-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-augsburg2016.tex
1483 lines (1255 loc) · 54.9 KB
/
slides-augsburg2016.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{mathtools}
\usepackage{soul}\setul{0.3ex}{}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes.callouts,shapes.arrows}
\hypersetup{colorlinks=true}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Using the internal language of toposes in algebraic geometry}
\author{Ingo Blechschmidt}
\date{May 19th, 2016}
\usetheme{Warsaw}
\usecolortheme{seahorse}
%\usefonttheme{default}?
%\usepackage{kurier}?
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
%\usepackage{mathpazo}
\useinnertheme{rectangles}
\newcommand{\A}{\mathcal{A}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\DeclareMathOperator{\Spec}{Spec}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{\text{\ul{$\mathrm{Spec}$}}}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ull}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ull{\AA}^1_S}}}
\newcommand{\Ll}{\vcentcolon\!\Longleftrightarrow}
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\newcommand{\pointthis}[2]{%
\tikz[remember picture,baseline]{\node[anchor=base,inner sep=0,outer sep=0]%
(#1) {#1};\node[overlay,rectangle callout,%
callout relative pointer={(-0.5cm,0.8cm)},fill=blue!20] at ($(#1.north)+(1.1cm,-1.4cm)$) {#2};}%
}%
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\slogan}[1]{%
\begin{center}%
\setlength{\fboxrule}{2pt}%
\setlength{\fboxsep}{8pt}%
{\usebeamercolor[fg]{item}\fbox{\usebeamercolor[fg]{normal text}\parbox{0.87\textwidth}{#1}}}%
\end{center}%
}
\newcommand{\sloganwithoutborder}[1]{%
\begin{center}%
\setlength{\fboxrule}{0pt}%
\setlength{\fboxsep}{-14pt}%
{\usebeamercolor[fg]{item}\fbox{\usebeamercolor[fg]{normal
text}\parbox{0.9\textwidth}{\begin{center}#1\end{center}}}}%
\end{center}%
}
\setbeamertemplate{frametitle}[default][colsep=-2bp,rounded=false,shadow=false,center]
\setbeamertemplate{headline}{}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.25ex,right,rightskip=1mm,leftskip=1mm]{frametitle right}
{\quad} \inserttitle \hfill
\insertframenumber\,/\,\inserttotalframenumber {\quad}
\end{beamercolorbox}}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\IfSubStr{\jobname}{\detokenize{nonotes}}{
\setbeameroption{hide notes}
}{
\setbeameroption{show notes}
}
\setbeamertemplate{note page}[plain]
\setbeameroption{hide notes} % XXX
\begin{document}
\begin{frame}[c]
\centering
\includegraphics[scale=0.3]{images/external-internal-small}
\medskip
\hil{Using the internal language of toposes in \\ algebraic geometry}
\medskip
\scriptsize
am Tag, an dem Marc im Curry Club vorträgt
\par
\end{frame}
\frame[t]{\frametitle{Outline}\scriptsize\begin{itemize}\item[]\tableofcontents\end{itemize}}
\note{\justifying\fontsize{8pt}{9.6}\selectfont
\begin{center}\large\textbf{Abstract}\end{center}
\begin{changemargin}{2.5em}{2.5em}
% XXX: Update
We describe how the internal language of certain
toposes, the associated small and big Zariski toposes of a scheme, can be
used to give simpler definitions and more conceptual proofs of the basic
notions and observations in algebraic geometry.
% This is useful for studying schemes from a local or relative point of view.
The starting point is that, from the internal point of view, sheaves of rings
and sheaves of modules look just like plain rings and plain modules.
In this way, some concepts and statements of scheme theory can be reduced to
concepts and statements of intuitionistic linear algebra.
Furthermore, modal operators can be used to model phrases such as ``on a
dense open subset it holds that'' or ``on an open neighbourhood of a given
point it holds that''. These operators define certain subtoposes; a
generalization of the double-negation translation is useful in order to
understand the internal universe of those subtoposes from the internal point
of view of the ambient topos.
A particularly interesting task is to internalize the
construction of the relative spectrum, which, given a quasicoherent sheaf of algebras
on a scheme~$X$, yields a scheme over~$X$. From the internal point of
view, this construction should simply reduce to an intuitionistically sensible
variant of the ordinary construction of the spectrum of a ring, but it turns
out that this expectation is too naive and that a refined approach is
necessary.
\end{changemargin}
}
\section{Basics}
\subsection{What is a topos?}
\begin{frame}\frametitle{What is a topos?}
\begin{block}{Formal definition}A \hil{topos} is a category which has finite limits,
is cartesian closed and has a subobject classifier.
\end{block}
\begin{block}{Motto}A topos is a category which is sufficiently rich to support
an \hil{internal language}.
