-
Notifications
You must be signed in to change notification settings - Fork 3
/
slides-munich2019.tex
1199 lines (1019 loc) · 48.4 KB
/
slides-munich2019.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying\footnotesize#2\par}}}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage[normalem]{ulem}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning}
\hypersetup{colorlinks=true}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{A general Nullstellensatz for generalized spaces}
\author{Ingo Blechschmidt}
\date{May 10th, 2019}
\useinnertheme[shadow=true]{rounded}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ul{\ensuremath{\AA}}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}[1]{\mathrel{\vdash\!\!\!_{#1}}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\insertsectionnavigationhorizontal{\paperwidth}{}{}%
\end{beamercolorbox}%
\vskip0pt%
}
\setbeamertemplate{frametitle}{%
\vskip0.4em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
% \usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{\large\insertframetitle}};
\end{tikzpicture}
\end{beamercolorbox}%
\vskip-0.6em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\mynav}[3]{%
foo
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\begin{document}
\addtocounter{framenumber}{-1}
%\setbeamertemplate{headline}{\mynav{gray}{gray}{gray}}
\begin{frame}[c]
\centering
\bigskip
\bigskip
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\hil{A general Nullstellensatz for generalized spaces}};
\end{tikzpicture}
\scriptsize
\bigskip
Logic Workshop in Munich \\
May 10th, 2019
\bigskip
Ingo Blechschmidt \\
Università di Verona
\par
\end{frame}
\section{The generic model}
\subsection{The mystery of nongeometric sequents}
\begin{frame}{The mystery of nongeometric sequents}
\jnote{1}{A \emph{geometric sequent} is a syntactical expression of the
form~$(\varphi \seq{x_1\?X_1,\ldots,x_n\?X_n} \psi)$,
where~$x_1\?X_1,\ldots,x_n\?X_n$ is a list of variable declarations,
the~$X_i$ ranging over the available sorts, and~$\varphi$ and~$\psi$ are
\emph{geometric formulas}. Often the variable context is abbreviated to~$\vec
x \? \vec X$ or even just~$\vec x$. Such a sequent is read as ``in the
context of variables~$\vec x$, $\varphi$ entails~$\psi$''.
Geometric formulas are built from atomic propositions (using equality or the
relation symbols) using the connectives~$\top$, $\bot$, $\wedge$, $\bigvee$
(set-indexed disjunction) and~$\exists$. Geometric formulas may not
contain~$\neg$, $\Rightarrow$, $\forall$.
There is a notion of a \emph{model} of a geometric theory in
a given topos. For instance, a ring in the usual sense is a model of the
theory of rings in the topos~$\Set$. The structure sheaf of a scheme~$X$ is a
model in the topos~$\Sh(X)$ of set-valued sheaves on~$X$.
With \emph{topos} we mean Grothendieck topos, and as metatheory we use a
constructive but impredicative flavour of English (which could be formalized
by what is supported by the internal language of elementary toposes with an NNO).
However the Nullstellensatz presented later makes no use of the
subobject classifier, hence the results can likely be generalized to hold in
a predicative metatheory or to hold for arithmetic universes.}
\jnote{2-}{Among all models in any topos, the \emph{universal} or
\emph{generic} one is special. It enjoys the universal property that any
model in any topos can be obtained from it by pullback along an essentially
unique geometric morphism. It is intriguing from a logical point of view
because it has exactly those properties which are shared by any model in any
topos.
One could argue, with a certain amount of success, that the generic model of
the theory of rings is what a mathematician implicitly refers to when she
utters the phrase ``Let~$R$ be a ring''. This point of view is fundamental to
the slogan \emph{continuity is geometricity}, as expounded for instance in
\fixedhref{http://www.cs.bham.ac.uk/~sjv/GeoAspects.pdf}{Continuity and
geometric logic} by Steve Vickers.}
\jnote{3-}{Crucially, the conservativity statement only pertains to
properties which can be put as geometric sequents. Generic models may have
additional nongeometric properties. Because conservativity does not apply to
them, they are not shared by all models in all toposes -- but any consequences
which can be put as geometric sequents are.
For instance, if we want to verify a geometric sequent for all local rings,
we may freely use the displayed field axiom.
