-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-herrsching2019.tex
1048 lines (884 loc) · 37.7 KB
/
slides-herrsching2019.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying\footnotesize#2\par}}}
%\newcommand{\jnote}[2]{}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{graphbox}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Generalized spaces for constructive algebra}
\author{Ingo Blechschmidt}
\date{September 2019}
\useinnertheme[shadow=true]{rounded}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\newcommand{\brak}[1]{{\llbracket{#1}\rrbracket}}
\newcommand{\pt}{\mathrm{pt}}
\newcommand{\Loc}{\mathrm{Loc}}
\newcommand{\Top}{\mathrm{Top}}
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\insertsectionnavigationhorizontal{\paperwidth}{}{}%
\end{beamercolorbox}%
\vskip0pt%
}
\setbeamertemplate{frametitle}{%
\vskip0.4em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
% \usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{\large\,\!\insertframetitle}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{beamercolorbox}%
\vskip-0.6em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\begin{document}
\addtocounter{framenumber}{-1}
\tikzstyle{topos} = [draw=mypurple, very thick, rectangle, rounded corners, inner sep=5pt, inner ysep=10pt]
\tikzstyle{title} = [fill=mypurple, text=white]
\input{images/primes.tex}
%\renewcommand{\sieve}[2]{SIEVE}
%\renewcommand{\fakesieve}[2]{SIEVE}
\newcommand{\drawbox}[4]{
\node[topos, #4] [fit = #3] (#1) {};
\node[title] at (#1.north) {#2};
}
\newcommand{\muchstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{14}{2}}
}
\newcommand{\muchstuffplaceholder}{
\includegraphics[height=3em]{filmat-placeholder}
\scalebox{0.5}{\fakesieve{14}{2}}
}
\newcommand{\fewstuff}{
\includegraphics[height=3em]{filmat}
\scalebox{0.5}{\sieve{7}{2}}
}
\newcommand{\threeblobs}{
\colorbox{mypurple}{\ \ }\quad
\colorbox{mypurple}{\ \ }\quad
\colorbox{mypurple}{\ \ }
}
%\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{\,Generalized spaces for constructive algebra\,}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\bigskip
\begin{columns}
\small
\begin{column}{0.35\textwidth}
\centering
\bignumber{1}
\phantom{x}\hil{Locales}
\medskip
\includegraphics[height=4.5em]{phantoms.png}
\end{column}
\hspace*{0.5em}
\begin{column}{0.28\textwidth}
\centering
\bignumber{2}
\phantom{x}\hil{Sheaf models}
\medskip
\phantom{x}\!\!\begin{tikzpicture}
\node (overview) {
\scalebox{0.35}{\sieve{4}{3}}
};
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple]
($(overview.south west) + (\R, 0)$) arc(270:180:\R) --
($(overview.north west) + (0, -\R)$) arc(180:90:\R) --
($(overview.north east) + (-\R, 0)$) arc(90:0:\R) --
($(overview.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\end{column}
\begin{column}{0.4\textwidth}
\centering
\bignumber{3}
\hil{Constructive algebra}
\medskip
\includegraphics[height=4.5em]{calabi-yau}
\end{column}
\end{columns}
\bigskip
\scriptsize
\textit{-- an invitation --}
\bigskip
Autumn school on Proof and Computation \\
September 20th to 26th, 2019 \\
Herrsching
\bigskip
Ingo Blechschmidt \\
Università di Verona
\par
\end{frame}}
% \begin{document}
\section{Locales}
\begin{frame}
\centering\bigskip
\includegraphics[height=9.5em]{phantoms}
\large Lecture I:
\hil{Locales}
\normalsize
\begin{hilblock}Locales are a kind of space in which \hil{opens} instead of
\hil{points} are fundamental.\end{hilblock}
\jnote{1}{
These ``probability clouds'', replacing the reassuring material particles of
before, remind me strangely of the elusive ``open neighborhoods'' that populate
the topoi, like evanescent phantoms, to surround the imaginary ``points''.
\hfill -- Alexander Grothendieck
\bigskip
\bigskip
References include:
\begin{enumerate}
\item Peter Johnstone.
\fixedhref{http://pointlesstopology.com/the-point-of-pointless-topology.pdf}{The point of pointless topology}, 1983.
\item Peter Johnstone.