\end{block}
\begin{block}{Examples}\begin{itemize}
\item \hil{$\Set$:} \tabto{1.4cm} category of sets
\item \hil{$\Sh(X)$:} \tabto{1.4cm} category of set-valued sheaves on a space~$X$
\end{itemize}\end{block}
\end{frame}
\note{\justifying
While technically correct, the formal definition is actually
misleading in a sense: A topos has lots of other vital structure, which
is crucial for a rounded understanding, but is not listed in the
definition (which is trimmed for minimality).
A more comprehensive definition is: A \emph{topos} is a locally cartesian
closed, finitely complete and cocomplete Heyting category which is exact,
extensive and has a subobject classifier.
Check out an
\href{https://ncatlab.org/publications/published/Leinster2011}{article by
Tom Leinster} for a leisurely introduction to topos theory.
\par
}
\subsection{What is the internal language?}
\frame[t]{\frametitle{What is the internal language?}
The internal language of a topos~$\E$ allows to
\begin{enumerate}
\item construct objects and morphisms of the topos,
\item formulate statements about them and
\item prove such statements
\end{enumerate}
in a \hil{naive element-based} language:
\begin{center}
\small
\begin{tabular}{ll}
\toprule
externally & internally to $\E$ \\
\midrule
object of~$\E$ & set/type \\
morphism in~$\E$ & map of sets \\
monomorphism & injective map \\
epimorphism & surjective map \\
ring object & ring \\
module object & module \\
\bottomrule
\end{tabular}
\end{center}
\note{
\begin{itemize}
\item Special case: The language of~$\Set$ is the usual mathematical language.
\item \begin{justify}Actually, the objects of~$\E$ feel more like \emph{types} instead of \emph{sets}:
For instance, there is no global membership relation~$\in$. Rather,
for each object~$A$ of~$\E$, there is a relation~${\in_A} : A \times \P(A) \to
\Omega$, where~$\P(A)$ is the power object of~$A$ and~$\Omega$ is the
object of truth values of~$\E$ (can be understood as the power object of
a terminal object).\end{justify}
\item \begin{justify}Compare with the embedding theorem for abelian categories:
There, an explicit embedding into a category of modules is constructed.
Here, we only change perspective and talk about the same objects and
morphisms.\end{justify}
\item \begin{justify}There exists a weaker variant of the internal language which works
in abelian categories. By using it, one can even pretend that the objects
are abelian groups (instead of modules), and when constructing morphisms
by appealing to the axiom of unique choice (which is a theorem), one
doesn't even have to check linearity. The proof that this approach
works uses only categorical logic.\end{justify}
\item \begin{justify}For expositions of the internal language,
see the books~\cite{johnstone:elephant}~(chapters~D1 and~D4)
and~\cite{moerdijk:maclane:sheaves} (chapter~VI) or the lecture
notes~\cite{streicher:ctcl} (chapter~13).\end{justify}
\end{itemize}
}
}
\frame[t]{\frametitle{The internal language of~$\Sh(X)$}
Let~$X$ be a topological space. Then we recursively define
\[ U \models \varphi \quad \text{(``$\varphi$ holds on~$U$'')} \]
for open subsets~$U \subseteq X$ and formulas~$\varphi$.
\pause
\small
\[ \renewcommand{\arraystretch}{1.3}\begin{array}{@{}l@{\ }c@{\ }l@{}}
U \models f = g \? \F &\Ll& f|_U = g|_U \in \Gamma(U, \F) \\
U \models \varphi \wedge \psi &\Ll&
\text{$U \models \varphi$ and $U \models \psi$} \\
U \models \varphi \vee \psi &\Ll&
\hcancel{\text{$U \models \varphi$ or $U \models \psi$}}{0pt}{3pt}{0pt}{-2pt} \\
&& \text{there exists a covering $U = \bigcup_i U_i$ s.\,th. for all~$i$:} \\
&& \quad\quad \text{$U_i \models \varphi$ or $U_i \models \psi$} \\
U \models \varphi \Rightarrow \psi &\Ll&
\text{for all open~$V \subseteq U$: }
\text{$V \models \varphi$ implies $V \models \psi$} \\
U \models \forall f \? \F\_ \varphi(f) &\Ll&
\text{for all sections~$f \in \Gamma(V, \F), V \subseteq U$: $V \models
\varphi(f)$} \\
U \models \exists f \? \F\_ \varphi(f) &\Ll&
\text{there exists a covering $U = \bigcup_i U_i$ s.\,th. for all~$i$:} \\
&& \quad\quad \text{there exists~$f_i \in \Gamma(U_i, \F)$ s.\,th.
