You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[INFO|2024-11-20 17:36:10] modeling_utils.py:1670 >> Instantiating Qwen2VisionTransformerPretrainedModel model under default dtype torch.bfloat16.
[WARNING|2024-11-20 17:36:10] logging.py:168 >> Qwen2VLRotaryEmbedding can now be fully parameterized by passing the model config through the config argument. All other arguments will be removed in v4.46
[INFO|2024-11-20 17:36:14] modeling_utils.py:4800 >> All model checkpoint weights were used when initializing Qwen2VLForConditionalGeneration.
[INFO|2024-11-20 17:36:14] modeling_utils.py:4808 >> All the weights of Qwen2VLForConditionalGeneration were initialized from the model checkpoint at C:\Users\PC.cache\huggingface\hub\models--Qwen--Qwen2-VL-2B-Instruct\snapshots\aca78372505e6cb469c4fa6a35c60265b00ff5a4. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2VLForConditionalGeneration for predictions without further training.
Reminder
System Info
llamafactory
version: 0.9.1.dev0Reproduction
[INFO|2024-11-20 17:36:10] modeling_utils.py:3934 >> loading weights file C:\Users\PC.cache\huggingface\hub\models--Qwen--Qwen2-VL-2B-Instruct\snapshots\aca78372505e6cb469c4fa6a35c60265b00ff5a4\model.safetensors.index.json
[INFO|2024-11-20 17:36:10] modeling_utils.py:1670 >> Instantiating Qwen2VLForConditionalGeneration model under default dtype torch.bfloat16.
[INFO|2024-11-20 17:36:10] configuration_utils.py:1096 >> Generate config GenerationConfig { "bos_token_id": 151643, "eos_token_id": 151645 }
[INFO|2024-11-20 17:36:10] modeling_utils.py:1670 >> Instantiating Qwen2VisionTransformerPretrainedModel model under default dtype torch.bfloat16.
[WARNING|2024-11-20 17:36:10] logging.py:168 >> Qwen2VLRotaryEmbedding can now be fully parameterized by passing the model config through the config argument. All other arguments will be removed in v4.46
[INFO|2024-11-20 17:36:14] modeling_utils.py:4800 >> All model checkpoint weights were used when initializing Qwen2VLForConditionalGeneration.
[INFO|2024-11-20 17:36:14] modeling_utils.py:4808 >> All the weights of Qwen2VLForConditionalGeneration were initialized from the model checkpoint at C:\Users\PC.cache\huggingface\hub\models--Qwen--Qwen2-VL-2B-Instruct\snapshots\aca78372505e6cb469c4fa6a35c60265b00ff5a4. If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2VLForConditionalGeneration for predictions without further training.
[INFO|2024-11-20 17:36:14] configuration_utils.py:1049 >> loading configuration file C:\Users\PC.cache\huggingface\hub\models--Qwen--Qwen2-VL-2B-Instruct\snapshots\aca78372505e6cb469c4fa6a35c60265b00ff5a4\generation_config.json
[INFO|2024-11-20 17:36:14] configuration_utils.py:1096 >> Generate config GenerationConfig { "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "temperature": 0.01, "top_k": 1, "top_p": 0.001 }
[INFO|2024-11-20 17:36:14] logging.py:157 >> Gradient checkpointing enabled.
[INFO|2024-11-20 17:36:14] logging.py:157 >> Using FlashAttention-2 for faster training and inference.
[INFO|2024-11-20 17:36:14] logging.py:157 >> Upcasting trainable params to float32.
[INFO|2024-11-20 17:36:14] logging.py:157 >> Fine-tuning method: LoRA
[INFO|2024-11-20 17:36:14] logging.py:157 >> Found linear modules: v_proj,k_proj,q_proj,o_proj,gate_proj,up_proj,down_proj
[INFO|2024-11-20 17:36:14] logging.py:157 >> trainable params: 9,232,384 || all params: 2,218,217,984 || trainable%: 0.4162
[INFO|2024-11-20 17:36:14] trainer.py:698 >> Using auto half precision backend
[INFO|2024-11-20 17:36:14] trainer.py:2313 >> ***** Running training *****
[INFO|2024-11-20 17:36:14] trainer.py:2314 >> Num examples = 15
[INFO|2024-11-20 17:36:14] trainer.py:2315 >> Num Epochs = 100
[INFO|2024-11-20 17:36:14] trainer.py:2316 >> Instantaneous batch size per device = 2
[INFO|2024-11-20 17:36:14] trainer.py:2319 >> Total train batch size (w. parallel, distributed & accumulation) = 16
[INFO|2024-11-20 17:36:14] trainer.py:2320 >> Gradient Accumulation steps = 8
[INFO|2024-11-20 17:36:14] trainer.py:2321 >> Total optimization steps = 100
[INFO|2024-11-20 17:36:14] trainer.py:2322 >> Number of trainable parameters = 9,232,384
[INFO|2024-11-20 17:36:38] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.9692e-05, 'epoch': 5.00}
[INFO|2024-11-20 17:37:02] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.8776e-05, 'epoch': 10.00}
[INFO|2024-11-20 17:37:27] logging.py:157 >> {'loss': 0.0000, 'learning_rate': 4.7275e-05, 'epoch': 15.00}
Expected behavior
No response
Others
训练指令为:
llamafactory-cli train
--stage sft
--do_train True
--model_name_or_path C:\Users\PC\.cache\huggingface\hub\models--Qwen--Qwen2-VL-2B-Instruct\snapshots\aca78372505e6cb469c4fa6a35c60265b00ff5a4
--preprocessing_num_workers 16
--finetuning_type lora
--template qwen2_vl
--flash_attn fa2
--dataset_dir data
--dataset mllm_demo
--cutoff_len 2048
--learning_rate 5e-05
--num_train_epochs 100.0
--max_samples 100000
--per_device_train_batch_size 2
--gradient_accumulation_steps 8
--lr_scheduler_type cosine
--max_grad_norm 1.0
--logging_steps 5
--save_steps 100
--warmup_steps 0
--packing False
--report_to none
--output_dir saves\Qwen2-VL-2B-Instruct\lora\train_2024-11-20-17-41-13
--bf16 True
--plot_loss True
--ddp_timeout 180000000
--optim adamw_torch
--lora_rank 8
--lora_alpha 16
--lora_dropout 0 `
--lora_target all
The text was updated successfully, but these errors were encountered: