-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-brixen2022b.tex
806 lines (700 loc) · 27.2 KB
/
slides-brixen2022b.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\usepackage[export]{adjustbox}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage[normalem]{ulem}
\usepackage{graphbox}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{amssymb}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{proof}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{%
\node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
\DeclareFontFamily{U}{bbm}{}
\DeclareFontShape{U}{bbm}{m}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbm
<10.95> bbm10%
<14.4> bbm12%
<17.28><20.74><24.88> bbm17}{}
\DeclareFontShape{U}{bbm}{m}{sl}
{ <5> <6> <7> bbmsl8%
<8> <9> <10> <12> gen * bbmsl
<10.95> bbmsl10%
<14.4> <17.28> <20.74> <24.88> bbmsl12}{}
\DeclareFontShape{U}{bbm}{bx}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbmbx
<10.95> bbmbx10%
<14.4> <17.28> <20.74> <24.88> bbmbx12}{}
\DeclareFontShape{U}{bbm}{bx}{sl}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmbxsl10}{}
\DeclareFontShape{U}{bbm}{b}{n}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmb10}{}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\SetMathAlphabet\mathbbm{bold}{U}{bbm}{bx}{n}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Connecting inductive definitions, generic models and a modal multiverse
for algebra and combinatorics}
\author{Ingo Blechschmidt}
\date{September ??th, 2022}
%\useinnertheme[shadow=true]
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{253,73,34}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\BB}{\mathbb{B}}
\newcommand{\pp}{\mathbbm{p}}
\newcommand{\MM}{\mathbb{M}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
%\setbeamertemplate{headline}{}
\setbeamertemplate{headline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\insertsectionnavigationhorizontal{\paperwidth}{}{}%
\end{beamercolorbox}%
\vskip-7pt%
}
\setbeamertemplate{frametitle}{%
\vskip0.5em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{{\large\,\!\insertframetitle}}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple!30]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{beamercolorbox}%
\vskip-0.2em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\bignumber}[1]{%
\renewcommand{\insertenumlabel}{#1}\scalebox{1.2}{\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\normalnumber}[1]{%
{\renewcommand{\insertenumlabel}{#1}\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newcommand{\subhead}[1]{{\centering\textcolor{gray}{\hrulefill}\quad\textnormal{#1}\quad\textcolor{gray}{\hrulefill}\par}}
\newcommand{\badbox}[1]{\colorbox{red!30}{#1}}
% taken from JDH "The modal logic of arithmetic potentialism and the universal algorithm"
\DeclareMathOperator{\possible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\necessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\xpossible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\DeclareMathOperator{\xnecessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\begin{document}
\addtocounter{framenumber}{-1}
%\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{1.59cm}\includegraphics[width=\paperwidth]{forest-light}\end{minipage}}
\begin{frame}[c]
\centering
\bigskip
%\includegraphics[height=0.32\textwidth]{olivia-lattices}
\bigskip
\bigskip
\bigskip
\scriptsize
\textit{-- an invitation --}
\setbeamercolor{block body}{bg=black!100}
\begin{block}{}
\centering\normalsize\color{white}
Connecting \hil{inductive definitions},
\hil{generic models} and \\ a \hil{modal multiverse} for algebra and combinatorics
\end{block}
% \begin{tikzpicture}
% \def\R{8pt}
% \node (title) {\vbox{\vspace*{-0.0em}Connecting \hil{inductive definitions},
% \hil{generic models} and \\ a \hil{modal multiverse} for algebra and combinatorics
% \\[0.8em]}};
% \begin{pgfonlayer}{background}
% \draw[decorate, very thick, draw=mypurple]
% ($(title.south west) + (\R, 0)$) arc(270:180:\R) --
% ($(title.north west) + (0, -\R)$) arc(180:90:\R) --
% ($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
% ($(title.south east) + (0, \R)$) arc(0:-90:\R) --
% cycle;
% \end{pgfonlayer}
% \end{tikzpicture}
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
\bigskip
REDCOM: \\
\emph{Reducing complexity in algebra, logic, combinatorics} \\
\ \\
Brixen \\
September 19th, 2022
\bigskip
Ingo Blechschmidt \\
University of Augsburg
\par
\end{frame}}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\section{Infinite data}
\begin{frame}{Infinite data}
\vspace*{-0.6em}
\begin{block}{}
\justifying
\textbf{Def.} A set~$X$ together with a binary relation~$R$ is
\hil{almost-full$_\infty$} iff every \bad{\uwave{infinite sequence}}~$\alpha : \NN \to X$ is
\hil{good} in that there exist numbers~$i < j$ such that~$\alpha(i)
\mathrel{R} \alpha(j)$.