Hence one reason why these nongeometric sequents are interesting is because
they provide us with new reduction strategies (``without loss of
generality'').}
Let~$\TT$ be a \explain{geometric theory}{1-}{red!20}{-1cm}{0cm}{0cm}{\begin{minipage}{4.3cm}
\small
sorts,
function symbols,
relation symbols,
geometric sequents as axioms
\end{minipage}}, for instance the
\explain{theory of rings}{1-}{blue!20}{-1cm}{0cm}{0cm}{\begin{minipage}{4.3cm}
\small
\begin{tabbing}
fun. symb.: \= \kill
sorts: \> $R$ \\
fun. symb.: \> $0$, $1$, $-$, $+$, $\cdot$ \\
% rel. symb.: \> \emph{none} \\
axioms: \> $(\top \vdash_{x,y:R} x y = y x)$, \ldots
\end{tabbing}
\end{minipage}}.
\vspace*{1.8cm}
\begin{center}
\begin{tikzpicture}[ultra thick, node distance=7mm]
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40] (a) {$\ZZ$};
\node[rectangle, rounded corners=1pt, draw=lime!80, fill=lime!40, right=of a] (b) {$\ZZ[X,Y,Z]/(X^n+Y^n-Z^n)$};
\node[regular polygon, regular polygon sides=5, draw=orange!80,
fill=orange!20, right=of b, rounded corners=1pt, inner sep=0cm] (c) {$\O_X$};
\node[star, rounded corners=1pt, star points=10, inner sep=0cm, draw=purple!80, fill=purple!20, right=of c] {$U_\TT$};
\end{tikzpicture}
\end{center}
\vspace*{-0.5cm}
\pause
\justifying
\textbf{Theorem.} There is a \hil{generic model}~$U_\TT$. It is
\hil{conservative} in that
for any \explainstub{geometric sequent}{yellow!70}~$\sigma$ the following notions coincide:
\vspace*{-1.2em}
\begin{enumerate}
\item The sequent~$\sigma$ holds for~$U_\TT$.
\item The sequent~$\sigma$ holds for any~(sheaf) model of~$\TT$.
\item The sequent~$\sigma$ is provable modulo~$\TT$.
\end{enumerate}
\pause
\justifying
%\textbf{Main observation.} The generic model can validate nongeometric
%sequents which are not provable modulo~$\TT$ and which do not hold for
%arbitrary models in arbitrary toposes.
\textbf{Observation (Kock).} The generic local ring is a field:
\vspace*{-0.2cm}
\[ (x = 0 \Rightarrow \bot) \vdash_{x:R} (\exists y\?R\_ xy = 1) \]
\end{frame}
\subsection{Construction of the generic model}
\begin{frame}{On the generic model}
The generic model is \hil{not} the same as \ldots
\begin{itemize}
\item the \hil{initial model} (think~$\ZZ$) or
\item the \hil{free model on one generator} (think~$\ZZ[X]$).
\end{itemize}
Set-based models are \hil{too inflexible}.
The generic model is a \hil{sheaf model}.
\jnote{1}{In case the theory~$\TT$ is a Horn theory (for instance if it is
an equational theory), the \emph{term algebra} (the set of terms in the
empty context modulo provable equality) is a model of~$\TT$. While such
models do enjoy some nice categorical properties, they are in general
\emph{not} the generic model.
For instance, if~$\TT$ is the theory of rings, then the initial model
is~$\ZZ$. This model validates some geometric sequents which are not
validated by all rings, for instance~$(x^2 = 0 \seq{x:R} x = 0)$ or $(1 = 0
\vdash \bot)$.
In general, the generic model cannot be realized as a set-based model (with
a set for each sort, a map for each function symbol and so on). Sets are too
constant for this purpose; the flexibility of sheaves (``variable sets'') is
required: The generic model lives in the topos of set-valued
sheaves over~$\C_\TT$.}
\jnote{2}{The special case that the generic model of a theory~$\TT$ can be realized as
a set-based model occurs iff~$\TT$ is Morita-equivalent to the
empty theory, that is, iff~$\TT$ has exactly one model in any topos.