$U_i \models \varphi(f_i)$}
\end{array} \]
\note{
\begin{itemize}
\item \begin{justify}The rules are called \emph{Kripke-Joyal semantics} and can be
formulated over any topos (not just sheaf topoi). They are not all
arbitrary: Rather, they are very finely concerted to make the crucial
properties about the internal language (see next slide) true.\end{justify}
\item \begin{justify}If~$\F$ is an object of~$\Sh(X)$, we write
``$f:\F$'' instead of~``$f\in\F$'' to remind us that~$\F$ is not really
(externally) a set consisting of elements, but that we only pretend this
by using the internal language.\end{justify}
\item There are two further rules concerning the constants~$\top$
and~$\bot$ (truth resp. falsehood):
\[ \renewcommand{\arraystretch}{1.3}\begin{array}{@{}lcl@{}}
U \models \top &\Ll& U = U \text{ (always fulfilled)}\\
U \models \bot &\Ll& U = \emptyset
\end{array} \]
\item Negation is defined as
\[ \neg\varphi :\equiv (\varphi \Rightarrow \bot). \]
\item \begin{justify}The alternate definition ``$U \models \varphi \vee \psi :\Leftrightarrow
\text{$U \models \varphi$ or $U \models \psi$}$'' would not be local (cf.
next slide).\end{justify}
\end{itemize}
}
}
\note{
\begin{itemize}
\item Let~$\alpha : \F \to \G$ be a morphism of sheaves on~$X$. Then:
\begin{align*}
& X \models \speak{$\alpha$ is injective} \\[0.5em]
\Longleftrightarrow\
& X \models \forall s,t\?\F\_ \alpha(s) = \alpha(t) \Rightarrow s = t \\[0.5em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s, t \in \Gamma(U, \F)$:} \\
&\qquad\qquad
U \models \alpha(s) = \alpha(t) \Rightarrow s = t \\[0.5em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s, t \in \Gamma(U, \F)$:} \\
&\qquad\qquad
\text{for all open~$V \subseteq U$:} \\
&\qquad\qquad\qquad\qquad
\text{$\alpha_V(s|_V) = \alpha_V(t|_V)$ implies $s|_V = t|_V$} \\[0.5em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s, t \in \Gamma(U, \F)$:} \\
&\qquad\qquad
\text{$\alpha_U(s|_U) = \alpha_U(t|_U)$ implies $s|_U = t|_U$} \\[0.5em]
\Longleftrightarrow\ &
\text{$\alpha$ is a monomorphism of sheaves}
\end{align*}
\item The corner quotes ``$\speak{\ldots}$'' indicate that
translation into formal language is left to the reader.
\end{itemize}
}
\note{
\begin{itemize}
\item Similarly, we have (exercise, use the rules!):
\begin{align*}
&
X \models \speak{$\alpha$ is surjective} \\[0.5em]
\Longleftrightarrow\ &
X \models \forall s\?\G\_ \exists t\?\F\_ \alpha(t) = s \\[0.5em]
\Longleftrightarrow\ &
\text{$\alpha$ is an epimorphism of sheaves}
\end{align*}
\end{itemize}
}
\note{
\begin{itemize}
\item One can simplify the rules for often-occuring special cases:
\[ \renewcommand{\arraystretch}{1.3}\begin{array}{@{}lcl@{}}
U \models \forall s\?\F\_ \forall t\?\G\_ \varphi(s,t)
&\Longleftrightarrow&
\text{for all open~$V \subseteq U$,} \\
&& \text{sections~$s \in \Gamma(V,\F)$, $t \in \Gamma(V,\G)$:} \\
&&\qquad\qquad V \models \varphi(s,t) \\\\
U \models \forall s\?\F\_ \varphi(s) \Rightarrow \psi(s)
&\Longleftrightarrow&
\text{for all open~$V \subseteq U$, sections~$s \in \Gamma(V,\F)$:} \\
&&\qquad\qquad \text{$V \models \varphi(s)$ implies $V \models \psi(s)$} \\\\
U \models \exists!s\?\F\_ \varphi(s)
&\Longleftrightarrow&
\text{for all open~$V \subseteq U$,} \\
&&
\text{there is exactly one section~$s \in \Gamma(V,\F)$ with:} \\
&&\qquad\qquad V \models \varphi(s)
\end{array} \]
\end{itemize}
}
\note{
\begin{itemize}
\item \begin{justify}One can extend the language to allow for \emph{unbounded}
quantification ($\forall A$ vs.~$\forall a \in A$), see Shulman's
stack semantics~\cite{shulman:stack}. This is needed to formulate
universal properties internal to~$\Sh(X)$, for instance.\end{justify}
\item \begin{justify}One can further extend the language to be able to talk
about locally internal categories over~$\Sh(X)$ (in the sense of
Penon~\cite{penon:locint}, see for instance the appendix
of~\cite{johnstone:topos}): Then one can do category theory internal
to~$\Sh(X)$ using the internal language, see~\cite{blechschmidt:msc}.
