i) F i =
if P a then iterop n op (F a) idx else idx.
Proof. by rewrite enum_msetn big_nseq_cond Monoid.iteropE. Qed.
End big.
Lemma msetDC (A B : {mset K}) : A `+` B = B `+` A.
Proof. by apply/msetP=> a; rewrite !msetE addnC. Qed.
Lemma msetIC (A B : {mset K}) : A `&` B = B `&` A.
Proof. by apply/msetP=> a; rewrite !msetE minnC. Qed.
Lemma msetUC (A B : {mset K}) : A `|` B = B `|` A.
Proof. by apply/msetP => a; rewrite !msetE maxnC. Qed.
(* intersection *)
Lemma mset0I A : mset0 `&` A = mset0.
Proof. by apply/msetP => x; rewrite !msetE min0n. Qed.
Lemma msetI0 A : A `&` mset0 = mset0.
Proof. by rewrite msetIC mset0I. Qed.
Lemma msetIA A B C : A `&` (B `&` C) = A `&` B `&` C.
Proof. by apply/msetP=> x; rewrite !msetE minnA. Qed.
Lemma msetICA A B C : A `&` (B `&` C) = B `&` (A `&` C).
Proof. by rewrite !msetIA (msetIC A). Qed.
Lemma msetIAC A B C : A `&` B `&` C = A `&` C `&` B.
Proof. by rewrite -!msetIA (msetIC B). Qed.
Lemma msetIACA A B C D : (A `&` B) `&` (C `&` D) = (A `&` C) `&` (B `&` D).
Proof. by rewrite -!msetIA (msetICA B). Qed.
Lemma msetIid A : A `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE minnn. Qed.
Lemma msetIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C).
Proof. by rewrite msetIA !(msetIAC _ C) -(msetIA _ C) msetIid. Qed.
Lemma msetIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C).
Proof. by rewrite !(msetIC A) msetIIl. Qed.
(* union *)
Lemma mset0U A : mset0 `|` A = A.
Proof. by apply/msetP => x; rewrite !msetE max0n. Qed.
Lemma msetU0 A : A `|` mset0 = A.
Proof. by rewrite msetUC mset0U. Qed.
Lemma msetUA A B C : A `|` (B `|` C) = A `|` B `|` C.
Proof. by apply/msetP=> x; rewrite !msetE maxnA. Qed.
Lemma msetUCA A B C : A `|` (B `|` C) = B `|` (A `|` C).
Proof. by rewrite !msetUA (msetUC B). Qed.
Lemma msetUAC A B C : A `|` B `|` C = A `|` C `|` B.
Proof. by rewrite -!msetUA (msetUC B). Qed.
Lemma msetUACA A B C D : (A `|` B) `|` (C `|` D) = (A `|` C) `|` (B `|` D).
Proof. by rewrite -!msetUA (msetUCA B). Qed.
Lemma msetUid A : A `|` A = A.
Proof. by apply/msetP=> x; rewrite !msetE maxnn. Qed.
Lemma msetUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C).
Proof. by rewrite msetUA !(msetUAC _ C) -(msetUA _ C) msetUid. Qed.
Lemma msetUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C).
Proof. by rewrite !(msetUC A) msetUUl. Qed.
(* adjunction *)
Lemma mset0D A : mset0 `+` A = A.
Proof. by apply/msetP => x; rewrite !msetE add0n. Qed.
Lemma msetD0 A : A `+` mset0 = A.
Proof. by rewrite msetDC mset0D. Qed.
Lemma msetDA A B C : A `+` (B `+` C) = A `+` B `+` C.
Proof. by apply/msetP=> x; rewrite !msetE addnA. Qed.
Lemma msetDCA A B C : A `+` (B `+` C) = B `+` (A `+` C).
Proof. by rewrite !msetDA (msetDC B). Qed.
Lemma msetDAC A B C : A `+` B `+` C = A `+` C `+` B.
Proof. by rewrite -!msetDA (msetDC B). Qed.
Lemma msetDACA A B C D : (A `+` B) `+` (C `+` D) = (A `+` C) `+` (B `+` D).
