This repository has been archived by the owner on Dec 22, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
cca_test.go
191 lines (185 loc) · 7.31 KB
/
cca_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat_test
import (
"testing"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
"github.com/gonum/stat"
)
func TestCanonicalCorrelations(t *testing.T) {
tests:
for i, test := range []struct {
xdata mat64.Matrix
ydata mat64.Matrix
weights []float64
wantCorrs []float64
wantpVecs *mat64.Dense
wantqVecs *mat64.Dense
wantphiVs *mat64.Dense
wantpsiVs *mat64.Dense
epsilon float64
}{
// Test results verified using R.
{ // Truncated iris data, Sepal vs Petal measurements.
xdata: mat64.NewDense(10, 2, []float64{
5.1, 3.5,
4.9, 3.0,
4.7, 3.2,
4.6, 3.1,
5.0, 3.6,
5.4, 3.9,
4.6, 3.4,
5.0, 3.4,
4.4, 2.9,
4.9, 3.1,
}),
ydata: mat64.NewDense(10, 2, []float64{
1.4, 0.2,
1.4, 0.2,
1.3, 0.2,
1.5, 0.2,
1.4, 0.2,
1.7, 0.4,
1.4, 0.3,
1.5, 0.2,
1.4, 0.2,
1.5, 0.1,
}),
wantCorrs: []float64{0.7250624174504773, 0.5547679185730191},
wantpVecs: mat64.NewDense(2, 2, []float64{
0.0765914610875867, 0.9970625597666721,
0.9970625597666721, -0.0765914610875868,
}),
wantqVecs: mat64.NewDense(2, 2, []float64{
0.3075184850910837, 0.9515421069649439,
0.9515421069649439, -0.3075184850910837,
}),
wantphiVs: mat64.NewDense(2, 2, []float64{
-1.9794877596804641, 5.2016325219025124,
4.5211829944066553, -2.7263663170835697,
}),
wantpsiVs: mat64.NewDense(2, 2, []float64{
-0.0613084818030103, 10.8514169865438941,
12.7209032660734298, -7.6793888180353775,
}),
epsilon: 1e-12,
},
// Test results compared to those results presented in examples by
// Koch, Inge. Analysis of multivariate and high-dimensional data.
// Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939
{ // ASA Car Exposition Data of Ramos and Donoho (1983)
// Displacement, Horsepower, Weight
xdata: carData.Slice(0, 392, 0, 3),
// Acceleration, MPG
ydata: carData.Slice(0, 392, 3, 5),
wantCorrs: []float64{0.8782187384352336, 0.6328187219216761},
wantpVecs: mat64.NewDense(3, 2, []float64{
0.3218296374829181, 0.3947540257657075,
0.4162807660635797, 0.7573719053303306,
0.8503740401982725, -0.5201509936144236,
}),
wantqVecs: mat64.NewDense(2, 2, []float64{
-0.5161984172278830, -0.8564690269072364,
-0.8564690269072364, 0.5161984172278830,
}),
wantphiVs: mat64.NewDense(3, 2, []float64{
0.0025033152994308, 0.0047795464118615,
0.0201923608080173, 0.0409150208725958,
-0.0000247374128745, -0.0026766435161875,
}),
wantpsiVs: mat64.NewDense(2, 2, []float64{
-0.1666196759760772, -0.3637393866139658,
-0.0915512109649727, 0.1077863777929168,
}),
epsilon: 1e-12,
},
// Test results compared to those results presented in examples by
// Koch, Inge. Analysis of multivariate and high-dimensional data.
// Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939
{ // Boston Housing Data of Harrison and Rubinfeld (1978)
// Per capita crime rate by town,
// Proportion of non-retail business acres per town,
// Nitric oxide concentration (parts per 10 million),
// Weighted distances to Boston employment centres,
// Index of accessibility to radial highways,
// Pupil-teacher ratio by town, Proportion of blacks by town
xdata: bostonData.Slice(0, 506, 0, 7),
// Average number of rooms per dwelling,
// Proportion of owner-occupied units built prior to 1940,
// Full-value property-tax rate per $10000,
// Median value of owner-occupied homes in $1000s
ydata: bostonData.Slice(0, 506, 7, 11),
wantCorrs: []float64{0.9451239443886021, 0.6786622733370654, 0.5714338361583764, 0.2009739704710440},
wantpVecs: mat64.NewDense(7, 4, []float64{
-0.2574391924541903, 0.0158477516621194, 0.2122169934631024, -0.0945733803894706,
-0.4836594430018478, 0.3837101908138468, 0.1474448317415911, 0.6597324886718275,
-0.0800776365873296, 0.3493556742809252, 0.3287336458109373, -0.2862040444334655,
0.1277586360386374, -0.7337427663667596, 0.4851134819037011, 0.2247964865970192,
-0.6969432006136684, -0.4341748776002893, -0.3602872887636357, 0.0290661608626292,
-0.0990903250057199, 0.0503411215453873, 0.6384330631742202, 0.1022367136218303,
0.4260459963765036, 0.0323334351308141, -0.2289527516030810, 0.6419232947608805,
}),
wantqVecs: mat64.NewDense(4, 4, []float64{
0.0181660502363264, -0.1583489460479038, -0.0066723577642883, -0.9871935400650649,
-0.2347699045986119, 0.9483314614936594, -0.1462420505631345, -0.1554470767919033,
-0.9700704038477141, -0.2406071741000039, -0.0251838984227037, 0.0209134074358349,
0.0593000682318482, -0.1330460003097728, -0.9889057151969489, 0.0291161494720761,
}),
wantphiVs: mat64.NewDense(7, 4, []float64{
-0.0027462234108197, 0.0093444513500898, 0.0489643932714296, -0.0154967189805819,
-0.0428564455279537, -0.0241708702119420, 0.0360723472093996, 0.1838983230588095,
-1.2248435648802380, 5.6030921364723980, 5.8094144583797025, -4.7926812190419676,
-0.0043684825094649, -0.3424101164977618, 0.4469961215717917, 0.1150161814353696,
-0.0741534069521954, -0.1193135794923700, -0.1115518305471460, 0.0021638758323088,
-0.0233270323101624, 0.1046330818178399, 0.3853045975077387, -0.0160927870102877,
0.0001293051387859, 0.0004540746921446, -0.0030296315865440, 0.0081895477974654,
}),
wantpsiVs: mat64.NewDense(4, 4, []float64{
0.0301593362017375, -0.3002219289647127, 0.0878217377593682, -1.9583226531517062,
-0.0065483104073892, 0.0392212086716247, -0.0117570776209991, -0.0061113064481860,
-0.0052075523350125, -0.0045770200452960, -0.0022762313289592, 0.0008441873006821,
0.0020111735096327, 0.0037352799829930, -0.1292578071621794, 0.1037709056329765,
}),
epsilon: 1e-12,
},
} {
var cc stat.CC
var corrs []float64
var pVecs, qVecs *mat64.Dense
var phiVs, psiVs *mat64.Dense
for j := 0; j < 2; j++ {
err := cc.CanonicalCorrelations(test.xdata, test.ydata, test.weights)
if err != nil {
t.Errorf("%d use %d: unexpected error: %v", i, j, err)
continue tests
}
corrs = cc.Corrs(corrs)
pVecs = cc.Left(pVecs, true)
qVecs = cc.Right(qVecs, true)
phiVs = cc.Left(phiVs, false)
psiVs = cc.Right(psiVs, false)
if !floats.EqualApprox(corrs, test.wantCorrs, test.epsilon) {
t.Errorf("%d use %d: unexpected variance result got:%v, want:%v",
i, j, corrs, test.wantCorrs)
}
if !mat64.EqualApprox(pVecs, test.wantpVecs, test.epsilon) {
t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v",
i, j, mat64.Formatted(pVecs), mat64.Formatted(test.wantpVecs))
}
if !mat64.EqualApprox(qVecs, test.wantqVecs, test.epsilon) {
t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v",
i, j, mat64.Formatted(qVecs), mat64.Formatted(test.wantqVecs))
}
if !mat64.EqualApprox(phiVs, test.wantphiVs, test.epsilon) {
t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v",
i, j, mat64.Formatted(phiVs), mat64.Formatted(test.wantphiVs))
}
if !mat64.EqualApprox(psiVs, test.wantpsiVs, test.epsilon) {
t.Errorf("%d use %d: unexpected CCA result got:\n%v\nwant:\n%v",
i, j, mat64.Formatted(psiVs), mat64.Formatted(test.wantpsiVs))
}
}
}
}