\end{block}
\vspace*{-0.6em}
{\mbox{\small\emph{Examples.} $(\NN,{\leq})$,\ \ $X \times Y$ [Dickson],\ \
$X^*$ [Higman],\ \ $\mathrm{Tree}(X)$ [Kruskal]} \\[-0.1em]
\bad{Only classically.}
\pause
Constructive reformulation:
\par}
\begin{block}{}
\justifying
\textbf{Def.} For a predicate~$P$ on finite lists over~$X$, inductively
define:
\vspace*{-0.6em}
\[
\infer{P \,|\, \sigma}{P(\sigma)}
\qquad
\infer{P \,|\, \sigma}{\forall x \in X\_\ P \,|\, (\sigma :: x)}
\]
\end{block}
\vspace*{-0.6em}
{\small\justifying ``No matter how the finite approximation~$\sigma$ to an infinite
sequence will \\[-0.1em] evolve to a better approximation, eventually~$P$ will hold.''\par}
\pause
\begin{block}{}
\textbf{Def.} A set~$X$ together with a binary relation~$R$ is
\hil{almost-full\textsubscript{ind}} iff~$\mathsf{Good} \,|\, []$, where
$\mathsf{Good}(\sigma) \equiv (\exists i < j\_ \sigma[i] \mathrel{R}
\sigma[j])$.
\end{block}
\vspace*{-0.8em}
\begin{enumerate}
\item Constructively, almost-full\textsubscript{ind} $\Rightarrow$
almost-full$_\infty$. \vspace*{-0.2em}
\item With \badbox{\textsc{lem}+\textsc{dc}}, almost-full\textsubscript{ind} $\Leftarrow$
almost-full$_\infty$.
%\pause
%\item How much stronger is almost-full\textsubscript{ind}?
%many-valued sequences, \ldots
\end{enumerate}
\end{frame}
\section{Constructive red flags}
\begin{frame}{Constructive red flags}
\vspace*{-0.5em}
A transitive relation~$<$ on a set~$X$ is \ldots
\begin{itemize}
\item \ \\[-1.2em]\mbox{\hil{well-founded$_\infty$} iff
there is no \bad{\uwave{infinite chain}} $x_0 > x_1 > \cdots$.}
\item \hil{well-founded'$_\infty$} iff
there is no \bad{\uwave{bad set}} (inhabited and such that for every member there is
a smaller member).
\item<4-> \hil{well-founded\textsubscript{ind}} iff for every~$x \in X$,
$\mathsf{Acc}(x)$: %, where~$\mathsf{Acc}$ is inductively defined by:
\[
\infer{\mathsf{Acc}(x)}{\forall y < x\_\ \mathsf{Acc}(y)}
\]
\vspace*{-1.3em}
\end{itemize}
\pause
\emph{Krull's Lemma:} An element~$x$ of a ring~$A$ is nilpotent if \ldots
\begin{itemize}
\item it is contained in
every \bad{\uwave{prime ideal}}.
\item<5-> the theory of prime ideals of~$A$ proves~``$x \in \ppp$''.
\end{itemize}
\medskip
\pause
\justifying
\emph{Dependent choice:}
Let~$R$ be a binary relation on a set~$X$
such that~$\forall a \in X\_ \exists b \in X\_ a \mathrel{R} b$. Let~$x_0
\in X$. Then there is an \bad{\uwave{infinite chain}} $x_0 \mathrel{R}
x_1 \mathrel{R} x_2 \mathrel{R} \cdots$.
\end{frame}
%\begin{frame}{Inductive definitions}
% \begin{block}{}
% \justifying
% \textbf{Def.} A transitive relation~$<$ on a set~$X$ is \hil{well-founded} iff
% for all~$x \in X$, $\mathsf{Acc}(x)$, where the accessibility predicate is
% inductively generated by:
% \end{block}
% \vspace*{-0.6em}
% {\small\emph{Examples.} $(\NN,{<})$\par}
%
% \textbf{Prop.} If~$<$ is well-founded, there are no infinite descending
% chains~$x_0 > x_1 > \ldots$.
%
% \emph{Proof.} By induction on~$x_0$.