\fixedhref{http://www.heldermann.de/R&E/RAE18/ctw06.pdf}{The art of
pointless thinking: a student's guide to the category of locales}, 1990.
\end{enumerate}
Our metatheory is a constructive (no law of excluded middle, no choice
principles of any kind) but impredicative (free use of the powerset axiom)
flavor of English. The contents of this course could be formalized in the
internal language of toposes or in~\textsc{izf}. The main ideas of this
course are far more robust than this particular presentation, in
particular, they can also be made sense of in a predicative setting (such
as~\textsc{czf} or the internal language of arithmetic universes).
}
\end{frame}
\begin{frame}{Locales in context}
\justifying
\textbf{Definition.} A \hil{topological space}~$X$ consists of a \hil{set of
points} together with a set~$\O(X)$ of point sets which are deemed
\hil{open} such that unions and finite intersections of open sets are open.
\bigskip
\centering\small
\begin{tikzpicture}[sibling distance=8em, level distance=2.5em,
every node/.style = {shape=rectangle, rounded corners,
draw, align=center}, semithick, draw=mypurple]
\node {euclidean spaces} [grow=up]
child { node {metric spaces}
child[dashed] { node [solid] {sober topological spaces}
child[solid] { node {locales}
child { node {toposes}
child { node {$\infty$-toposes} } } }
child[solid] { node {topological spaces} } } };
\end{tikzpicture}
\end{frame}
\begin{frame}{Nontrivial spaces without points}
The following locales don't have any points and are nontrivial:
\begin{enumerate}
\item the locale of surjections $\NN \twoheadrightarrow \RR$
\item $\QQ \cap (\RR \setminus \QQ)$
\item the pairwise intersections in the Banach--Tarski paradox
\item Alex Simpson's locale of random binary sequences
\end{enumerate}
\begin{hilblock}
Relinquishing points increases flexibility.
\end{hilblock}
\centering
\includegraphics[height=5em]{banach-tarski}
\jnote{1}{
The locale of surjections $\NN \twoheadrightarrow \RR$ doesn't have any
points, but it has lots of interesting opens, such as~$U_{n,x}$, the ``open of those
surjections~$f$ such that~$f(n) = x$. If~$x$ is a fixed real number and~$n$
ranges over the naturals, these opens cover the full locale.
The Banach--Tarski paradox is the unintuitive statement that a
three-dimensional solid ball of radius~$r$ can be partitioned into six
disjoint subsets in such a way that rearranging those subsets yields two
solid balls of radius~$r$ each. These subsets are not measurable and
require the axiom of choice for their construction.
The Banach--Tarski paradox can be resolved by adopting the axiom of
determinacy instead of the axiom of choice, which entails that all subsets
of~$\RR^3$ are measurable, or by passing from the topological space~$\RR^3$
to its localic cousin. The localic counterparts of the six pieces will
still not have any points in common, but their locale-theoretic pairwise
intersection will not be trivial.
Tom Leinster
\fixedhref{https://golem.ph.utexas.edu/category/2011/12/on_the_law_of_large_numbers_su.html}{published
an accessible exposition} of the locale of random sequences at the n-category café.
}
\end{frame}
\begin{frame}{Issues of constructivity}
\begin{enumerate}\justifying
\item The unit interval~$[0,1]$ is \hil{compact}.
\bigskip
\item \hil{The fundamental theorem of Galois theory:}
Let~$L | k$ be a Galois extension. Then there is a bijection between
\[ \small\begin{array}{@{}rcl@{}}
\begin{minipage}{0.25\textwidth}\centering the intermediate extensions~$L|E|k$\end{minipage}
&\text{and}&
\begin{minipage}{0.33\textwidth}\centering the closed subgroups
of~$\mathrm{Aut}_k(L)$.\end{minipage} \\
\\
E &\longmapsto& \{ \sigma \in \mathrm{Aut}_k(L) \,|\, \sigma|_E = \operatorname{id} \} \\
L^H &\longmapsfrom& H
\end{array} \]
\medskip
\item \hil{Gelfand duality:} The categories of
\[ \small\begin{array}{@{}rcl@{}}
\begin{minipage}{0.38\textwidth}\centering compact Hausdorff spaces\end{minipage}
&\text{and}&
\left(\begin{minipage}{0.33\textwidth}\centering commutative $C^\star$-algebras with unit\end{minipage}\right)^{\mathrm{op}} \\[1.1em]
X &\longmapsto& \{ f : X \to \CC \,|\, \text{$f$ continuous} \}
\end{array} \]
are equivalent.