This specific approach is, as far as I am aware, original work. But of
course, internal category theory has been done for a long time, see for
instance the textbook~\cite{johnstone:elephant}; also
cf.~\cite{chapman:rowbottom:relcat}.\end{justify}
\end{itemize}
}
\frame[t]{\frametitle{The internal language of~$\Sh(X)$}
\begin{block}{Crucial property: Locality}
If~$U = \bigcup_i U_i$, then
$U \models \varphi$ iff $U_i \models
\varphi$ for all~$i$.
\end{block}
\begin{block}{Crucial property: Soundness}
If~$U \models \varphi$ and $\varphi$
implies $\psi$ \only<1>{constructively}\only<2->{\pointthis{constructively}{
no $\varphi \vee \neg\varphi$,\ \
no $\neg\neg\varphi \Rightarrow \varphi$,\ \
no AxC
}},
then~$U \models \psi$.
\end{block}
\vfill
\pause\pause
\begin{block}{A simple look at the constructive nature}
\begin{itemize}
\item $U \models f = 0$
\tabto{3.05cm} iff $f|_U = 0 \in \Gamma(U, \F)$.
\item $U \models \neg\neg(f = 0)$
\tabto{3.05cm} iff~$f = 0$ on a dense open subset of~$U$.
\end{itemize}
\end{block}
}
\note{%
\vspace{-0.5em}%
\begin{center}\large\bf Why is constructive mathematics
interesting?\end{center}
\vspace{-1em}
\begin{itemize}
\item The internal logic of most topoi is constructive.
\item \begin{justify}From a constructive proof of a statement, it's always possible to
mechanically extract an \emph{algorithm} witnessing its truth. For example:
A proof of the infinitude of primes gives rise to an algorithm
which actually computes infinitely many primes (outputting one at a
time, never stopping).\end{justify}
\item \begin{justify}By the celebrated \emph{Curry--Howard correspondence},
constructive truth of a formula is equivalent to the existence of a
program of a certain type associated to the formula.\end{justify}
\item \begin{justify}In constructive mathematics, one can experiment with (and draw
useful conclusions also holding in a usual sense) \emph{anti-classical
dream axioms}, for instance the one of synthetic differential geometry:\end{justify}
\begin{quote}All functions~$\RR \to \RR$ are smooth.\end{quote}
\item \begin{justify}Constructive accounts of classical theories are sometimes more
elegant or point out some minor but interesting points which are not appreciated by a
classical perspective.\end{justify}
\item \begin{justify}The philosophical question on the \emph{meaning of truth} is
easier to tackle in constructive mathematics.\end{justify}
\end{itemize}
}
\note{%
\vspace{-0.5em}%
\begin{center}\large\bf Three rumours about constructive mathematics\end{center}
\vspace{-1em}
\begin{enumerate}
\item \begin{justify}There is a false rumour about constructive mathematics, namely that
the term \emph{contradiction} is generally forbidden. This is not the
case, one has to distinguish between
\begin{itemize}
\item a true proof by contradiction: ``Assume~$\varphi$ were false.
Then \ldots, contradiction. So~$\varphi$ is in fact true.''
\end{itemize}
which constructively is only a proof of the weaker
statement~$\neg\neg\varphi$, and
\begin{itemize}
\item a proof of a negated formula: ``Assume~$\psi$ were true. Then
\ldots, contradiction. So~$\neg\psi$ holds.''
\end{itemize}
which is a perfectly fine proof of~$\neg\psi$ in constructive mathematics.\end{justify}
\item \begin{justify}There is a similar rumour that constructive mathematicians \emph{deny}
the law of excluded middle. In fact, one can constructively prove that there is no
counterexample to the law: For any formula~$\varphi$, it holds
that~$\neg\neg(\varphi \vee \neg\varphi)$.
In constructive mathematics, one merely doesn't \emph{use} the law of
excluded middle. (Only in concrete models, for example as provided by the
internal universe of the sheaf topos on a non-discrete topological space,
the law of excluded middle will actually be refutable.)\end{justify}
\end{enumerate}
}
\note{
\begin{enumerate}
\item[3.] \begin{justify}There is one last false rumour about constructive mathematics: Namely
that most of mathematics breaks down in a constructive setting. This is
only true if interpreted naively: Often, already very small changes to the
definitions and statements (which are classically simply equivalent
reformulations) suffice to make them constructively acceptable.
In other cases, adding an additional hypotheses, which is classically
always satisfied, is necessary (and interesting). Here is an example: In
constructive mathematics, one can not show that any inhabited subset of the
natural numbers possesses a minimal element. [One can also not show the
negation -- recall the previous false rumour.] But one can show (quite
easily, by induction) that any inhabited and \emph{detachable} subset
of the natural numbers possesses a minimal element. A subset~$U \subseteq
\NN$ is detachable iff for any number~$n \in \NN$, it holds that~$n
\in U$ or~$n \not\in U$.