Proof. by rewrite -!msetDA (msetDCA B). Qed.
(* adjunction, union and difference with one element *)
Lemma msetU1l x A B : x \in A -> x \in A `|` B.
Proof. by move=> Ax /=; rewrite inE Ax. Qed.
Lemma msetU1r A b : b \in A `|` [mset b].
Proof. by rewrite !inE eqxx orbT. Qed.
Lemma msetB1P x A b : reflect ((x = b -> A x > 1) /\ x \in A) (x \in A `\ b).
Proof.
rewrite !inE. apply: (iffP andP); first by move=> [/implyP Ax ->]; split => // /eqP.
by move=> [Ax ->]; split => //; apply/implyP => /eqP.
Qed.
Lemma msetB11 b A : (b \in A `\ b) = (A b > 1).
Proof. by rewrite inE eqxx /= in_mset -geq_max. Qed.
Lemma msetB1K a A : a \in A -> a +` (A `\ a) = A.
Proof.
move=> aA; apply/msetP=> x; rewrite !msetE subnKC //=.
by have [->|//] := altP eqP; rewrite mset_gt0.
Qed.
Lemma msetD1K a B : (a +` B) `\ a = B.
Proof. by apply/msetP => x; rewrite !msetE addKn. Qed.
Lemma msetU1K a B : a \notin B -> (a |` B) `\ a = B.
Proof.
move=> aB; apply/msetP=> x; rewrite !msetE.
have [->|] := altP eqP; first by rewrite (mset_eq0P _).
by rewrite max0n subn0.
Qed.
Lemma mset1U1 x B : x \in x |` B. Proof. by rewrite !inE eqxx. Qed.
Lemma mset1D1 x B : x \in x +` B. Proof. by rewrite !inE eqxx. Qed.
Lemma mset1Ur x a B : x \in B -> x \in a |` B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma mset1Dr x a B : x \in B -> x \in a +` B.
Proof. by move=> Bx; rewrite !inE predU1r. Qed.
Lemma mset2P x a b : reflect (x = a \/ x = b) (x \in [mset a; b]).
Proof. by rewrite !inE; apply: (iffP orP) => [] [] /eqP; intuition. Qed.
Lemma in_mset2 x a b : (x \in [mset a; b]) = (x == a) || (x == b).
Proof. by rewrite !inE. Qed.
Lemma mset21 a b : a \in [mset a; b]. Proof. by rewrite mset1D1. Qed.
Lemma mset22 a b : b \in [mset a; b]. Proof. by rewrite in_mset2 eqxx orbT. Qed.
Lemma msetUP x A B : reflect (x \in A \/ x \in B) (x \in A `|` B).
Proof. by rewrite !inE; exact: orP. Qed.
Lemma msetDP x A B : reflect (x \in A \/ x \in B) (x \in A `+` B).
Proof. by rewrite !inE; exact: orP. Qed.
Lemma msetULVR x A B : x \in A `|` B -> (x \in A) + (x \in B).
Proof. by rewrite inE; case: (x \in A); [left|right]. Qed.
Lemma msetDLVR x A B : x \in A `+` B -> (x \in A) + (x \in B).
Proof. by rewrite inE; case: (x \in A); [left|right]. Qed.
(* distribute /cancel *)
Lemma msetIUr A B C : A `&` (B `|` C) = (A `&` B) `|` (A `&` C).
Proof. by apply/msetP=> x; rewrite !msetE minn_maxr. Qed.
Lemma msetIUl A B C : (A `|` B) `&` C = (A `&` C) `|` (B `&` C).
Proof. by apply/msetP=> x; rewrite !msetE minn_maxl. Qed.
Lemma msetUIr A B C : A `|` (B `&` C) = (A `|` B) `&` (A `|` C).
Proof. by apply/msetP=> x; rewrite !msetE maxn_minr. Qed.
Lemma msetUIl A B C : (A `&` B) `|` C = (A `|` C) `&` (B `|` C).
Proof. by apply/msetP=> x; rewrite !msetE maxn_minl. Qed.
Lemma msetUKC A B : (A `|` B) `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE maxnK. Qed.