\end{enumerate}
\jnote{1}{
By \emph{compact}, we mean any open covering has a (Kuratowski-)finite
subcovering. The topological space~$[0,1]$ fails to be compact in some
flavors of constructive mathematics, but the localic unit interval is
always compact.
In verifying the fundamental theorem of Galois theory, at some point one
has to extend a given~$k$-homomorphism~$E \to L$ which is defined on some
finite intermediate extension~$E$ to~$L$. One-step extensions to larger
intermediate extensions are no problem, but extending to all of~$L$
requires some form of choice. By passing from the topological Galois group
to its localic group, this issue vanishes. References include the papers
\fixedhref{https://core.ac.uk/download/pdf/82660137.pdf}{Galois theory in a topos} and
\fixedhref{http://www.numdam.org/article/CTGDC_1981__22_1_61_0.pdf}{Localic groups} by Gavin Wraith.
Olivia Caramello's paper
\fixedhref{https://arxiv.org/abs/1301.0300}{Topological Galois theory} is
also relevant.
A similar issue arises with Gelfand duality. A fully constructive treatment
is possible by passing from compact Hausdorff (topological) spaces to
completely regular locales. This treatment unlocks the Bohr topos approach
to quantum mechanics.
}
\end{frame}
\begin{frame}{Localic basics}
\justifying
\textbf{Definition.} A \hil{topological space}~$X$ consists of a \hil{set of
points} together with a set~$\O(X)$ of point sets which are deemed
\hil{open} such that unions and finite intersections of open sets are open.
\textbf{Observation.} The partial order~$\O(X)$ of open sets has
\[ \small\begin{array}{@{}ccc@{}}
\text{arbitrary joins}
&\text{and}&
\text{finite meets}, \\
\bigvee && \wedge
\end{array} \]
and finite meets distribute over arbitrary joins:
\[ U \wedge \bigvee_i V_i = \bigvee_i (U \wedge V_i). \]
\vspace*{-1.2em}
\pause
\textbf{Definition.} A \hil{frame} is a partial order with arbitrary joins
and finite meets such that the distributive law holds.
\textbf{Definition.} A \hil{locale}~$X$ is given by a \hil{frame~$\O(X)$ of opens}.
\jnote{2}{
\textbf{Example.} Any topological space~$Y$ induces a locale~$L(Y)$ by
setting~$\O(L(Y)) \defeq \O(Y)$.
\textbf{Example.} The \emph{one-point locale}~$\pt$ is the locale induced
by the one-point topological space~$\{\heartsuit\}$. Its frame of opens is
the powerset of~$\{\heartsuit\}$, also known as the set~$\Omega$ of truth
values. Its least element is~$\bot = \emptyset$ and its largest element
is~$\top = \{\heartsuit\}$.
\textbf{Definition.} A \emph{frame homomorphism}~$L \to L'$ is a monotone
map~$L \to L'$ which preserves arbitrary joins and finite meets.
\textbf{Example.} A continuous map~$f : Y \to Y'$ induces a frame
homomorphism~$\O(Y') \to \O(Y)$ by mapping~$U \mapsto f^{-1}[U]$.
\textbf{Definition.} A \emph{locale morphism}~$X \to X'$ is given by a
frame homomorphism~$\O(X') \to \O(X)$.
\textbf{Example.} A continuous map~$Y \to Y'$ induces a locale
morphism~$L(Y) \to L(Y')$ in the same direction.
\textbf{Definition.} A \emph{point} of a locale~$X$ is a locale
morphism~$\pt \to X$, or equivalently a completely prime filter of~$\O(X)$.
(A frame morphism~$\alpha : \O(X) \to \Omega$ gives rise to the completely prime
filter~$F \defeq \{ u \in \O(X) \,|\, \alpha(u) = \top \}$.)
}
\jnote{3}{
The set of points of a locale can be made into a topological space, giving
rise to a functor~$\pt : \Loc \to \Top$. This functor is right adjoint
to~$L$. A locale~$X$ is \emph{spatial} iff the canonical
morphism~$L(\pt(X)) \to X$ is an isomorphism, and a topological space~$Y$
is \emph{sober} iff the canonical morphism~$Y \to \pt(L(Y))$ is a
homeomorphism.