This has a computational interpretation: Given an arbitrary inhabited subset~$U
\subseteq \NN$, one cannot algorithmically find its minimal element. But it
\emph{is} possible if one has an algorithmic \emph{test of membership}
for~$U$.\end{justify}
\end{enumerate}
\begin{justify}See~\cite{stanford:constr,dalen:int,troelstra:dalen:constr}
for references about constructive mathematics. The blog~\cite{bauer:blog} is
also very informative.\end{justify}
}
\section{The little Zariski topos of a scheme}
\subsection{Basic look and feel}
\frame[t]{\frametitle{The little Zariski topos}
\begin{block}{Definition}The \hil{little Zariski topos} of a scheme~$X$ is the
category~$\Sh(X)$ of set-valued sheaves on~$X$.\end{block}
\begin{block}{Basic look and feel}
\begin{itemize}
\item Internally, the structure sheaf~$\O_X$ looks like \[ \text{
an ordinary ring.} \]
\item Internally, a sheaf of~$\O_X$-modules looks like \[
\text{an ordinary module on that ring.} \]
\end{itemize}
\end{block}
}
\note{\begin{itemize}\justifying
\item Actually, the objects of~$\E$ feel more like \emph{types} instead of \emph{sets}:
For instance, there is no global membership relation~$\in$. Rather,
for each object~$A$ of~$\E$, there is a relation~${\in_A} : A \times \P(A) \to
\Omega$, where~$\P(A)$ is the power object of~$A$ and~$\Omega$ is the
object of truth values of~$\E$ (can be understood as the power object of
a terminal object).
\item Compare with the embedding theorem for abelian categories:
There, an explicit embedding into a category of modules is constructed.
Here, we only change perspective and talk about the same objects and
morphisms.
\item There exists a weaker variant of the internal language which works
in abelian categories. By using it, one can even pretend that the objects
are abelian groups (instead of modules), and when constructing morphisms
by appealing to the axiom of unique choice (which is a theorem), one
doesn't even have to check linearity. The proof that this approach
works uses only categorical logic.
\end{itemize}}
\note{\begin{itemize}\justifying
\item The internal language of a sheaf topos of a $\mathrm{T}_1$-space is
\emph{classical} (that is, verifies the principle of excluded middle) if and
only if the space is discrete. That's a not particularly interesting special
case.
\item See Section~2.4 of
\href{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these
notes} for remarks on how to appreciate intuitionistic logic.
\end{itemize}}
\subsection{Building and using a dictionary}
\begin{frame}\frametitle{Building a dictionary}
\sloganwithoutborder{\hil{Understand notions of algebraic geometry
as notions of algebra internal to~$\boldsymbol{\Sh(X)}$.}}
\begin{center}
\small
\scalebox{0.93}{\begin{tabular}{ll}
\toprule
externally & internally to $\Sh(X)$ \\
\midrule
sheaf of sets & set/type \\
morphism of sheaves & map of sets \\
monomorphism & injective map \\
epimorphism & surjective map \\
\midrule
sheaf of rings & ring \\
sheaf of modules & module \\
sheaf of finite type & finitely generated module \\
finite locally free sheaf & finite free module \\
% coherent sheaf & coherent module \\
tensor product of sheaves & tensor product of modules \\
rank function & minimal number of generators \\
% sheaf of rational functions & total quotient ring of~$\O_X$ \\
sheaf of Kähler differentials & module of Kähler differentials \\
dimension of $X$ & Krull dimension of $\O_X$ \\
\bottomrule
\end{tabular}}
\end{center}
\end{frame}
\note{\justifying
See the \href{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{notes} for more dictionary entries.
The simple definition of~$\K_X$ allows to give an internal account of the
basics of the theory of Cartier divisors, for instance giving an easy
description of the line bundle associated to a Cartier divisor.
\par
}
\begin{frame}\frametitle{Using the dictionary}
\begin{center}
\begin{minipage}{0.70\textwidth}
\begin{exampleblock}{}
\justifying
Let~$0 \to M' \to M \to M'' \to 0$ be a short exact sequence of
modules. If~$M'$ and~$M''$ are finitely generated, so is~$M$.
\end{exampleblock}
\end{minipage}
\medskip
\scalebox{3}{$\Downarrow$}
\begin{minipage}{0.70\textwidth}
\begin{exampleblock}{}
\justifying
Let $0 \to \F' \to \F \to \F'' \to 0$ be a short exact sequence
of sheaves of~$\O_X$-modules. If~$\F'$ and~$\F''$ are of finite type,
so is~$\F$.
