-
Notifications
You must be signed in to change notification settings - Fork 2
/
Testing.v
523 lines (425 loc) · 16.7 KB
/
Testing.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
Require Import Arith NArith Vector Bvector Equality MSets OrderedTypeEx Lia BasicUtility VectorStates Utilities.
Require Import OQASM MathSpec.
From QuickChick Require Import QuickChick.
Import Vector (hd, tl).
Import Decidability (dec).
Import OQASM (exp(..)).
Require FMapAVL.
Module Posi_as_OT := PairOrderedType Nat_as_OT Nat_as_OT.
Module M := FMapAVL.Make(Posi_as_OT).
Module Nat_as_OT := Update_OT Nat_as_OT.
(* Used for finite sets of variables *)
Module VarSet := Make Nat_as_OT.
Import VarSet.
Open Scope vector_scope.
Open Scope string_scope.
Open Scope positive_scope.
Open Scope N_scope.
Open Scope nat_scope.
Open Scope bool_scope.
Open Scope exp_scope.
Definition rz_val := nat.
Inductive val := nval (b:bool) (r:rz_val) (*| hval (b1:bool) (b2:bool) (r:rz_val) *) | qval (rc:rz_val) (r:rz_val).
Definition addto (r : rz_val) (n : nat) (rmax : nat) : rz_val :=
(r + 2^(rmax - n)) mod 2^rmax.
Definition addto_n (r : rz_val) n (rmax : nat) :=
(r + 2^rmax - 2^(rmax - n)) mod 2^rmax.
Definition state := M.t val.
Definition get_state (p : posi) (f : state) :=
match M.find p f with
| None => nval false 0
| Some v => v
end.
Definition exchange (v: val) :=
match v with nval b r => nval (¬ b) r
| a => a
end.
(*
Definition hexchange (v1:val) (v2:val) :=
match v1 with hval b1 b2 r1 =>
match v2 with hval b3 b4 r2 => if Bool.eqb b3 b4 then v1 else hval b1 (¬ b2) r1
| _ => v1
end
| _ => v1
end.
*)
Definition put_cu (v:val) (b:bool) :=
match v with nval x r => nval b r | a => a end.
Definition get_cua (v:val) :=
match v with nval x r => x | _ => false end.
Definition get_cus (n:nat) (f:state) (x:var) :=
fun i => if i <? n then (match get_state (x,i) f with nval b r => b | _ => false end) else allfalse i.
Definition put_cus (f:posi -> val) (x:var) (g:nat -> bool) (n:nat) : (posi -> val) :=
fun a => if fst a =? x then if snd a <? n then put_cu (f a) (g (snd a)) else f a else f a.
Definition get_cu (v : val) :=
match v with nval b r => Some b
| _ => None
end.
Definition get_r (v:val) :=
match v with nval x r => r
| qval rc r => rc
end.
Definition rotate (r :rz_val) (q:nat) rmax := addto r q rmax.
Definition times_rotate (v : val) (q:nat) rmax :=
match v with nval b r => if b then nval b (rotate r q rmax) else nval b r
| qval rc r => qval rc (rotate r q rmax)
end.
Definition r_rotate (r :rz_val) (q:nat) rmax := addto_n r q rmax.
Definition times_r_rotate (v : val) (q:nat) rmax :=
match v with nval b r => if b then nval b (r_rotate r q rmax) else nval b r
| qval rc r => qval rc (r_rotate r q rmax)
end.
Fixpoint sr_rotate' (st: state) (x:var) (n:nat) (size:nat) rmax :=
match n with 0 => st
| S m => (sr_rotate' (M.add (x,m) (times_rotate (get_state (x,m) st) (size - m) rmax) st) x m size rmax)
end.
Definition sr_rotate st x n rmax := sr_rotate' st x (S n) (S n) rmax.
Fixpoint srr_rotate' (st: state) (x:var) (n:nat) (size:nat) rmax :=
match n with 0 => st
| S m => (srr_rotate' (M.add (x,m) (times_r_rotate (get_state (x,m) st) (size - m) rmax) st) x m size rmax)
end.
Definition srr_rotate st x n rmax := srr_rotate' st x (S n) (S n) rmax.
Fixpoint lshift' (n:nat) (size:nat) (f:state) (x:var) :=
match n with 0 => M.add (x,0) (get_state (x,size) f) f
| S m => M.add (x,n) (get_state (x,m) f) (lshift' m size f x)
end.
Definition lshift (f:state) (x:var) (n:nat) := lshift' (n-1) (n-1) f x.
Fixpoint rshift' (n:nat) (size:nat) (f:state) (x:var) :=
match n with 0 => M.add (x,size) (get_state (x,0) f) f
| S m => M.add (x,m) (get_state (x,n) f) (rshift' m size f x)
end.
Definition rshift (f:state) (x:var) (n:nat) := rshift' (n-1) (n-1) f x.
Fixpoint reverse' (f : state) (x : var) (n : nat) i (f' : state) :=
match i with
| 0 => f'
| S i' =>
reverse' f x n i' (M.add (x, i') (get_state (x, n - i) f) f')
end.