}
\end{frame}
% \begin{document}
\section{Sheaf models}
\begin{frame}
\centering\bigskip
\begin{tikzpicture}
\node (overview) {
\scalebox{1.00}{\sieve{4}{3}}
};
\def\R{8pt}
\begin{pgfonlayer}{background}
\draw[decoration={bumps,segment length=8pt}, decorate, very thick, draw=mypurple]
($(overview.south west) + (\R, 0)$) arc(270:180:\R) --
($(overview.north west) + (0, -\R)$) arc(180:90:\R) --
($(overview.north east) + (-\R, 0)$) arc(90:0:\R) --
($(overview.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\large Lecture II:
\hil{Sheaf models}
\normalsize
\begin{hilblock}Sheaves allow us to explore mathematical objects from
custom-tailored mathematical universes.\phantom{p}\end{hilblock}
\end{frame}
\begin{frame}{Frames presented by theories}
\justifying
\textbf{Definition.} A \hil{geometric theory} consists of
\begin{enumerate}
\small
\item a set of sorts: $X$, $Y$, $Z$, \ldots
\item a set of function symbols: $f : X \times Y \to Z$, \ldots
\item a set of relation symbols: $R \hookrightarrow X \times Y \times Z$, \ldots
\item a set of axioms: $\varphi \vdash_{x:X, y:Y} \psi$, \ldots
\end{enumerate}
\only<1->{
\textbf{Examples.}
The theory of rings,
of surjections~\mbox{$\NN \twoheadrightarrow \RR$},
of Dedekind cuts,
of prime ideals of a given ring, \ldots
}
\textbf{Definition.} A \hil{set-based model}~$M$ of a theory~$\TT$ consists of
\begin{enumerate}
\small
\item a set~$\brak{X}$ for each sort~$X$,
\item a function~$\brak{f} : \brak{X_1} \times \cdots \times \brak{X_n} \to
\brak{Y}$ \\
for each function symbol~$f : X_1 \times \cdots \times X_n \to Y$, and
\item a relation~$\brak{R} \subseteq \brak{X_1} \times \cdots \times
\brak{X_n}$ \\
for each relation symbol~$R \hookrightarrow X_1 \times \cdots \times X_n$
\end{enumerate}
such that~$M$ validates the axioms of~$\TT$.
\jnote{1}{
The formulas appearing to the left and the right of the turnstile in axioms
of a geometric theory have to be \emph{geometric formula}. A formula is
\emph{geometric} iff it is built using only~${=}\ {\top}\ {\wedge}\
{\bot}\ {\vee}\ {\bigvee}\ {\exists}$ (but no ${\Rightarrow}\
{\forall}$). Universal quantification and implication can to some extent be
emulated by using free variables or the turnstile; but this allows
universal quantification and implication only to be used once, on top
level, not in nested subformulas.
A geometric theory is called \emph{propositional} iff its set of
sorts is empty. Hence the only ingredients of a propositional geometric
theory are a set of nullary relation symbols (atomic propositions) and a
set of axioms.
}
\jnote{2}{
\textbf{Example.} The theory of rings has:
\begin{enumerate}
\item one sort: $R$
\item five function symbols: $0$ and $1$ (nullary), $-$ (unary), $+$ and
$\cdot$ (binary)
\item no relation symbols
\item the usual axioms, such as $\top \vdash_{x:R,y:R} x + y = y + x$
\end{enumerate}
\textbf{Example.} The theory of surjections~$\NN \twoheadrightarrow \RR$ has:
\begin{enumerate}\justifying
\item no sorts
\item no function symbols
\item several nullary relation symbols, one for each pair~$\langle n,x
\rangle \in \NN \times \RR$, written~``$\varphi_{nx}$''
\item axioms: the axiom~$\top \vdash \bigvee_{x \in \RR} \varphi_{nx}$
for each~$n \in \NN$; the axiom~$\varphi_{nx} \wedge \varphi_{ny} \vdash
\bigvee\{ \top \,|\, x = y \}$ for each~$n \in \NN$, $x,y \in \RR$ (the
disjunction appearing in that axiom is over a subsingleton of formulas);
the axiom~$\top \vdash \bigvee_{n \in \NN} \varphi_{nx}$ for each~$x \in
\RR$
\end{enumerate}
}
\jnote{3}{
Associated to any propositional geometric theory~$\TT$ is its
\emph{Lindenbaum algebra}. This is the set of formulas over the signature
of the theory modulo provable equivalence. Endowed with the partial order
given by
\[ [\varphi] \leq [\psi] \quad\vcentcolon\Longleftrightarrow\quad
\text{$\TT$ proves $\varphi \vdash \psi$}, \]
the Lindenbaum algebra becomes a frame.