\end{exampleblock}
\end{minipage}
\end{center}
\end{frame}
\begin{frame}[c]\frametitle{Using the dictionary}
\begin{center}
\begin{minipage}{0.70\textwidth}
\begin{exampleblock}{}
\justifying
Any finitely generated vector space does \mbox{\emph{not not}} possess a basis.
\end{exampleblock}
\end{minipage}
\medskip
\scalebox{3}{$\Downarrow$}
\begin{minipage}{0.70\textwidth}
\begin{exampleblock}{}
\justifying
Any sheaf of modules of finite type on a reduced scheme is locally free
\emph{on a dense open subset}.
\end{exampleblock}
\centering
\tiny Ravi Vakil: ``Important hard exercise'' (13.7.K).
\par
\end{minipage}
\end{center}
\end{frame}
\begin{frame}\frametitle{The objective}
\slogan{\justifying Understand notions and statements of \hil{algebraic geometry} as
notions and statements of (intuitionistic) \hil{commutative
algebra} internal to suitable \hil{toposes}.}
% In order to:
% \begin{itemize}
% \item Gain conceptual understanding.
% \item Simplify proofs.
% \item Develop a synthetic account of scheme theory.
% \item Contribute to constructive algebra.
% \end{itemize}
Further topics in the little Zariski topos:
\begin{itemize}
\item The sheaf $\K_X$ of rational functions
\item Transfer principles~$M \leftrightarrow M^\sim$
\item The curious role of affine open subsets
\item Quasicoherence
\item Spreading from points to neighbourhoods
\item The relative spectrum
\end{itemize}
\end{frame}
\begin{frame}[c]\frametitle{Praise for Mike Shulman}
\centering
\includegraphics[scale=0.4]{images/mike-shulman-stack-semantics}
\par
\end{frame}
\note{\justifying
The internal language of a topos supports
\begin{itemize}
\item first-order logic,
\item higher-order logic (for instance quantification over subsets),
\item dependent types, and
\item unbounded quantification.
\end{itemize}
The first three items are standard. The fourth is due to Mike Shulman.
Combined, it's possible to interpret ``essentially all of constructive
mathematics'' internal to a topos.
Restrictions persist for operations with a ``set-theoretical flavor'' like
building an infinite union of iterated powersets, for example~$\bigcup_{n \in
\NN} P^n(\NN)$.
\par
}
\subsection{The sheaf of rational functions}
\begin{frame}\frametitle{The sheaf of rational functions}
\begin{block}{Classical definition}
The sheaf~$K_X$ of \hil{rational functions} on a scheme~$X$ is the
sheafification of the presheaf
\[ U \subseteq X \longmapsto \Gamma(U, \O_X)[S(U)^{-1}], \]
where
\[ S(U) = \{ s \in \Gamma(U, \O_X) \,|\, \text{$s \in \O_{X,x}$ is
regular for all~$x \in U$} \}. \]
\end{block}
\begin{block}{Internal definition}
$K_X$ is the total quotient ring of~$\O_X$.
\end{block}
\visible<2>{\begin{tikzpicture}[overlay]
\draw[fill=white, draw=white, opacity=0.9] (-1,0) rectangle (\paperwidth,7.1);
\node[anchor=south west,inner sep=0] (image) at (1.8,1.3) {
\includegraphics[width=0.7\textwidth]{images/steven-kleiman-misconceptions-about-kx}
};
\end{tikzpicture}}
\end{frame}
\subsection{Transfer principles}
\begin{frame}\frametitle{Transfer principles}
\hil{Question:} How do the properties of
\begin{itemize}
\item an~$A$-module~$M$ in~$\Set$ and
\item the~$\O_X$-module~$M^\sim$ in~$\Sh(X)$, where~$X = \Spec A$, relate?
\end{itemize}
\pause
\vfill
\hil{Observation:} $M^\sim = \underline{M}[\F^{-1}]$, where
\begin{itemize}
\item $\underline{M}$ is the constant sheaf with stalks~$M$ on~$X$ and
\item $\F \hookrightarrow \underline{A}$ is the \hil{generic filter}.
\end{itemize}
Note: $M$ and $\underline{M}$ share all first-order properties.
\pause
\vfill
\centering
\hil{Answer:} $M^\sim$ inherits those properties of $M$ which are \\
\hil{stable under localization}.