%\end{frame}
\section{The set-theoretic multiverse}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{3.59cm}\includegraphics[width=\paperwidth]{staircase}\end{minipage}}
\begin{frame}{The set-theoretic multiverse}
\begin{tikzpicture}[remember picture,overlay]
\node[xshift=-1.5cm,yshift=-4cm] at (current page.north east)
{\includegraphics[width=2cm]{branching}};
\end{tikzpicture}
\vspace*{-2em}
\begin{block}{}
\justifying
\textbf{Def.} A \hil{model of set theory} is a (perhaps class-sized) structure $(M,{\in})$
satisfying axioms such as those of~\textsc{zfc}.
\end{block}
\vspace*{-0.6em}
{\small\emph{Examples.}\vspace*{-0.8em}
\begin{itemize}
\item $V$, the class of all sets \vspace*{-0.6em}
\item $L$, Gödel's constructible universe \vspace*{-0.6em}
\item $V[G]$, a forcing extension containing a generic filter~$G$ of \\ some
poset of forcing conditions \vspace*{-0.6em}
\item Henkin/term models from consistency of (extensions of)~\textsc{zfc}
\end{itemize}}
\pause
%{\centering\emph{Embracing all models of set theory:}\par}
\begin{block}{}
\justifying
\textbf{Def.} $\possible\varphi$ iff~$\varphi$ holds in \hil{some extension} of
the current universe. \\
\phantom{\textbf{Def.}} $\necessary\varphi$ iff~$\varphi$ holds in \hil{all extensions}
of the current universe.
\end{block}
\vspace*{-0.6em}
\begin{itemize}
\item $\necessary(\possible\textsc{CH} \wedge \possible\neg\text{CH})$,
the continuum hypothesis is a \hil{switch}
\item \ \\[-1.2em]\mbox{$\necessary\possible\necessary(\text{$X$ is countable})$,
existence of an enumeration is a \hil{button}}
\end{itemize}
\end{frame}}
\section{The topos-theoretic multiverse}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.95cm}\includegraphics[width=\paperwidth]{fr1-lighter}\end{minipage}}
\begin{frame}{Toposes and generic models}
\vspace*{-0.2em}
\begin{changemargin}{-1.2em}{-1.2em}
\begin{enumerate}
\item\justifying A \hil{(Grothendieck) topos} is a category of sheaves over some
\hil{site}.
{\small\emph{Examples.} $\Set$, $\Sh(X)$, $\Set[\TT]$.\par}
\bigskip
\pause
\item The \hil{Kripke--Joyal semantics} defines what it means for a
statement~$\varphi$ to hold ``internally in a topos~$\E$'', written~``$\E
\models \varphi$''. This semantics is sound with respect to intuitionistic
logic.
% {\small
% \begin{itemize}
% \item\justifying A statement holds in~$\Set$ iff it is true.
% \item A statement holds in the ``topos of double-negation sheaves'' iff its
% double-negation translation is true.
% \item A statement holds in~$\Sh(X)$ iff a globalized version of it holds for
% continuous families on the
% space~$X$.\end{itemize}\par}
\bigskip
\pause
% \item Every topos supports \hil{mathematical reasoning}: \\
% If~$\ \E \models \varphi\ $ and if~$\ \varphi$ entails~$\psi$
% intuitionistically,\, then~$\E \models \psi$.
\item Let~$\TT$ be a geometric theory. The \hil{classifying
topos}~$\Set[\TT]$ contains the \hil{generic~$\TT$-model}~$U_\TT$. It is
\hil{conservative} in that for geometric implications~$\varphi$, the
following are equivalent:
\begin{enumerate}
\item The statement~$\varphi$ holds for~$U_\TT$ in~$\Set[\TT]$.
\item The statement~$\varphi$ holds for every~$\TT$-model in every
topos.
\item The statement~$\varphi$ is provable modulo~$\TT$.
\end{enumerate}
\begin{center}
\begin{tikzpicture}[ultra thick, node distance=7mm]
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40] (a) {$\ZZ$};
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40, right=of a] (b) {$\ZZ[X,Y,Z]/(X^n+Y^n-Z^n)$};
\node[regular polygon, regular polygon sides=5, draw=orange!80,
fill=orange!20, right=of b, rounded corners=1pt, inner sep=0cm] (c) {$\O_X$};
\node[star, rounded corners=1pt, star points=10, inner sep=0cm, draw=purple!80, fill=purple!20, right=of c] {$U_\TT$};
\end{tikzpicture}
\end{center}
\end{enumerate}
\end{changemargin}
\end{frame}}
\begin{frame}{Modal algebra and combinatorics}
\begin{block}{}
\justifying
\textbf{Def.} A statement~$\varphi$ holds \ldots
\begin{enumerate}
\item\small \hil{everywhere} ($\necessary\varphi$) iff
it holds in every (Grothendieck) topos (over the current base topos).