The special case that there exists at least some conservative set-based~$\TT$-model
occurs iff~$\TT$ has a conservative geometric expansion to a theory
which is Morita-equivalent to the empty theory.}
\end{frame}
\subsection{Going internal}
\begin{frame}{A primer on sheaf semantics}
\justifying
\vspace*{-0.6em}
Write~``$\Set[\TT] \models \varphi$'' for~$\{\_\top\} \models \varphi$. We
define
\[
\{\vec x\_ \alpha\} \models \varphi \quad
\text{(``$\varphi$ holds on stage~$\{\vec x\_\alpha\}$'')}
\]
for Horn formulas~$\alpha$ (in contexts~$\vec x$) and first-order
formulas~$\varphi$.\par
\vspace*{-1.2em}
\footnotesize
\[
\renewcommand{\arraystretch}{1.08}\begin{array}{@{\!\!\!\!\!\!\!\!\!\!\!}l@{\ \ }c@{\ \ }l@{}}
\{\vec x\_ \alpha\} \models \top &\Ll& \text{true} \\
\{\vec x\_ \alpha\} \models \bot &\Ll& \hcancel{\text{false}}{0pt}{3pt}{0pt}{-2pt}\
\alpha \seq{\vec x} \bot \\
\{\vec x\_ \alpha\} \models s = t \? F &\Ll& s = t \in F(\{\vec x\_\alpha\}) \\
\{\vec x\_ \alpha\} \models \varphi \wedge \psi &\Ll&
\text{$\{\vec x\_ \alpha\} \models \varphi$ and $\{\vec x\_ \alpha\} \models \psi$} \\
\{\vec x\_ \alpha\} \models \varphi \vee \psi &\Ll&
\hcancel{\text{$\{\vec x\_ \alpha\} \models \varphi$ or $\{\vec x\_ \alpha\} \models
\psi$}}{0pt}{3pt}{0pt}{-2pt} \\
&& \text{there exists a covering~$(\{ \vec y_i\_ \beta_i \} \xrightarrow{p_i} \{ \vec x\_ \alpha \})_i$} \\
&& \quad\quad\text{such that for all~$i$: $\{\vec y_i\_ \beta_i\} \models
p_i^*\varphi$ or $\{\vec y_i\_ \beta_i\} \models p_i^*\psi$} \\
\{\vec x\_ \alpha\} \models \varphi \Rightarrow \psi &\Ll&
\text{for all~$\{\vec y\_\beta\} \xrightarrow{p} \{\vec x\_\alpha\}$: }
\text{$\{\vec y\_\beta\} \models p^*\varphi$ implies $\{\vec y\_\beta\} \models
p^*\psi$} \\
\{\vec x\_ \alpha\} \models \forall s \? F\_ \varphi &\Ll&
\text{for all $\{\vec y\_\beta\} \xrightarrow{p} \{\vec x\_\alpha\}$ and~$s_0
\in F(\{\vec y\_\beta\})$: $\{\vec y\_\beta\} \models (p^*\varphi)[s_0/s]$} \\
% U \models \forall F\_ \varphi(F) &\Ll&
% \text{for all $V \to U$ and sheaves~$F_0$ over~$V$: $V \models \varphi(F_0)$} \\
\{\vec x\_ \alpha\} \models \exists s \? F\_ \varphi &\Ll&
\hcancel{\text{there exists $s_0 \in F(\{\vec x\_\alpha\})$ such that $\{\vec
x\_\alpha\} \models \varphi[s_0/s]$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists a covering $(\{ \vec y_i\_ \beta_i \} \xrightarrow{p_i} \{
\vec x\_ \alpha \})_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists~$s_0 \in F(\{\vec y_i\_\beta_i\})$ such that
$\{\vec y_i\_\beta_i\} \models (p_i^*\varphi)[s_0/s]$}
%U \models \exists F\_ \varphi(F) &\Ll&
%\hcancel{\text{there exists a sheaf $F_0$ on $U$ such that $U \models
%\varphi(F_0)$}}{0pt}{3pt}{0pt}{-2pt} \\
%&&
%\text{there exists a covering $(U_i \to U)_i$ such that for all~$i$:} \\
%&& \quad\quad \text{there exists a sheaf~$F_0$ on $U_i$ such that $U_i \models \varphi(F_0)$}
\end{array} \]
\jnote{1}{
The internal language of a (Grothendieck or elementary) topos~$\E$ is a
device which allows us to speak and reason about the objects and morphisms
of~$\E$ in a naive element-based language close to the usual formal
mathematical language. Using this language, objects of~$\E$ look like plain
old sets [or types]; morphisms look like plain old maps between those sets;
epimorphisms look like surjections; group objects look like groups; and so on.
In particular, we can use the internal language to define what it means for a
given~$\TT$-structure in~$\E$ to be a model -- namely iff it looks like a
model from the internal point of view.