\par
\end{frame}
\subsection{The curious role of affine open subsets}
\begin{frame}\frametitle{The curious role of affine open subsets}
\hil{Question:} Why do the following identities hold, for quasicoherent
sheaves and affine open subsets~$U$?
\begin{align*}
\Gamma(U, \E/\F) &= \Gamma(U, \E) / \Gamma(U, \F) \\
\Gamma(U, \E \otimes_{\O_X} \F) &= \Gamma(U, \E) \otimes_{\Gamma(U,\O_X)} \Gamma(U, \F) \\
\Gamma(U, \E_\mathrm{tors}) &= \Gamma(U, \E)_\mathrm{tors} \quad\text{(sometimes)} \\
\Gamma(U, \K_X) &= \operatorname{Quot} \O_X(U) \quad\text{(sometimes)} \\
&\ \ \vdots
\end{align*}
\pause
\hil{Answer:} Because localization commutes with quotients, tensor products,
torsion submodules (sometimes), \ldots
\end{frame}
\subsection{Quasicoherence of sheaves of modules}
\begin{frame}\frametitle{A curious property}
Let~$X$ be a scheme. Internally to~$\Sh(X)$,
\begin{center}
\hil{any non-invertible element of~$\boldsymbol{\O_X}$ is nilpotent.}
\end{center}
\centering
\includegraphics[scale=0.3]{images/tierney-on-the-spectrum-of-a-ringed-topos} \\
\tiny
%Miles Tierney. ``On the spectrum of a ringed topos''. \\ In: \emph{Algebra,
%Topology, and Category Theory. A Collection of Papers in Honor of Samuel
%Eilenberg}. Ed.\@ by A.~Heller and M.~Tierney. Academic Press, 1976,
%pp.~189--210.
Miles Tierney. On the spectrum of a ringed topos. 1976.
\par
\end{frame}
\begin{frame}\frametitle{Quasicoherence}
Let~$X$ be a scheme. Let~$\E$ be an~$\O_X$-module.
Then~$\E$ is quasicoherent
if and only if, internally to~$\Sh(X)$,
\begin{quote}\textnormal{$\E[f^{-1}]$ is a $\Diamond_f$-sheaf for any~$f : \O_X$, \\[0.3em]
\qquad\qquad where~$\Diamond_f\varphi \defeqv (\text{$f$ invertible} \Rightarrow \varphi)$.}
\end{quote}
\pause
In particular: If~$\E$ is quasicoherent, then internally
\[ (\text{$f$ invertible} \Rightarrow s = 0) \Longrightarrow
\bigvee_{n \geq 0} f^n s = 0 \]
\vspace*{-1.5em}\par%
for any~$f : \O_X$ and~$s : \E$.
\end{frame}
\note{\justifying
The sheaf condition and the sheafification functor can be described purely
internally. An object~$M$ is \emph{separated} with respect to~$\Diamond$ if
and only if, from the internal point of view,
\[ \forall x,y : M\_\ \Diamond(x = y) \Rightarrow x = y. \]
It is a \emph{sheaf} with respect to~$\Diamond$, if furthermore
\[ \forall K \subseteq M\_\
\Diamond(\exists x : M\_\ K = \{ x \}) \Longrightarrow
\exists x : M\_\ \Diamond(x \in K). \]
The second condition displayed on the previous slide is equivalent to the
separatedness condition. In the special case~$\E = \O_X$, $s = 1$ it reduces
to Mulvey's ``somewhat obscure formula''. We now understand this condition in
its proper context.
\par
}
\subsection{Spreading of properties}
\newcommand{\idiamond}{{\usebeamercolor[fg]{item}{\boldsymbol{\Diamond}}}}
\newcommand{\gdiamond}[1]{\textcolor{gray}{\boldsymbol{\Diamond}(}#1\textcolor{gray}{)}}
\begin{frame}\frametitle{The $\Diamond$-translation}
Let~$\E_\Diamond \hookrightarrow \E$ be a subtopos given by a local
operator. Then
\[ \E_\Diamond \models \varphi \qquad\text{iff}\qquad
\E \models \varphi^\Diamond\only<2->{.}\only<1>{,}\]
\only<1>{where the translation~$\varphi \mapsto \varphi^\Diamond$ is given by:
\begin{align*}
(s = t)^\Diamond &\defeqv \idiamond(s=t) \\
(\varphi \wedge \psi)^\Diamond &\defeqv \gdiamond{\varphi^\Diamond \wedge \psi^\Diamond} \\
(\varphi \vee \psi)^\Diamond &\defeqv \idiamond(\varphi^\Diamond \vee \psi^\Diamond) \\
(\varphi \Rightarrow \psi)^\Diamond &\defeqv \gdiamond{\varphi^\Diamond \Rightarrow \psi^\Diamond} \\
(\forall x\?X\_ \varphi(x))^\Diamond &\defeqv \gdiamond{\forall x\?X\_ \varphi^\Diamond(x)} \\
(\exists x\?X\_ \varphi(x))^\Diamond &\defeqv \idiamond(\exists x\?X\_ \varphi^\Diamond(x))
\end{align*}}%
\only<2->{%
Let~$X$ be a scheme. Depending on~$\Diamond$,~$\Sh(X)
\models \Diamond\varphi$ means that~$\varphi$ holds on \ldots
\begin{itemize}
\item \ldots{} a dense open subset.