\item \hil{somewhere} ($\possible\varphi$) iff
it holds in some positive topos.
\item \hil{proximally} ($\xpossible\varphi$) iff
it holds in some positive ouvert topos.
\end{enumerate}
\end{block}
\pause
\newcommand{\seqbad}{\only<3>{infinite descending chain}\only<4->{bad set}}
\begin{changemargin}{-2em}{-1.5em}
\begin{enumerate}
\small
\item \justifying
\only<1-4>{A relation is almost-full\textsubscript{ind} \\
iff every infinite sequence \emph{everywhere} is good \\
iff the \emph{generic infinite sequence} is good \\
iff the \emph{theory of infinite sequences} proves goodness.\medskip}
\only<5->{A relation is almost-full\textsubscript{ind} iff every infinite
sequence \emph{everywhere} is good.}
\pause
\item\justifying
\only<3-4>{A relation is well-founded\textsubscript{ind} \\
iff \emph{everywhere} there are no \seqbad s \\
iff the \emph{generic \seqbad} validates~$\bot$ \\
iff the \emph{theory of \seqbad s} proves~$\bot$.}
\only<5->{A relation is well-founded\textsubscript{ind} iff
\emph{nowhere} there are \seqbad s.}
\pause
\pause
\pause
\item \only<2-6>{A ring element~$x$ is nilpotent \\
iff \emph{everywhere} it is contained in all prime ideals \\
iff it is contained in the \emph{generic prime ideal} \\
iff the \emph{theory of prime ideals} proves~``$x \in \ppp$''.}
\only<7->{\mbox{A ring element is nilpotent iff all prime
ideals \emph{everywhere} contain it.}}
\pause
\pause
\item Given an inhabited set~$X$, \emph{proximally} there is a surjection~$\NN
\twoheadrightarrow X$ [J--T]. \\
\hil{NB:} $(\possible\varphi) \Rightarrow \varphi$, if~$\varphi$ is a
geometric implication. \\
\phantom{\hil{NB:}} $(\xpossible\varphi) \Rightarrow \varphi$, if~$\varphi$
is first-order. \\
\phantom{\hil{NB:}} $\varphi \Rightarrow (\necessary\varphi)$,\, if~$\varphi$
is a geometric formula.
\pause
\item Given~$(X,R,x_0)$ as in~\textsc{dc}, \emph{proximally} there is an
infinite chain.
\pause
\item \emph{Somewhere,} the law of excluded middle holds. [Barr]
\end{enumerate}
\end{changemargin}
\end{frame}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.05cm}\includegraphics[width=\paperwidth]{agda-af-implies-wf}\end{minipage}}
\begin{frame}{Extracting constructive content}
\begin{block}{}
\justifying
\textbf{Prop.} Let~$({\leq})$ be a transitive almost-full\textsubscript{ind} relation.
Then~$({<})$, where~$x < y \equiv (x \leq y \wedge \neg(y \leq x))$,
is well-founded\textsubscript{ind}.
\end{block}
\vspace*{-0.5em}
\emph{Proof.} Everywhere, there can be no infinite descending chain, as any
such would also be good. \qed
\mbox{Unrolling this proof gives a program~$(\textsf{Good} \,|\, []) \to
\prod_{x:X} \textsf{Acc}(x)$.}
\vfill
\end{frame}}
\addtocounter{framenumber}{-1}
\begin{frame}{Extracting constructive content}
\begin{block}{}
\justifying
\textbf{Thm.} [Dickson] If~$X$ and~$Y$ are almost-full\textsubscript{ind},
so is~$X \times Y$.
