-
Notifications
You must be signed in to change notification settings - Fork 3
/
paper-composition.tex
193 lines (142 loc) · 5.74 KB
/
paper-composition.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\documentclass[oneside,reqno]{amsart}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsthm,mathtools,stmaryrd,amssymb,graphicx}
\usepackage{booktabs}
\usepackage[all]{xy}
\usepackage[protrusion=true,expansion=true]{microtype}
\usepackage{xspace}
\usepackage[natbib=true,style=numeric,maxnames=10]{biblatex}
\usepackage[babel]{csquotes}
\bibliography{paper-composition.bib}
\title{Composition of internal theories}
\author{Ingo Blechschmidt}
\email{[email protected]}
\author{Matthias Hutzler}
\email{[email protected]}
\author{Alexander Oldenziel}
\email{[email protected]}
\theoremstyle{definition}
\newtheorem{defn}{Definition}[section]
\newtheorem{ex}[defn]{Example}
\theoremstyle{plain}
\newtheorem{prop}[defn]{Proposition}
\newtheorem{cor}[defn]{Corollary}
\newtheorem{lemma}[defn]{Lemma}
\newtheorem{thm}[defn]{Theorem}
\newtheorem{scholium}[defn]{Scholium}
\theoremstyle{remark}
\newtheorem{rem}[defn]{Remark}
\newtheorem{question}[defn]{Question}
\newtheorem{speculation}[defn]{Speculation}
\newtheorem{caveat}[defn]{Caveat}
\newtheorem{conjecture}[defn]{Conjecture}
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
\newcommand{\xra}[1]{\xrightarrow{#1}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\bbb}{\mathfrak{b}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\I}{\mathcal{I}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\EE}{\mathbb{E}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\SS}{\mathbb{S}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\op}{\mathrm{op}}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Sh}{Sh}
\DeclareMathOperator{\PSh}{PSh}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\List}{List}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\renewcommand{\_}{\mathpunct{.}\,}
\newcommand{\effective}{ef{}fective\xspace}
\newcommand{\?}{\,{:}\,}
\newcommand{\realizes}{\Vdash}
\newcommand{\notnot}{\emph{not~not}\xspace}
\usepackage{soul}\setul{0.3ex}{}
\let\oldul\ul
\renewcommand{\ul}[1]{\text{\oldul{$#1$}}}
\newcommand{\affl}{\ensuremath{{\ul{\AA}^1}}\xspace}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\brak}[1]{\llbracket #1 \rrbracket}
\newcommand{\Mod}[1]{{#1}\mathrm{\text{-}mod}}
\newcommand{\stacksproject}[1]{\cite[{\href{https://stacks.math.columbia.edu/tag/#1}{Tag~#1}}]{stacks-project}}
\renewcommand{\paragraph}[1]{\noindent\textbf{#1.}}
\newcommand{\ZFC}{\textsc{zfc}}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\begin{document}
\begin{abstract}
XXX
\end{abstract}
\maketitle
\thispagestyle{empty}
\section{Introduction}
XXX state main lemma (to be proved in Section 3)
\begin{defn}A geometric morphism~$\F \to \E$ is \emph{of presheaf type} if and
only if it is equivalent (XXX be more precise) to the canonical
functor~$\E^{\C^\op} \to \E$ for an internal category~$\C$ in~$\E$.\end{defn}
XXX This notion is the relativization of the notion of a presheaf category; a
geometric theory~$\TT$ is of presheaf type if and only if the canonical
geometric morphism~$\Set[\TT] \to \Set$ is of presheaf type.
\begin{prop}The composition of geometric morphisms of presheaf type is of
presheaf type.\end{prop}
\begin{proof}(This is what Sina confirmed for us.) Spell out construction.
(Maybe in Section 4.)
\end{proof}
\section{Background on internal geometric theories}
XXX: State definition of geometric theory, being careful to only use geometric
constructions
XXX: State definition of model of a geometric theory, being careful to only use
geometric constructions
XXX: Explain internal geometric theories
XXX: Remark subtletly with respect to infinitary disjunctions and infinitary
proofs
\section{Proof of the main result}
XXX: State and prove main lemma about~$\Set[\TT][\TT']$
\section{Criteria for theories to be of presheaf type}
XXX: Give semantic criterion for being of presheaf type: Let~$\TT$ be of
presheaf type and let~$\TT''$ be an extension of~$\TT$ such that there is a
theory~$\TT'$ internal to~$\Set[\TT]$ such that~$\Set[\TT][\TT'] =
\Set[\TT'']$. If~$\TT'$ is of presheaf type from the point of view
of~$\Set[\TT]$, then~$\TT''$ is of presheaf type.
XXX: Explain that in the previous paragraph, the existence of~$\TT'$ is not
actually an assumption, but is in fact always satisfied. (?)
XXX: Draw conclusions, for instance that adding a further constant preserves
being of presheaf type (find lots of further such syntactical examples).
\section{Applications}
XXX: Results from the Master thesis of Matthias
XXX: Show that the naive definition of the big Zariski topos does not work.
(From the point of view of Sh(S), the big Zariski topos of S is \emph{not} the
topos of local~$\O_S$-algebras, but the topos of local~$\O_S$-algebras which
are local over~$\O_S$.)
\section{XXX general todo}
XXX cite Martha Bunge's characterization of functors of presheaf type
XXX cite Shawn Henry's PhD thesis
XXX cite that other guy who mentioned internal geometric theories (forgot whom
right now, might be Freyd or Andreas Blass, either in the result that the
object of Kuratowski-finite subsets is preserved under pullback or in the paper
about existential fixed-point logic)
XXX cite Azriel Lévy
\url{https://www.ams.org/journals/proc/1961-012-02/S0002-9939-1961-0122702-2/S0002-9939-1961-0122702-2.pdf}
XXX Realizability: An introduction to its categorical side, Thm. 2.7.1
\printbibliography
\end{document}