The internal language can be implemented by the \emph{Kripke--Joyal semantics},
a translation procedure which converts formulas of the internal language
into external statements about the objects and morphisms of~$\E$. The slide
displays some of the translation rules in the case that~$\E$ is a
Grothendieck topos.
We can actually do mathematics internally because the Kripke--Joyal
semantics is sound with respect to intuitionistic logic: If~$\E \models
\varphi$ and if~$\varphi$ intuitionistically entails a further
formula~$\psi$, then~$\E \models \psi$.
An instructive special case is provided by the topos~$\Set$, because~$\Set
\models \varphi$ iff~$\varphi$ holds in the usual mathematical sense.
}
\jnote{2}{
The Kripke--Joyal semantics can be extended to interpret unbounded
quantification (``for all sets'' as opposed to ``for all elements of the
particular set~$X$'') and dependent types. The former are for instance
required to express universal properties (``for all groups'', ``for all
rings''), and the latter are all over the place, even if their use might
not be particularly highlighted.
With these extensions, we can
import all of everyday constructive impredicative mathematics into the
internal world of a topos.
Some illustrations of working with the internal language can be found in these
sets of slides:
\begin{itemize}
\item
\fixedhref{https://rawgit.com/iblech/internal-methods/master/slides-leipzig2018.pdf}{Slides
for Jürgen Jost's group seminar at the MPI Leipzig}
\item
\fixedhref{https://rawgit.com/iblech/internal-methods/master/slides-como2018.pdf}{Slides
for \emph{Toposes in Como}}
(recording
\fixedhref{https://www.youtube.com/watch?v=SuELfC5P_R8}{available})
\end{itemize}
A longer exposition, with pointers to the literature, can be found in Section~2 of
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these notes}.
}
\end{frame}
\section[Nongeometric properties]{A selection of nongeometric properties}
\begin{frame}{A selection of nongeometric properties}
The \hil{generic object} validates:
\begin{enumerate}
\item $\forall x,y\?U_\TT\_ \neg\neg(x = y)$.
\item $\forall x_1,\ldots,x_n\?U_\TT\_ \neg \forall y\?U_\TT\_
\bigvee_{i=1}^n y = x_i.$
\item $(U_\TT)^{U_\TT} \cong 1 \amalg U_\TT$.
\end{enumerate}
The \hil{generic ring} validates:
\begin{enumerate}
\item $\forall x\?U_\TT\_ \neg\neg(x = 0)$.
\item $\forall x\?U_\TT\_ (x = 0 \Rightarrow 1 = 0) \Rightarrow (\exists
y\?U_\TT\_ xy = 1)$.
\end{enumerate}
The \hil{generic local ring} validates:
\begin{enumerate}
\item $\neg \forall x\?U_\TT\_ \neg\neg(x = 0)$.
\item $\forall a_0,\ldots,a_{n-1}\?U_\TT\_ \neg\neg \exists x\?U_\TT\_
x^n + a_{n-1}x^{n-1} + \cdots + a_0 x^0 = 0$.
\item \justifying Let~$\Delta = \{ \varepsilon \? U_\TT \,|\, \varepsilon^2 = 0 \}$.
For any map~$f : \Delta \to U_\TT$, there are unique elements~$a,b \?
U_\TT$ s.\,th.~$f(\varepsilon) = a + b\varepsilon$ for all~$\varepsilon
\? \Delta$.
% \item For any finitely presented~$U_\TT$-algebra~$A$,
% the canonical map~$A \to (U_\TT)^{\Hom_{U_\TT}(A,U_\TT)}$
% is an isomorphism.
\end{enumerate}
\jnote{1}{
The generic object, the generic model of the theory which has exactly one
sort and no function symbols, relations symbols or axioms, appears to be
slightly indecisive: On the one hand, up to a double negation, it is a
subsingleton; on the other hand, it is infinite. This observation is due to
Carsten Butz and Peter Johnstone
(\fixedhref{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.4102&rep=rep1&type=pdf}{Classifying toposes for
first-order theories}).
