forked from ryoppippi/Gasyori100knock
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
answer_31.py
57 lines (43 loc) · 1.34 KB
/
answer_31.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Affine
def affine(img, dx=30, dy=30):
# get shape
H, W, C = img.shape
# Affine hyper parameters
a = 1.
b = dx / H
c = dy / W
d = 1.
tx = 0.
ty = 0.
# prepare temporary
_img = np.zeros((H+2, W+2, C), dtype=np.float32)
# insert image to center of temporary
_img[1:H+1, 1:W+1] = img
# prepare affine image temporary
H_new = np.ceil(dy + H).astype(np.int)
W_new = np.ceil(dx + W).astype(np.int)
out = np.zeros((H_new, W_new, C), dtype=np.float32)
# preprare assigned index
x_new = np.tile(np.arange(W_new), (H_new, 1))
y_new = np.arange(H_new).repeat(W_new).reshape(H_new, -1)
# prepare inverse matrix for affine
adbc = a * d - b * c
x = np.round((d * x_new - b * y_new) / adbc).astype(np.int) - tx + 1
y = np.round((-c * x_new + a * y_new) / adbc).astype(np.int) - ty + 1
x = np.minimum(np.maximum(x, 0), W+1).astype(np.int)
y = np.minimum(np.maximum(y, 0), H+1).astype(np.int)
# assign value from original to affine image
out[y_new, x_new] = _img[y, x]
out = out.astype(np.uint8)
return out
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# Affine
out = affine(img, dx=30, dy=30)
# Save result
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.imwrite("out.jpg", out)