The Lindenbaum algebra of~$\TT$ is the free frame generated by the
atomic propositions of~$\TT$ modulo the axioms of~$\TT$. The associated
locale~$L(\TT)$ is the \emph{classifying locale of~$\TT$}. Its points are
in canonical bijection with the set-based models of~$\TT$.
\textbf{Definition.} The \emph{localic real line} is the classifying locale
of the theory of Dedekind cuts.
The \emph{locale of surjections~$\NN \twoheadrightarrow \RR$} is the
classifying locale of the theory of surjections~$\NN \twoheadrightarrow
\RR$.
The \emph{empty locale} is the classifying locale of the \emph{inconsistent
theory} (which has no sorts, no function symbols, no relations symbols, and
one axiom, namely~$\top \vdash \bot$).
The points of the localic real line are in canonical bijection with
the Dedekind cuts, hence with the elements of the set of (Dedekind) real
numbers. The points of the locale of surjections~$\NN \twoheadrightarrow
\RR$ are in canonical bijection with the surjections~$\NN
\twoheadrightarrow \RR$. Assuming a classical metatheory, there are no such
points, but the locale is still nontrivial.
}
\jnote{4}{
Any locale is (isomorphic to) the classifying locale of some propositional
geometric theory, namely the ``theory of its points''. The same locale can
often be presented by widely different-looking theories, and the
topos-theoretic version of this observation is the basis for Olivia
Caramello's research program.
\textbf{Exercise.} Which explicit theory is the two-point locale (the
locale induced from the discrete topological space~$\{0,1\}$) the
classifying locale of?
}
\end{frame}
\begin{frame}{Sheaves}
\justifying
\textbf{Definition.} A \hil{presheaf}~$F$ on a locale~$X$ is given by
\begin{enumerate}
\item a set~$F(U)$ for each open~$U$ of~$X$ and
\item a map~$(\cdot)|^U_V : F(U) \to F(V)$ for each opens~$V \leq U$
\end{enumerate}
such that $(\cdot)|^U_U = \operatorname{id}_{F(U)}$ for all~$U$ and
$(\cdot)|^V_W \circ (\cdot)|^U_V = (\cdot)|^U_W$ for all~$W \leq V
\leq U$.
A \hil{compatible family} with respect to a covering~$U = \bigvee_i U_i$
is a family~$(s_i)_i$ of sections~$s_i \in F(U_i)$ such that~$s_i|^{U_i}_{U_i
\wedge U_j} = s_j|^{U_j}_{U_i \wedge U_j}$. $F$ is a \hil{sheaf} iff for any
such family there is a unique section~$s \in F(U)$ such that~$s|^U_{U_i} =
s_i$ for all~$i$.
\textbf{Example.} The \hil{sheaf of continuous functions} on a locale~$X$ is
given by~$\C(U) = \Hom(U,\RR)$.
\textbf{Non-example.} The \hil{presheaf of constant
functions},~$\C_{\text{c}}(U) = \text{``the set of constant functions~$U \to
\RR$''}$, is usually not a sheaf.
\jnote{1}{
All definitions on this slide literally also make sense for topological
spaces instead of locales, since only the notion of opens and their
inclusion relation is used.
The maps~$(\cdot)|^U_V$ are called \emph{restriction maps}. For the
sheaf~$\C$ of continuous real-valued functions, they are given by actual
restriction of functions to smaller domains, that is by
\[ \C(U) \longrightarrow \C(V),\ s \longmapsto s|_V. \]
\textbf{Exercise.} Find, in the case~$X = [0,1]$, a compatible family of
sections of the presheaf~$\C_\text{c}$ which shows that this
presheaf is not a sheaf.