Lemma msetUK A B : (B `|` A) `&` A = A.
Proof. by rewrite msetUC msetUKC. Qed.
Lemma msetKUC A B : A `&` (B `|` A) = A.
Proof. by rewrite msetIC msetUK. Qed.
Lemma msetKU A B : A `&` (A `|` B) = A.
Proof. by rewrite msetIC msetUKC. Qed.
Lemma msetIKC A B : (A `&` B) `|` A = A.
Proof. by apply/msetP=> x; rewrite !msetE minnK. Qed.
Lemma msetIK A B : (B `&` A) `|` A = A.
Proof. by rewrite msetIC msetIKC. Qed.
Lemma msetKIC A B : A `|` (B `&` A) = A.
Proof. by rewrite msetUC msetIK. Qed.
Lemma msetKI A B : A `|` (A `&` B) = A.
Proof. by rewrite msetIC msetKIC. Qed.
Lemma msetUKid A B : B `|` A `|` A = B `|` A.
Proof. by rewrite -msetUA msetUid. Qed.
Lemma msetUKidC A B : A `|` B `|` A = A `|` B.
Proof. by rewrite msetUAC msetUid. Qed.
Lemma msetKUid A B : A `|` (A `|` B) = A `|` B.
Proof. by rewrite msetUA msetUid. Qed.
Lemma msetKUidC A B : A `|` (B `|` A) = B `|` A.
Proof. by rewrite msetUCA msetUid. Qed.
Lemma msetIKid A B : B `&` A `&` A = B `&` A.
Proof. by rewrite -msetIA msetIid. Qed.
Lemma msetIKidC A B : A `&` B `&` A = A `&` B.
Proof. by rewrite msetIAC msetIid. Qed.
Lemma msetKIid A B : A `&` (A `&` B) = A `&` B.
Proof. by rewrite msetIA msetIid. Qed.
Lemma msetKIidC A B : A `&` (B `&` A) = B `&` A.
Proof. by rewrite msetICA msetIid. Qed.
Lemma msetDIr A B C : A `+` (B `&` C) = (A `+` B) `&` (A `+` C).
Proof. by apply/msetP=> x; rewrite !msetE addn_minr. Qed.
Lemma msetDIl A B C : (A `&` B) `+` C = (A `+` C) `&` (B `+` C).
Proof. by apply/msetP=> x; rewrite !msetE addn_minl. Qed.
Lemma msetDKIC A B : (A `+` B) `&` A = A.
Proof. by apply/msetP=> x; rewrite !msetE (minn_idPr _) // leq_addr. Qed.
Lemma msetDKI A B : (B `+` A) `&` A = A.
Proof. by rewrite msetDC msetDKIC. Qed.
Lemma msetKDIC A B : A `&` (B `+` A) = A.
Proof. by rewrite msetIC msetDKI. Qed.
Lemma msetKDI A B : A `&` (A `+` B) = A.
Proof. by rewrite msetDC msetKDIC. Qed.
(* adjunction / subtraction *)
Lemma msetDKB A : cancel (msetD A) (msetB^~ A).
Proof. by move=> B; apply/msetP => a; rewrite !msetE addKn. Qed.
Lemma msetDKBC A : cancel (msetD^~ A) (msetB^~ A).
Proof. by move=> B; rewrite msetDC msetDKB. Qed.
Lemma msetBSKl A B a : ((a +` A) `\` B) `\ a = A `\` B.
Proof.
apply/msetP=> b; rewrite !msetE; case: ifPn; rewrite ?add0n ?subn0 //.
by rewrite add1n subn1 subSKn.
Qed.
Lemma msetBDl C A B : (C `+` A) `\` (C `+` B) = A `\` B.
Proof. by apply/msetP=> a; rewrite !msetE subnDl. Qed.
Lemma msetBDr C A B : (A `+` C) `\` (B `+` C) = A `\` B.
Proof. by apply/msetP=> a; rewrite !msetE subnDr. Qed.
Lemma msetBDA A B C : B `\` (A `+` C) = B `\` A `\` C.