The generic ring, the generic model of the theory of rings, is similarly
indecisive. It is infinite in the following sense:
\[ \forall x_1,\ldots,x_n \? U_\TT\_
\bigl(\forall y \? U_\TT\_ \bigvee_{i=1}^n (y = x_i)\bigr) \Rightarrow
1 = 0. \]
The theory of local rings is the quotient theory of the theory of rings
obtained by adding the axioms
\[ (1 = 0 \vdash \bot) \ \text{and}\ ((\exists z\_
(x+y)z = 1) \seq{x,y} (\exists z\_ xz = 1) \vee (\exists z\_ yz = 1)). \]
(Assuming the axiom of choice, a ring is local in this sense
iff it local in the usual sense (has exactly one maximal ideal).)
The first displayed property of the generic local ring illustrates
that nongeometric sequents need not be inherited by quotient theories.
}
\jnote{2}{
All of the displayed properties give rise to reduction techniques:
If we want to verify a geometric sequent for all rings, it suffices to
verify it for the generic ring; but the generic ring has additional
nongeometric properties not shared by every ring, such as the two displayed
ones. (This was for instance used
\fixedhref{https://www.sciencedirect.com/science/article/pii/0022404976900025}{by
Anders Kock} and
\fixedhref{https://link.springer.com/chapter/10.1007\%2FBFb0061835}{by
Gonzalo Reyes}.)
However, we face some challenges when pursuing these reduction techniques, including
the following:
\begin{enumerate}\justifying
\item It is not easy to determine interesting and useful properties of
the generic model.
\item The set of validated nongeometric sequents changes slightly
unpredictably when passing to quotient theories. For instance, when
proving that a geometric sequent holds for all rings, we may assume that
any element is \emph{not not} zero. But we may not assume this
simplification if we want to verify a geometric sequent for all local
rings (and if we want to exploit the given locality in the proof).
\item There is only so much we want to state and prove in full generality
for all rings, all local rings, all modules, and so on. We are often much
more interested in properties of particular mathematical objects.
\end{enumerate}
}
\jnote{3}{
The firstly-mentioned problem on the previous page is alleviated by the
Nullstellensatz presented in this talk, which gives a systematic and
universal source of nongeometric sequents validated by the generic model.
However, manual work is still required to reduce this set of sequents to a
smaller, manageable one consisting of memorable properties while hopefully
still preserving universality.
To counter the third problem, it's prudent to consider geometric theories
which depend on a given mathematical object of interest. For instance,
given a ring~$A$, we can consider the theory of prime ideals of~$A$, of
complemented prime ideals, of filters, and so on. The classifying toposes
of these theories are of independent interest -- in fact they are sheaf
toposes over certain important spaces in algebraic geometry -- and
nongeometric sequents validated by their generic models bundle nontrivial
information about~$A$. More details are on the following slide.
}
\end{frame}
\section{Affine schemes}
\begin{frame}{Affine schemes}
\jnote{1}{
A ring is \emph{local} iff every invertible sum contains an invertible
summand, that is if~$1 \neq 0$ and if~$x + y$ invertible implies~$x$
invertible or~$y$ invertible. Assuming the axiom of choice, this elementary
definition is equivalent to the textbook definition of a local ring (a ring
with exactly one maximal ideal). A ring homomorphism is \emph{local} iff it
reflects invertibility.
The notion of a \emph{filter} in a ring~$A$ is a direct axiomatisation of
what classically would be the complement of a prime ideal. The filter
axioms are: $1 \in F$, $(xy \in F) \Leftrightarrow ((x \in F) \wedge (y \in
F))$, $\neg(0 \in F)$, $(x+y \in F) \Rightarrow ((x \in F) \vee (y \in F))$.
A \emph{free local ring} over~$A$ is a homomorphism into a local
ring~$A'$ such that any homomorphism into a local ring~$R$ factors uniquely
over~$A'$ via a local homomorphism.
For any particular local ring~$A \xrightarrow{f} R$, the
localisation~$A[S^{-1}]$ with~$S = f^{-1}[R^\times]$ is a local ring which
fits into the displayed diagram. However, in general there is no single
choice of~$S$ which would work for any local ring~$R$. Indeed, classically
one can show that a free local ring over~$A$ exists if and only if~$A$
contains exactly one prime ideal, in which case~$A$ itself is the free
local ring.
}
\jnote{2}{
If we want a free local ring to exist for any ring~$A$, we have to broaden
our notion of existence and embrace rings which live in toposes other
than~$\Set$. There is a notion of a homomorphism between rings living in
arbitrary toposes, and using this notion one can verify:
The free local ring over~$A$ can be built in the classifying topos of
filters of~$A$, as the localisation (in that topos) of~$A$ at the generic
filter. (More precisely, as the localisation of the mirror image of~$A$ in that
topos, that is the constant sheaf~$\underline{A}$.)