\item \ldots{} a schematically dense open subset.
\item \ldots{} a given open subset~$U$.
\item \ldots{} an open subset containing a given closed subset~$A$.
\item \ldots{} an open neighbourhood of a given point~$x \in X$.
\end{itemize}
\pause
Can tackle the question~``$\varphi^\Diamond \stackrel{?}{\Rightarrow} \Diamond\varphi$'' logically.
}
\end{frame}
\note{\justifying
The~$\Diamond$-translation is a generalization of the \emph{double negation
translation}, which is well-known in logic. The double negation translation
has the following curious property: A formula~$\varphi$ admits a classical
proof if and only if the translated formula~$\varphi^{\neg\neg}$ admits an
intuitionistic proof.
The~$\Diamond$-translation has been studied before (see for instance Aczel:
\emph{The Russell--Prawitz modality}, and Escardó, Oliva: \emph{The Peirce
translation and the double negation shift}), but to the best of my know\-ledge,
this application -- expressing the internal language of
subtoposes in the internal language of the ambient topos -- is new.
\par
}
\note{\justifying
For ease of exposition, assume that~$X$ is irreducible with generic
point~$\xi$. Let~$\Diamond \defeqv \neg\neg$.
Then~$\Sh(X) \models \Diamond \varphi$ means that~$\varphi$ holds on a dense
open subset of~$X$, while~$\Sh(X) \models \varphi^\Diamond$ means
that~$\varphi$ holds at the generic point (taking stalks of all involved
sheaves).
The question~``does~$\varphi^\Diamond$ imply~$\Diamond\varphi$?'' therefore
means: Does~$\varphi$ spread from the generic point to a dense open subset?
For the special case of the double negation translation, a general answer to
this purely logical question has long been known: This holds if~$\varphi$ is
a \emph{geometric formula} (doesn't contain~$\Rightarrow$ and~$\forall$).
\par
}
\note{\justifying
Let~$\F$ be a sheaf of modules on a locally ringed space~$X$.
Assume that the stalk~$\F_x$ at some point~$x \in X$ vanishes.
Then in general it does \emph{not} follow that~$\F$ vanishes on some open
neighbourhood of~$x$.
This can be understood in logical terms: The statement that~$\F$ vanishes,
\[ \forall s : \F\_\ s = 0, \]
is not a geometric formula.
However, if~$\F$ is additionally supposed to be of finite type, then it
\emph{does} follow that~$\F$ vanishes on an open neighbourhood. This too can
be understood in logical terms: If~$\F$ is of finite type, then internally
there are generators~$s_1,\ldots,s_n$ of~$\F$. Thus the vanishing of~$\F$ can
be reformulated as
\[ s_1 = 0 \wedge \cdots \wedge s_n = 0, \]
and this condition is manifestly geometric.
\par
}
\subsection{The relative spectrum}
\begin{frame}\frametitle{The absolute spectrum}
Let~$A$ be a commutative ring (in~$\Set$).
Is there a \hil{free local ring}~$A \to A'$ over~$A$?
\[ \xymatrix{
A \ar[rd] \ar[rrr] &&& {\substack{\text{local}\\\text{\normalsize$R$}\\\phantom{\text{local}}}} \\
& {\substack{\text{\normalsize$A'$}\\\text{local}}} \ar@{-->}_[@!34]{\text{local}}[rru]
} \]
\hil{No,} if we restrict to~$\Set$.
\hil{Yes,} if we allow a change of topos:
Then $A \to \O_{\Spec A}$ is the universal localization.
\end{frame}
\note{\justifying
Details on this point of view can be found in one of Peter Arndt's very nice
answers on MathOverflow:
\begin{center}\url{https://mathoverflow.net/a/14334/31233}\end{center}
\par
}
\newcommand{\defspeca}{\text{topological space of the prime ideals of $A$}}
\newcommand{\defspecb}{\text{topological space of the prime filters of $A$}}
\newcommand{\defspecc}{\text{locale of the prime filters of $A$}}
\begin{frame}\frametitle{The absolute spectrum, internalized}
Let~$A$ be a commutative ring in a topos~$\E$.
To construct the \hil{free local ring} over~$A$, give a constructive account
of the spectrum:
\begin{align*}
\only<1>{\Spec A &\defeq \defspeca}
\only<2->{\Spec A &\defeq \hcancel{$\defspeca$}{0pt}{3pt}{0pt}{-2pt}}
\\
\only<3>{&\defeq \defspecb}
\only<4->{&\defeq \hcancel{$\defspecb$}{0pt}{3pt}{0pt}{-2pt}}
\\
\only<5->{&\defeq \defspecc}