Proof. by apply/msetP=> a; rewrite !msetE subnDA. Qed.
Lemma msetUE A B C : msetU A B = A `+` (B `\` A).
Proof. by apply/msetP=> a; rewrite !msetE maxnE. Qed.
(* subset *)
Lemma msubsetP {A B} : reflect (forall x, A x <= B x) (A `<=` B).
Proof.
apply: (iffP forallP)=> // ? x; case: (in_fsetP (finsupp A) x) => //.
by rewrite msuppE => /mset_eq0P->.
Qed.
Lemma msubset_subset {A B} : A `<=` B -> {subset A <= B}.
Proof.
by move=> /msubsetP AB x; rewrite !in_mset => ?; exact: (leq_trans _ (AB _)).
Qed.
Lemma msetB_eq0 (A B : {mset K}) : (A `\` B == mset0) = (A `<=` B).
Proof.
apply/mset_eqP/msubsetP => AB a;
by have := AB a; rewrite !msetE -subn_eq0 => /eqP.
Qed.
Lemma msubset_refl A : A `<=` A. Proof. exact/msubsetP. Qed.
Hint Resolve msubset_refl.
Lemma msubset_trans : transitive (@msubset K).
Proof.
move=> y x z /msubsetP xy /msubsetP yz ; apply/msubsetP => a.
by apply: (leq_trans (xy _)).
Qed.
Arguments msubset_trans {C A B} _ _ : rename.
Lemma msetUS C A B : A `<=` B -> C `|` A `<=` C `|` B.
Proof.
move=> sAB; apply/msubsetP=> x; rewrite !msetE.
by rewrite geq_max !leq_max leqnn (msubsetP sAB) orbT.
Qed.
Lemma msetDS C A B : A `<=` B -> C `+` A `<=` C `+` B.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_add2l.
Qed.
Lemma msetSU C A B : A `<=` B -> A `|` C `<=` B `|` C.
Proof. by move=> sAB; rewrite -!(msetUC C) msetUS. Qed.
Lemma msetSD C A B : A `<=` B -> A `+` C `<=` B `+` C.
Proof. by move=> sAB; rewrite -!(msetDC C) msetDS. Qed.
Lemma msetUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D.
Proof. by move=> /(msetSU B) /msubset_trans sAC /(msetUS C)/sAC. Qed.
Lemma msetDSS A B C D : A `<=` C -> B `<=` D -> A `+` B `<=` C `+` D.
Proof. by move=> /(msetSD B) /msubset_trans sAC /(msetDS C)/sAC. Qed.
Lemma msetIidPl {A B} : reflect (A `&` B = A) (A `<=` B).
Proof.
apply: (iffP msubsetP) => [?|<- a]; last by rewrite !msetE geq_min leqnn orbT.
by apply/msetP => a; rewrite !msetE (minn_idPl _).
Qed.
Lemma msetIidPr {A B} : reflect (A `&` B = B) (B `<=` A).
Proof. by rewrite msetIC; apply: msetIidPl. Qed.
Lemma msubsetIidl A B : (A `<=` A `&` B) = (A `<=` B).
Proof.
apply/msubsetP/msubsetP=> sAB a; have := sAB a; rewrite !msetE.
by rewrite leq_min leqnn.
by move/minn_idPl->.
Qed.
Lemma msubsetIidr A B : (B `<=` A `&` B) = (B `<=` A).
Proof. by rewrite msetIC msubsetIidl. Qed.
Lemma msetUidPr A B : reflect (A `|` B = B) (A `<=` B).
Proof.
apply: (iffP msubsetP) => [AB|<- a]; last by rewrite !msetE leq_max leqnn.
by apply/msetP=> a; rewrite !msetE (maxn_idPr _).
Qed.
Lemma msetUidPl A B : reflect (A `|` B = A) (B `<=` A).
Proof. by rewrite msetUC; apply/msetUidPr. Qed.
Lemma msubsetUl A B : A `<=` A `|` B.
Proof. by apply/msubsetP=> a; rewrite !msetE leq_maxl. Qed.
Hint Resolve msubsetUl.