}
\end{frame}
\begin{frame}{Sheaf semantics}
\justifying\small
Let~$X$ be a locale. We recursively define what it means for a
\hil{first-order formula over an open~$U$ of~$X$} to be forced:
\[ \footnotesize\renewcommand{\arraystretch}{1.08}\begin{array}{@{}l@{\ \ }c@{\ \ }l@{}}
U \models \top &\Ll& \text{true} \\
U \models \bot &\Ll& \hcancel{\text{false}}{0pt}{3pt}{0pt}{-2pt}\ U = \bot \\
U \models s =_F t &\Ll& \text{$s = t$ when evaluated as elements of~$F(U)$} \\
U \models \varphi \wedge \psi &\Ll&
\text{$U \models \varphi$ and $U \models \psi$} \\
U \models \varphi \vee \psi &\Ll&
\hcancel{\text{$U \models \varphi$ or $U \models
\psi$}}{0pt}{3pt}{0pt}{-2pt}\ \text{there exists a covering $U = \bigvee_i U_i$} \\
&& \quad\quad\text{such that for all~$i$: $U_i \models \varphi$ or $U_i \models \psi$} \\
U \models \varphi \Rightarrow \psi &\Ll&
\text{for all~$V \leq U$: }
\text{$V \models \varphi$ implies $V \models \psi$} \\
U \models \forall s \? F\_ \varphi(s) &\Ll&
\text{for all $V \leq U$ and sections~$s_0 \in F(V)$: $V \models \varphi(s_0)$} \\
U \models \exists s \? F\_ \varphi(s) &\Ll&
\hcancel{\text{there exists $s_0 \in F(U)$ such that $U \models \varphi(s_0)$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists a covering $U = \bigvee_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists~$s_0 \in F(U_i)$ such that $U_i \models \varphi(s_0)$}
\end{array} \]
\textbf{Theorem.} If~$U \models \varphi$ and if~$\varphi$ entails~$\psi$
intuitionistically, then~$U \models \psi$.
\jnote{1}{
A \emph{formula over an open~$U$} of~$X$ is a first-order formula (made up
using~${=}\ {\top}\ {\wedge}\ {\bot}\ {\vee}\ {\Rightarrow}\ {\forall}\
{\exists}$) over the signature which has one sort for each sheaf~$F$, one
constant symbol of sort~$F$ for each section~$s \in F(U)$, one function
symbol~$f : F \to G$ for each morphism of sheaves, and so on.
\textbf{Proposition.} The sheaf semantics is monotone and local in the
following sense: If~$V \leq U$, then~$U \models \varphi$ implies~$V \models
\varphi$. If~$U = \bigvee_i U_i$ and if~$U_i \models \varphi$ for all~$i$,
then~$U \models \varphi$.
\textbf{Exercise.} For any formula~$\varphi$ over any open~$U$ of any
locale~$X$, there is a largest open~$V \leq U$ such that~$V \models
\varphi$. (Hint: Set~$V \defeq \bigvee\{ W \leq U \,|\, W \models \varphi \}$
and exploit the monotonicity and locality of the sheaf semantics.)
\textbf{Exercise.} For any formula~$\varphi$ over any open~$U$ of any
locale~$X$, $U \models \neg\neg\varphi$ iff there exists an open~$V \leq U$
which is dense in~$U$ such that~$V \models \varphi$.
}
\end{frame}
\begin{frame}{Internalizing parameter-dependence}
\justifying
\small
Let~$X$ be a topological space. Let~$(f_x)_{x \in X}$ be a continuous family of continuous
functions~$\RR \to \RR$ (that is, let a continuous function $X \times \RR \to \RR,\,(x,a) \mapsto
f_x(a)$ be given). This family defines a sheaf morphism~$f : \C \to
\C$ by~$f_U : \C(U) \to \C(U),\,s \mapsto (x \mapsto f_x(s(x)))$.
\normalsize
\begin{itemize}\justifying
\item $X \models \text{``$\C$ is the set of Dedekind real numbers''}.$
\item $X \models \text{``the function $f : \C \to \C$ is
continuous''}$.\medskip
\item Iff $f_x(-1) < 0$ for all $x \in X$, then $X \models f(-1) < 0$.
\item Iff $f_x(+1) > 0$ for all $x \in X$, then $X \models f(+1) > 0$.