\end{block}
\pause
\vspace*{-0.3em}
\emph{Proof.}\small
\vspace*{-0.4em}
\begin{enumerate}
\item\justifying It suffices to verify that the \emph{generic infinite
sequence}~$\gamma = (\alpha,\beta) : \NN \to X \times Y$ is good. \pause Since
being good can be put as a geometric implication (in fact, a geometric
formula) and since \textsc{lem} holds \emph{somewhere}, we may assume~\textsc{lem}.\pause
\item By \textsc{lem} and well-foundedness, there is a minimal value~$\alpha(i_0)$
among all values of~$\alpha$. \vspace*{-0.2em}\pause
Similarly, there is a minimal value~$\alpha(i_1)$ among~$(\alpha(n))_{n >
i_0}$, \pause a minimal value~$\alpha(i_2)$ among~$(\alpha(n))_{n > i_1}$, and so
on. \pause By \emph{proximal dependent choice}, we can proximally collect these indices
into a function~$i : \NN \to \NN$; this switches~\textsc{lem} off. \vspace*{-0.2em}\pause
\item Switching~\textsc{lem} on again, there is a minimal value~$\beta(i(k_0))$
among all values of~$\beta \circ i$. \pause Hence~$\gamma$ is good in view of
\begin{align*}
\alpha(i(k_0)) &\leq \alpha(i(k_0+1)), &
\beta(i(k_0)) &\leq \beta(i(k_0+1)).
\end{align*}
\end{enumerate}
\end{frame}
% \begin{document}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses-lighter}\end{minipage}}
%{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{1.59cm}\includegraphics[width=\paperwidth]{forest-light}\end{minipage}}
\begin{frame}{Outlook}
I learned the idea to study a modal multiverse of toposes from
\hil{Alexander Oldenziel}, circa 2016. Foreshadowing results:
\begin{itemize}
\scriptsize
\item[1984] André Joyal, Miles Tierney. \emph{An extension of the Galois theory of
Grothendieck.}
\item[1987] Andreas Blass. \emph{Well-ordering and induction in intuitionistic
logic and topoi.}
\item[2013] Shawn Henry. \emph{Classifying topoi and preservation of higher
order logic by geometric morphisms.}
\end{itemize}
Work by Milly Maietti and Steve Vickers on \emph{arithmetic universes} is
also closely connected. In progress:
\begin{itemize}
\item Develop details and formalize.
\item Determine the precise list of valid modal principles.
\item Carry out case studies with program extraction.
\item Incorporate the right adjoints of geometric morphisms.
\end{itemize}
\end{frame}}
\addtocounter{framenumber}{-1}
\end{document}
Choice:
erst abzählbar machen,
dann DC
nein, funktioniert nicht ganz
aber für diskrete Quelle habe surjektive (nicht offene?) Theorie/Topos
∀x ∈ X. ∃y ∈ Y. φ(x,y).
(Toposwechsel für Abzählbarkeit von X)
∀n ∈ ℕ. ∃y ∈ Y. φ(πn,y).
Yn := { y ∈ Y | φ(πn,y) }
(~) auf M = (coprod_n Y_n): (n,y) ~ (n',y') gdw. n' = n+1
Dann habe: M bewohnt (durch (0,...)) und ∀p ∈ M. ∃q ∈ M. p ~ q.
(Toposwechsel für DC für (~))
Habe f : ℕ → M mit f(0) = (0,...) und f(n) ~ f(n+1) für alle n.
Also ist π₂.f eine Auswahlfunktion, genauer: ∀n. φ(πn, π₂(f(n))).
Zorn für abzählbare Mengen?
C_0 = {}
C_{n+1} = C_n cup { x_n | C_n cup {x_n} Kette }
C = bigcup_n C_n
z = sup(C)
Dann ist z maximal?
Gelte z ≤ e.
Dann ist C cup { e } Kette.
Wenn e = x_n0, so insbesondere C_n0 cup { e } Kette.
Also e ∈ C_{n+1} ⊆ C, also e ≤ z.
Also e = z.
Problem: Kommt eher selten vor; Supremum wird oft nicht zur Menge gehören.
Beispiel: Supremum von Menge endlich erzeugter Ideale ist nicht endlich erzeugt.
0: title
* expectations: no new method for extracting constructive content, rather
point of view for putting previous work in a uniform context;
philosophy turned mathematics
1: infinite data
* how much more general? multivalued sequences, "¬¬ sequences", ...
* where do these definitions come from? conceptual answer
3: set-theoretic multiverse
* axioms of ZFC massively underspecify the concept of sets;
models for exploring the range of set-theoretic possibility
* to settle a question shown to be independent from ZFC is to
understand how it behaves in the multiverse
4: topos and generic models
* truth in Set, truth in double-negation sheaves, truth in Sh(X)
* generic ring, generic group, ...
to do/make better next time:
- state examples from 5 in the beginning to make for a better start
- relation to spreads/bars?