Lemma msubsetUr A B : B `<=` (A `|` B).
Proof. by rewrite msetUC. Qed.
Hint Resolve msubsetUr.
Lemma msubsetU1 x A : A `<=` (x |` A).
Proof. by rewrite msubsetUr. Qed.
Hint Resolve msubsetU1.
Lemma msubsetU A B C : (A `<=` B) || (A `<=` C) -> A `<=` (B `|` C).
Proof. by move=> /orP [] /msubset_trans ->. Qed.
Lemma eqEmsubset A B : (A == B) = (A `<=` B) && (B `<=` A).
Proof.
apply/eqP/andP => [<-|[/msubsetP AB /msubsetP BA]]; first by split.
by apply/msetP=> a; apply/eqP; rewrite eqn_leq AB BA.
Qed.
Lemma msubEproper A B : A `<=` B = (A == B) || (A `<` B).
Proof. by rewrite eqEmsubset -andb_orr orbN andbT. Qed.
Lemma mproper_sub A B : A `<` B -> A `<=` B.
Proof. by rewrite msubEproper orbC => ->. Qed.
Lemma eqVmproper A B : A `<=` B -> A = B \/ A `<` B.
Proof. by rewrite msubEproper => /predU1P. Qed.
Lemma mproperEneq A B : A `<` B = (A != B) && (A `<=` B).
Proof. by rewrite andbC eqEmsubset negb_and andb_orr andbN. Qed.
Lemma mproper_neq A B : A `<` B -> A != B.
Proof. by rewrite mproperEneq; case/andP. Qed.
Lemma eqEmproper A B : (A == B) = (A `<=` B) && ~~ (A `<` B).
Proof. by rewrite negb_and negbK andb_orr andbN eqEmsubset. Qed.
Lemma msub0set A : msubset mset0 A.
Proof. by apply/msubsetP=> x; rewrite msetE. Qed.
Hint Resolve msub0set.
Lemma msubset0 A : (A `<=` mset0) = (A == mset0).
Proof. by rewrite eqEmsubset msub0set andbT. Qed.
Lemma mproper0 A : (mproper mset0 A) = (A != mset0).
Proof. by rewrite /mproper msub0set msubset0. Qed.
Lemma mproperE A B : (A `<` B) = (A `<=` B) && ~~ (msubset B A).
Proof. by []. Qed.
Lemma mproper_sub_trans B A C : A `<` B -> B `<=` C -> A `<` C.
Proof.
move=> /andP [AB NBA] BC; rewrite /mproper (msubset_trans AB) //=.
by apply: contra NBA=> /(msubset_trans _)->.
Qed.
Lemma msub_proper_trans B A C :
A `<=` B -> B `<` C -> A `<` C.
Proof.
move=> AB /andP [CB NCB]; rewrite /mproper (msubset_trans AB) //=.
by apply: contra NCB=> /msubset_trans->.
Qed.
Lemma msubset_neq0 A B : A `<=` B -> A != mset0 -> B != mset0.
Proof. by rewrite -!mproper0 => sAB /mproper_sub_trans->. Qed.
(* msub is a morphism *)
Lemma msetBDKC A B : A `<=` B -> A `+` (B `\` A) = B.
Proof. by move=> /msubsetP AB; apply/msetP=> a; rewrite !msetE subnKC. Qed.
Lemma msetBDK A B : A `<=` B -> B `\` A `+` A = B.
Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subnK. Qed.
Lemma msetBBK A B : A `<=` B -> B `\` (B `\` A) = A.
Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subKn. Qed.
Lemma msetBD1K A B a : A `<=` B -> A a < B a -> a +` (B `\` (a +` A)) = B `\` A.
Proof.
move=> /msubsetP AB ABa; apply/msetP => b; rewrite !msetE.
by case: ifP => //= /eqP->; rewrite !add1n subnSK.
Qed.
Lemma subset_msetBLR A B C : (msubset (A `\` B) C) = (A `<=` B `+` C).
Proof.
apply/msubsetP/msubsetP => [] sABC a;
by have := sABC a; rewrite !msetE ?leq_subLR.
Qed.