The classifying topos of filters of~$A$ coincides with the topos of sheaves
over what's called the \emph{spectrum of~$A$} in algebraic geometry, and
under this equivalence the free local ring coincides with the structure
sheaf of spectrum. In fact the classifying topos serves as a good
constructive substitute for the classical spectrum construction,
enjoying the expected universal property even if the axiom of choice is not
available, which is why it is simply denoted~``$\Spec(A)$'' on the slide.
(The classifying topos of prime ideals of~$A$ is also interesting; it
coincides with the topos of sheaves over the spectrum of~$A$ equipped with
the constructible topology.)
}
\jnote{3}{
Assuming the Boolean prime ideal theorem, the geometric sequents
validated by~$A^\sim$ are easy to describe: They are precisely those which
are validated by all the stalks~$A_\ppp$ of~$A$.
But~$A^\sim$ enjoys further unique properties which are not shared by the
stalks of~$A$, other localisations of~$A$, quotients of~$A$ or indeed any
reasonable construction. Three of these are displayed on the slide.
(A ring is \emph{anonymously Noetherian} iff each of its ideals is
\emph{not not} finitely generated. Textbook proofs of Hilbert's basis theorem
are constructively acceptable for this Noetherian condition.)
The object~$A^\sim$ strikes a fine balance: On the one hand, it is still
close to~$A$, so that information learned about~$A^\sim$ teaches us
about~$A$; on the other hand, it enjoys unique properties rendering it
simpler than~$A$.
This balance allows for a simple and conceptually satisfying proof of
\emph{Gro\-then\-dieck's generic freeness lemma}, an important theorem in
algebraic geometry. Details can be found in
\fixedhref{https://rawgit.com/iblech/internal-methods/master/slides-padova2018.pdf}{this
set of slides}.
}
Let~$A$ be a ring. Is there a \hil{free local ring}~$A \to A'$ over~$A$?
\begin{columns}[t]
\begin{column}{0.4\textwidth}
$\xymatrix{
A \ar[rd] \ar[rrr]^f &&& {\substack{\phantom{\text{local}}\\\text{\normalsize$R$}\\\text{local}}} \\
& {\substack{\text{\normalsize$A'$}\\\text{local}}} \ar@{-->}_[@!35]{\text{local}}[rru]
}$
\end{column}
\begin{column}{0.50\textwidth}
\small\justifying
For a fixed ring~$R$, the localisation $A' \defeq A[S^{-1}]$ with $S \defeq
f^{-1}[R^\times]$ would do the job. ($S$ is a \emph{filter}.)
\medskip
Hence we need the \hil{generic filter}.
\end{column}
\end{columns}
\pause
\justifying
The free local ring over~$A$ is~$A^\sim \defeq \ul{A}[F^{-1}]$,
where~$F$ is the generic filter, living in~$\Spec(A)$, the classifying topos
of filters of~$A$.
\pause
If~$A$ is reduced ($x^n = 0 \Rightarrow x = 0$):
\vspace*{-0.8em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A^\sim$ is a \hil{field}: $\forall x\?A^\sim\_ (\neg(\exists y\?A^\sim\_
xy = 1) \Rightarrow x = 0)$.
$A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}:
$\forall x,y\?A^\sim\_ \neg\neg(x = y) \Rightarrow x = y$.
\mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}
\end{frame}
\section[A systematic source]{A systematic source of nongeometricity?}
\begin{frame}{A systematic source of nongeometricity?}
\jnote{1-2}{
Mimicking the synthetic approach to differential geometry, synthetic
algebraic geometry is a framework for algebraic geometry in which schemes
can be modelled by plain old sets, morphisms of schemes by plain old maps
between those sets, group schemes by plain old groups, and so on. Unlike
its close cousin, it is far less developed; some first steps are outlined
in Sections~19 and~20 of
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these notes}.
Synthetic algebraic geometry is carried out internally to the \emph{big
Zariski topos} of a given base scheme; in the special case that the base
scheme is the terminal scheme~$\Spec(\ZZ)$, this topos is just the
classifying topos of local rings. The relevant generic model living in the
big Zariski topos is denoted~``$\affl$'' because it coincides with the
functor of points of the affine line.
}
\jnote{2}{
Marc Bezem, Ulrik Buchholtz and Thierry Coquand answered in their 2017 paper
\fixedhref{https://arxiv.org/abs/1712.07743}{Syntactic forcing
models for coherent logic} Gavin Wraith's question in the negative. (As
Thierry remarked during the talk, this is even if one takes care to phrase
the question in a way to exclude the trivial counterexamples given by
instances of the law of excluded middle in the language of~$\TT$.) If the
answer had been positive, this would have given a neat, if somewhat hard to
use in practice, characterisation of the formulas validated by the generic model.
}
\jnote{3}{
The topos-theoretic \emph{Nullstellensatz}, to be presented on the next
slides, answers the displayed three questions in the affirmative.
Briefly, the Nullstellensatz is a certain statement in the language of a
given geometric theory~$\TT$ which is
\begin{itemize}\justifying
\item validated by the generic~$\TT$-model,
\item typically not validated by other~$\TT$-models, and
\item such that any statement validated by the generic~$\TT$-model can be
deduced, in intuitionistic logic, from the axioms of~$\TT$ and the
Nullstellensatz.
\end{itemize}
We believe that this characterisation is as explicit as it can get, but
would be delighted to be surprised by a future improvement. We stumbled on
it by playing with the synthetic quasicoherence statement, not least thanks
to encouragement by Alexander Oldenziel. However the route from that
statement to the Nullstellensatz is not quite direct; it turns out that
synthetic quasicoherence is a corollary of a specialisation of a
higher-order version of the Nullstellensatz to Horn theories.
}
\justifying
\textbf{Empirical fact.}
In \hil{synthetic algebraic geometry}, every known property of~$\affl$ followed from
its \hil{synthetic quasicoherence}:
\begin{quote}
\emph{\mbox{For any finitely presented~$\affl$-algebra~$A$, the canonical map}
\[ A \longrightarrow (\affl)^{\Hom_\affl(A,\affl)},\ s \longmapsto (x
\mapsto x(s)) \]
is an isomorphism of~$\affl$-algebras.}
\end{quote}
\vspace*{1.0em}
\begin{enumerate}
\item Does a general metatheorem explain this observation?
\item Is there a systematic source in any classifying topos?
\item Is there even an exhaustive source?
\end{enumerate}
\vspace*{-3.3em}
\visible<2>{\begin{tikzpicture}[overlay]
\draw[fill=white, draw=white, opacity=0.95] (-1,1.4) rectangle (\paperwidth,5.4);
\node[anchor=south west,inner sep=0] (image) at (0,0.9) {\vbox{
\only<2>{
\centering
\includegraphics[width=0.9\textwidth]{wraith-some-recent-developments-in-topos-theory} \\
\scriptsize
Gavin Wraith. \emph{Some recent developments in topos theory.} \\ In:
Proc.\@ of the ICM (Helsinki, 1978).
}
}};
\end{tikzpicture}}%
\[ \xymatrix{
\text{$\TT$ proves~$\alpha$\;} \ar@/_1pc/@{=>}[r] &
\text{\;$\alpha$ holds for~$U_\TT$\;} \ar@/_1pc/@{=>}[r]
\ar@/_1pc/@{=>}@[red][l]
|{\SelectTips{cm}{}\textbf{\scalebox{3}{\textcolor{red}{\!\texttimes\!}}}}|{} &
\text{\;$\alpha$ is~$\TT$-redundant}
\ar@/_1pc/@{=>}@[red][l]
|{\SelectTips{cm}{}\textbf{\scalebox{3}{\textcolor{red}{\!\texttimes\!}}}}|{}
} \]
\end{frame}
\section{A topos-theoretic Nullstellensatz}
\newcommand{\nullstellensatz}{%
\justifying
\textbf{Theorem.} Internally to~$\Set[\TT]$:
\begin{quote}\emph{\mbox{For any \explainstub{geometric$^\star$ sequent~$\sigma$}{red!20} over
the \explainstub{signature of~$\ul{\TT}/U_\TT$}{blue!20},}
if~\explainstub{$\sigma$ holds for~$U_\TT$}{yellow!70}, then~\explainstub{$\ul{\TT}/U_\TT$
proves~$\sigma$}{yellow!70}.}
\end{quote}
\vspace*{-0.6em}
}
\begin{frame}{A topos-theoretic Nullstellensatz}
\jnote{1-2}{
By~$\ul{\TT}$ we mean the geometric theory internal to~$\Set[\TT]$ obtained
by pulling back the set of sorts of~$\TT$, the set of function symbols and so on
along the unique geometric morphism~$\Set[\TT] \to \Set$. For instance,
if~$\TT$ is the theory of rings, then from the internal point of view
of~$\Set[\TT]$, the theory~$\ul{\TT}$ will again be the theory of rings.