\item Iff all $f_x$ are increasing, then $X \models \text{``$f$ is
increasing''}$.\medskip
\item Iff there is an open cover~$X = \bigcup_i U_i$ such
that for each~$i$, there is a continuous function~$s : U_i \to \RR$
with~$f_x(s(x)) = 0$ for all~$x \in U_i$, then $X \models \exists s
\? \C\_ f(s) = 0$.
\end{itemize}
\jnote{1}{Hence:
\begin{enumerate}\justifying
\item The standard formulation of the intermediate value theorem fails
in~$\Sh(X)$, because its external interpretation is that in continuous
families of continuous functions, zeros can locally be picked continuously.
That claim is false, as
\fixedhref{https://rawgit.com/iblech/internal-methods/master/images/zeros-in-families.mp4}{this
counterexample} demonstrates.
As a corollary, we deduce that the standard formulation of the
intermediate value theorem is not constructively provable.
\item The \emph{approximate} intermediate value theorem (stating
that for any~$\varepsilon > 0$, there is a number~$x$ such that~$|f(x)| <
\varepsilon$)
\fixedhref{https://mathoverflow.net/questions/253059/approximate-intermediate-value-theorem-in-pure-constructive-mathematics}{has
a constructive proof} and therefore holds in~$\Sh(X)$. The
external interpretation is that in continuous families of continuous
functions, approximate zeros can locally be picked continuously.
\item The \emph{monotone} intermediate value theorem, stating that a strictly
increasing continuous function with opposite signs has a unique zero,
admits a constructive proof and therefore holds in~$\Sh(X)$. The external
interpretation is that in continuous families of strictly increasing
continuous functions, zeros can globally be picked continuously. You are
invited to prove this fact directly, without reference to the internal
language. This exercise isn't particularly hard, but it's not trivial either.
\end{enumerate}}
\end{frame}
% \begin{document}
\section{Applications in constructive algebra}
\begin{frame}
\centering\bigskip
\includegraphics[height=8em]{calabi-yau}
\large Lecture III:
\hil{Applications in constructive algebra}
\normalsize
\begin{hilblock}Without loss of generality, any reduced ring is a field.\end{hilblock}
\end{frame}
\begin{frame}{A remarkable sheaf}
\justifying
Let~$A$ be a reduced ring ($x^n = 0 \Rightarrow x = 0$).
Then there is a certain sheaf~$A^\sim$ of rings on a certain locale~$X$ such
that \ldots
{\centering $A^\sim$ is close to~$A$:\par}
\vspace*{-1.4em}
\begin{varblock}{\textwidth}{}
\justifying
There is a \hil{canonical bijection}~$A \to A^\sim(X)$.
$A^\sim$ inherits any property of~$A$ which is
\hil{localization-stable}.
A geometric sequent holds for~$A^\sim$ iff$^\star$ it holds for \hil{all
stalks}~$A_{\mathfrak{f}}$.
\end{varblock}
{\centering $A^\sim$ has better properties than~$A$:\par}
\vspace*{-1.6em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A^\sim$ is a \hil{field}: $\forall x\?A^\sim\_ (\neg(\exists y\?A^\sim\_
xy = 1) \Rightarrow x = 0)$.
$A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}:
$\forall x,y\?A^\sim\_ \neg\neg(x = y) \Rightarrow x = y$.
\mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}
{\centering This observation can be exploited to give \\ short, conceptual and
constructive proofs.\par}
\end{frame}
% XXX In note slides, explain "iff*".
\begin{frame}{Examples}
\vspace*{-1.2em}
\begin{columns}[t]
\begin{column}[t]{0.58\textwidth}
\centering
\begin{varblock}{\textwidth}{Injective matrices}
\justifying
Let~$M$ be an injective matrix with more columns than rows over a ring~$A$.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} \bad{Assume not.} Then there is a \bad{maximal
prime filter} $\fff \subseteq A$. The matrix is injective over the \bad{field}~$A_\fff$;
contradiction to basic linear algebra.\medskip
\textbf{Proof.} $M$ is also injective as a matrix over~$A^\sim$.
This is a contradiction by basic linear
algebra. Thus~$X \models \bot$. This amounts to~$1 = 0$ in~$A$.
\end{column}
\begin{column}[t]{0.46\textwidth}
\centering
\begin{varblock}{\textwidth}{Generic freeness\phantom{p}}
\justifying