Lemma msetnP n x a : reflect (0 < n /\ x = a) (x \in msetn n a).
Proof. by do [apply: (iffP idP); rewrite !inE] => [/andP[]|[]] -> /eqP. Qed.
Lemma gt0_msetnP n x a : 0 < n -> reflect (x = a) (x \in msetn n a).
Proof. by move=> n_gt0; rewrite inE n_gt0 /=; exact: eqP. Qed.
Lemma msetn1 n a : a \in msetn n a = (n > 0).
Proof. by rewrite inE eqxx andbT. Qed.
Lemma mset1P x a : reflect (x = a) (x \in [mset a]).
Proof. by rewrite inE; exact: eqP. Qed.
Lemma mset11 a : a \in [mset a]. Proof. by rewrite inE /=. Qed.
Lemma msetn_inj n : n > 0 -> injective (@msetn K n).
Proof.
move=> n_gt0 a b eqsab; apply/(gt0_msetnP _ _ n_gt0).
by rewrite -eqsab inE n_gt0 eqxx.
Qed.
Lemma mset1UP x a B : reflect (x = a \/ x \in B) (x \in a |` B).
Proof. by rewrite !inE; exact: predU1P. Qed.
Lemma mset_cons a s : seq_mset (a :: s) = a +` (seq_mset s).
Proof. by apply/msetP=> x; rewrite !msetE /= eq_sym. Qed.
(* intersection *)
Lemma msetIP x A B : reflect (x \in A /\ x \in B) (x \in A `&` B).
Proof. by rewrite inE; apply: andP. Qed.
Lemma msetIS C A B : A `<=` B -> C `&` A `<=` C `&` B.
Proof.
move=> sAB; apply/msubsetP=> x; rewrite !msetE.
by rewrite leq_min !geq_min leqnn (msubsetP sAB) orbT.
Qed.
Lemma msetSI C A B : A `<=` B -> A `&` C `<=` B `&` C.
Proof. by move=> sAB; rewrite -!(msetIC C) msetIS. Qed.
Lemma msetISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D.
Proof. by move=> /(msetSI B) /msubset_trans sAC /(msetIS C) /sAC. Qed.
(* difference *)
Lemma msetSB C A B : A `<=` B -> A `\` C `<=` B `\` C.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2r.
Qed.
Lemma msetBS C A B : A `<=` B -> C `\` B `<=` C `\` A.
Proof.
by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2l.
Qed.
Lemma msetBSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D.
Proof. by move=> /(msetSB B) /msubset_trans sAC /(msetBS C) /sAC. Qed.
Lemma msetB0 A : A `\` mset0 = A.
Proof. by apply/msetP=> x; rewrite !msetE subn0. Qed.
Lemma mset0B A : mset0 `\` A = mset0.
Proof. by apply/msetP=> x; rewrite !msetE sub0n. Qed.
Lemma msetBxx A : A `\` A = mset0.
Proof. by apply/msetP=> x; rewrite !msetE subnn. Qed.
(* other inclusions *)
Lemma msubsetIl A B : A `&` B `<=` A.
Proof. by apply/msubsetP=> x; rewrite msetE geq_minl. Qed.
Lemma msubsetIr A B : A `&` B `<=` B.
Proof. by apply/msubsetP=> x; rewrite msetE geq_minr. Qed.
Lemma msubsetDl A B : A `\` B `<=` A.
Proof. by apply/msubsetP=> x; rewrite msetE leq_subLR leq_addl. Qed.
Lemma msubD1set A x : A `\ x `<=` A.
Proof. by rewrite msubsetDl. Qed.
Hint Resolve msubsetIl msubsetIr msubsetDl msubD1set.
(* cardinal lemmas for msets *)
Lemma mem_mset1U a A : a \in A -> a |` A = A.
Proof.
rewrite in_mset => aA; apply/msetP => x; rewrite !msetE (maxn_idPr _) //.
by have [->|//] := altP eqP; rewrite (leq_trans _ aA).
Qed.
Lemma mem_msetD1 a A : a \notin A -> A `\ a = A.
