-
Notifications
You must be signed in to change notification settings - Fork 3
/
abstract-ihes2015.tex
182 lines (163 loc) · 6.11 KB
/
abstract-ihes2015.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
\documentclass[10pt]{amsart}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{etex}
\usepackage{amsmath,amsthm,amssymb,stmaryrd,color,graphicx,multirow}
\usepackage{mathtools}
\usepackage{setspace}
\usepackage{bussproofs}
\usepackage{xspace}
\usepackage{longtable}
\usepackage{booktabs}
\usepackage{array}
\usepackage[protrusion=true,expansion=true]{microtype}
\usepackage[bookmarksdepth=2,pdfencoding=auto]{hyperref}
\usepackage[all]{xy}
\usepackage{tikz}
\usetikzlibrary{calc,shapes.callouts,shapes.arrows}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red, line width=0.3mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\usepackage[natbib=true,style=numeric]{biblatex}
\usepackage[babel]{csquotes}
\bibliography{bibliography}
\theoremstyle{definition}
\newtheorem{defn}{Definition}[section]
\newtheorem{ex}[defn]{Example}
\theoremstyle{plain}
\newtheorem{prop}[defn]{Proposition}
\newtheorem{cor}[defn]{Corollary}
\newtheorem{lemma}[defn]{Lemma}
\newtheorem{thm}[defn]{Theorem}
\theoremstyle{remark}
\newtheorem{rem}[defn]{Remark}
\newtheorem{question}[defn]{Question}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\FF}{\mathbb{F}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\A}{\mathcal{A}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\D}{\mathcal{D}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\renewcommand{\H}{\mathcal{H}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\N}{\mathcal{N}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\L}{\mathcal{L}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\R}{\mathcal{R}}
\newcommand{\T}{\mathcal{T}}
\newcommand{\I}{\mathcal{I}}
\newcommand{\J}{\mathcal{J}}
\renewcommand{\S}{\mathcal{S}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\qqq}{\mathfrak{q}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\nnn}{\mathfrak{n}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\HOM}{\mathcal{H}\mathrm{om}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\placeholder}{\underline{\quad}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Grp}{\mathrm{Grp}}
\newcommand{\Vect}{\mathrm{Vect}}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\PSh}{\mathrm{PSh}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\Et}{\mathrm{\acute{E}t}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Mod}{\mathrm{Mod}}
\newcommand{\Alg}{\mathrm{Alg}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LRL}{\mathrm{LRL}}
\newcommand{\pt}{\mathrm{pt}}
\newcommand{\tors}{\mathrm{tors}}
\DeclareMathOperator{\Spec}{Spec}
\newcommand{\QcohSpec}[2]{\mathrm{Spec}^{\mathrm{qcoh}}_{#1}{#2}}
\newcommand{\RelSpec}[2]{\mathrm{RelSpec}_{#1}{#2}}
\newcommand{\op}{\mathrm{op}}
\DeclareMathOperator{\colim}{colim}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Int}{int}
\DeclareMathOperator{\Clos}{cl}
\DeclareMathOperator{\Kernel}{ker}
\DeclareMathOperator{\supp}{supp}
\newcommand{\Ass}{\mathrm{Ass}}
\newcommand{\Open}{\T}
\newcommand{\?}{\,{:}\,}
\renewcommand{\_}{\mathpunct{.}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\Ll}{\vcentcolon\Longleftrightarrow}
\newcommand{\notat}[1]{{!#1}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\lhra}{\ensuremath{\lhook\joinrel\relbar\joinrel\rightarrow}}
\newcommand{\hra}{\hookrightarrow}
\newcommand{\brak}[1]{{\llbracket{#1}\rrbracket}}
\newcommand{\sdense}{{\widehat\Box}}
\newcommand{\sdenseother}{\Box}
\newcommand{\ie}{i.\,e.\@\xspace}
\newcommand{\eg}{e.\,g.\@\xspace}
\newcommand{\vs}{vs.\@\xspace}
\newcommand{\resp}{resp.\@\xspace}
\newcommand{\inv}{inv.\@}
\newcommand{\notnot}{\emph{not not}\xspace}
\newcommand{\affl}{\ensuremath{{\ul{\AA}^1_S}}\xspace}
\newcommand{\afflx}{\ensuremath{{\ul{\AA}^1_X}}\xspace}
\newcommand{\affla}{\ensuremath{{\ul{\AA}^1_{\Spec A}}}\xspace}
\newcommand{\xra}{\xrightarrow}
\newcommand{\XXX}[1]{\textbf{XXX: #1}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defequiv}{\vcentcolon\equiv}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\definecolor{gray}{rgb}{0.7,0.7,0.7}
\title{Using the internal language of toposes in algebraic geometry}
\author{Ingo Blechschmidt}
\email{[email protected]}
\begin{document}
\begin{abstract}
We describe how the internal language of certain
toposes, the associated petit and gros Zariski toposes of a scheme, can be
used to give simpler definitions and more conceptual proofs of the basic
notions and observations in algebraic geometry.
% This is useful for studying schemes from a local or relative point of view.
The starting point is that, from the internal point of view, sheaves of rings
and sheaves of modules look just like plain rings and plain modules.
In this way, some concepts and statements of scheme theory can be reduced to
concepts and statements of intuitionistic linear algebra.
Furthermore, modal operators can be used to model phrases such as ``on a
dense open subset it holds that'' or ``on an open neighbourhood of a given
point it holds that''. These operators define certain subtoposes; a
generalization of the double-negation translation is useful in order to
understand the internal universe of those subtoposes from the internal point
of view of the ambient topos.
A particularly interesting task is to internalize the
construction of the relative spectrum, which, given a quasicoherent sheaf of algebras
on a scheme~$X$, yields a scheme over~$X$. From the internal point of
view, this construction should simply reduce to an intuitionistically sensible
variant of the ordinary construction of the spectrum of a ring, but it turns
out that this expectation is too naive and that a refined approach is
necessary.
\end{abstract}
\maketitle
\thispagestyle{empty}
\end{document}
* Krull dimension
* Cartier divisors?
* Box translation
* internal spectrum
* big Zariski topos: criterion for affineness; étale topology