The theory~$\ul{\TT}/U_\TT$ will be defined on the next slide. It is a certain
geometric theory internal to~$\Set[\TT]$.
The asterisks in \emph{geometric$^\star$ sequent} and
\emph{provability$^\star$} indicate that any infinities used to index
disjunctions have to be come from the base topos. This restriction is an important
subtlety, though not vital to this talk. If~$\TT$ is a coherent
theory, then for coherent sequents there is no difference between
provability in coherent logic, provability in geometric logic and
provability$^\star$.
}
\jnote{2}{
The algebraic Nullstellensatz states that, in some cases, algebraic truths
are witnessed by explicit \emph{algebraic certificates} -- syntactical
objects giving a priori reasons for why a given truth is to be expected.
In the topos-theoretic Nullstellensatz, algebraic truths are replaced by
arbitrary truths of the generic model, subject only to the condition that
they can be expressed as a geometric sequent, and algebraic certificates
are replaced by \emph{logical certificates}: proofs.
}
\jnote{3}{
While, as stated on slide 1/20, the generic model~$U_\TT$ is a
conservative~$\TT$-model, the classifying topos~$\Set[\TT]$ does not
believe this fact. That is, the statement~``$U_\TT$ is a
conservative~$\ul{\TT}$-model'' is not true internally to~$\Set[\TT]$.
What is true is the modified statement~``$U_\TT$ is a
conservative$^\star$~$\ul{\TT}/U_\TT$-model''.
}
\nullstellensatz
\pause
\textbf{The algebraic Nullstellensatz.}
Let~$A$ be a ring.
Let~$f,g \in A[X]$ be polynomials.
Then, subject to some conditions:
\[
\underbrace{\bigl(\forall x \in A\_ (f(x) = 0 \Rightarrow g(x) =
0)\bigr)}_{\text{algebraic truth}} \Longrightarrow
\underbrace{\bigl(\exists h \in A[X]\_ g = hf\bigr)}_{\text{algebraic certificate}}
\]
\vspace*{-0.9em}
\pause
\textbf{A naive version.}
``Internally to~$\Set[\TT]$, for any geometric sequent~$\sigma$ over
the signature of~$\ul{\TT}$,
if~$\sigma$ holds for~$U_\TT$, then~$\ul{\TT}$
proves~$\sigma$.'' \textbf{False,} for instance with the theory of rings we
have
\begin{align*}
\Set[\TT] &\models \neg(\speak{$\ul{\TT}$ proves $(\top \vdash 1 + 1 =
0)$}) \\
\text{but}\quad \Set[\TT] & \not\models \neg(1 + 1 = 0).
\end{align*}
\end{frame}
\begin{frame}{A varying internal theory}
\nullstellensatz
\explainstub{\textbf{Definition.}}{blue!20} The theory~$\ul{\TT}/U_\TT$ is the
internal geometric theory of~\hil{$U_\TT$-algebras}, the theory which arises from~$\ul{\TT}$ by adding:
\begin{enumerate}
\justifying\small
\item for each element~$x : U_\TT$ a constant symbol~$e_x$,
\item for each function symbol~$f$ and~$n$-tuple~$(x_1,\ldots,x_n) \in (U_\TT)^n$ the axiom
$(\top \vdash f(e_{x_1},\ldots,e_{x_n}) = e_{f(x_1,\ldots,x_n)})$,
\item for each relation symbol~$R$ and~$n$-tuple~$(x_1,\ldots,x_n) \in (U_\TT)^n$ such
that~$R(x_1,\ldots,x_n)$ the axiom~$(\top \vdash R(e_{x_1},\ldots,e_{x_n}))$.
\end{enumerate}
\jnote{1}{
Just as locales internal to a topos~$\E$ can be externalized to yield
localic geometric morphisms into~$\E$, internal Grothendieck toposes can be
externalized to yield bounded geometric morphisms. Since the composition of
bounded geometric morphisms is bounded, the externalisation of a
Grothendieck topos internally to a Grothendieck topos is itself a