Proof.
move=> /mset_eq0P aA; apply/msetP => x; rewrite !msetE.
by have [->|] := altP eqP; rewrite ?aA ?subn0.
Qed.
Lemma msetIn a A n : A `&` msetn n a = msetn (minn (A a) n) a.
Proof.
by apply/msetP => x; rewrite !msetE; have [->|] := altP eqP; rewrite ?minn0.
Qed.
Lemma msubIset A B C : (B `<=` A) || (C `<=` A) -> (B `&` C `<=` A).
Proof. by case/orP; apply: msubset_trans; rewrite (msubsetIl, msubsetIr). Qed.
Lemma msubsetI A B C : (A `<=` B `&` C) = (A `<=` B) && (A `<=` C).
Proof.
rewrite !(sameP msetIidPl eqP) msetIA; have [-> //| ] := altP (A `&` B =P A).
by apply: contraNF => /eqP <-; rewrite -msetIA -msetIIl msetIAC.
Qed.
Lemma msubsetIP A B C : reflect (A `<=` B /\ A `<=` C) (A `<=` B `&` C).
Proof. by rewrite msubsetI; exact: andP. Qed.
Lemma msubUset A B C : (B `|` C `<=` A) = (B `<=` A) && (C `<=` A).
Proof.
apply/idP/idP => [subA|/andP [AB CA]]; last by rewrite -[A]msetUid msetUSS.
by rewrite !(msubset_trans _ subA).
Qed.
Lemma msubUsetP A B C : reflect (A `<=` C /\ B `<=` C) (A `|` B `<=` C).
Proof. by rewrite msubUset; exact: andP. Qed.
Lemma msetU_eq0 A B : (A `|` B == mset0) = (A == mset0) && (B == mset0).
Proof. by rewrite -!msubset0 msubUset. Qed.
Lemma setD_eq0 A B : (A `\` B == mset0) = (A `<=` B).
Proof. by rewrite -msubset0 subset_msetBLR msetD0. Qed.
Lemma msub1set A a : ([mset a] `<=` A) = (a \in A).
Proof.
apply/msubsetP/idP; first by move/(_ a); rewrite msetnxx in_mset.
by move=> ainA b; rewrite msetnE; case: eqP => // ->; rewrite -in_mset.
Qed.
Lemma msetDBA A B C : C `<=` B -> A `+` B `\` C = (A `+` B) `\` C.
Proof.
by move=> /msubsetP CB; apply/msetP=> a; rewrite !msetE2 addnBA.
Qed.
Lemma mset_0Vmem A : (A = mset0) + {x : K | x \in A}.
Proof.
have [/fsetP Aisfset0 | [a ainA]] := fset_0Vmem (finsupp A); last first.
by right; exists a; rewrite -msuppE.
left; apply/msetP => a; rewrite mset0E; apply/mset_eq0P.
by rewrite -msuppE Aisfset0 inE.
Qed.
Definition size_mset A : size A = \sum_(a <- finsupp A) A a.
Proof. by rewrite -sum1_size sum_mset; apply: eq_bigr => i; rewrite muln1. Qed.
Lemma size_mset0 : size (mset0 : {mset K}) = 0.
Proof. by rewrite -sum1_size big_mset0. Qed.
From mathcomp Require Import tuple.
Lemma sum_nat_seq_eq0 (I : eqType) r (P : pred I) (E : I -> nat) :
(\sum_(i <- r | P i) E i == 0) = all [pred i | P i ==> (E i == 0)] r.
Proof.
rewrite big_tnth sum_nat_eq0; apply/forallP/allP => /= HE x.
by move=> /seq_tnthP[i ->]; apply: HE.
by apply: HE; rewrite mem_tnth.
Qed.
Lemma size_mset_eq0 A : (size A == 0) = (A == mset0).
Proof.
apply/idP/eqP => [|->]; last by rewrite size_mset0.
rewrite size_mset sum_nat_seq_eq0 => /allP AP.
apply/msetP => a /=; rewrite msetE.
by have /= := AP a; case: finsuppP => // _ /(_ _)/eqP->.
Qed.
End MSetTheory.