Definition reverse (f:state) (x:var) (n:nat) :=
reverse' f x n n f.
(*
Definition h_case (v : val) (rmax : nat) :=
match v with nval b r => if r <? 2^(rmax-1) then hval true (¬ b) r else hval false b (rotate r 1 rmax)
| hval true true r => nval false r
| hval true false r => nval true r
| hval false true r => nval true (rotate r 1 rmax)
| hval false false r => nval false (rotate r 1 rmax)
| a => a
end.
Fixpoint h_sem (f:state) (x:var) (n : nat) (rmax : nat) :=
match n with 0 => f
| S m => M.add (x,m) (h_case (get_state (x,m) f) rmax) (h_sem f x m rmax)
end.
*)
Definition up_h (v:val) rmax :=
match v with nval true r => qval r (rotate 0 1 rmax)
| nval false r => qval r 0
| qval r f => nval (2^(rmax -1) <=? f) r
end.
Fixpoint assign_h (f:state) (x:var) (n:nat) (i:nat) rmax :=
match i with 0 => f
| S m => assign_h (M.add (x,n+m) (up_h (get_state (x,n+m) f) rmax) f) x n m rmax
end.
Definition up_qft (v:val) (f:rz_val) :=
match v with nval b r => qval r f
| a => a
end.
Fixpoint a_nat2fb' f (n acc: nat) :=
match n with 0 => acc
| S m => a_nat2fb' f m (acc + Nat.b2n (f m) * 2^m)
end.
Definition a_nat2fb f n := a_nat2fb' f n 0.
Fixpoint assign_r (f:state) (x:var) (r : nat) (n:nat) (size :nat) (rmax:nat) :=
match n with 0 => f
| S m => (assign_r (M.add (x,size - n) (up_qft (get_state (x,size - n) f) r) f) x ((r * 2) mod 2^rmax) m size rmax)
end.
Definition turn_qft (f:state) (x:var) (n:nat) (rmax:nat) :=
assign_h (assign_r f x (2^(rmax - n) * a_nat2fb (fbrev n (get_cus n f x)) n) n n rmax) x n (rmax -n) rmax.
Fixpoint assign_seq (f:state) (x:var) (vals : nat -> bool) (size:nat) (n:nat) :=
match n with 0 => f
| S m => (assign_seq (M.add (x,size-n) (nval (vals (size-n)) (get_r (get_state (x,size-n) f))) f) x vals size m)
end.
Definition get_r_qft (f:state) (x:var) (n:nat) (rmax:nat) :=
match get_state (x,0) f with qval rc g => fbrev n (nat2fb (g/2^(rmax-n)))
| _ => allfalse
end.
Definition turn_rqft (st : state) (x:var) (n:nat) (rmax : nat) :=
assign_h (assign_seq st x (get_r_qft st x n rmax) n rmax) x n (rmax -n) rmax.
Fixpoint exp_sem (env:var -> nat) (rmax : nat) (e:exp) (st: state) : state :=
match e with (SKIP p) => st
| X p => M.add p (exchange (get_state p st)) st
(* | HCNOT p1 p2 => M.add p1 (hexchange (get_state p1 st) (get_state p2 st)) st *)
| CU p e' => if get_cua (get_state p st) then exp_sem env rmax e' st else st
| RZ q p => M.add p (times_rotate (get_state p st) q rmax) st
| RRZ q p => M.add p (times_r_rotate (get_state p st) q rmax) st
| SR n x => sr_rotate st x n rmax (*n is the highest position to rotate. *)
| SRR n x => srr_rotate st x n rmax
| Lshift x => lshift st x (env x)
| Rshift x => rshift st x (env x)
| Rev x => (reverse st x (env x))
(* | H x => h_sem st x (env x) rmax *)
| QFT x b => turn_qft st x (env x) rmax
| RQFT x b => turn_rqft st x (env x) rmax
| e1 ; e2 => exp_sem env rmax e2 (exp_sem env rmax e1 st)
end.
(* Bitwise xor *)
Infix "(+)" := (BVxor _) (at level 50, left associativity).
Definition show_bit b :=
match b with
| false => "0"
| true => "1"
end.
(* Order is reversed because Bvectors are little-endian *)
Fixpoint show_bvector' {n} : Bvector n -> string :=
match n with
| 0 => fun _ => ""
| S n' => fun v => show_bvector' (tl v) ++ show_bit (hd v)
end.
Instance show_bvector n : Show (Bvector n) := {| show := show_bvector' |}.
(* Lists Bvectors with one "1" flipped to "0" *)
Fixpoint shrink_bvector' {n} : Bvector n -> list (Bvector n) :=
match n with
| 0 => fun _ => nil
| S n' =>
fun v =>
let tail := tl v in
let shrink_tl := shrink_bvector' tail in
if hd v
then cons (false :: tail) (map (Bcons true _) shrink_tl)
else map (Bcons false _) shrink_tl
end.
Instance shrink_bvector n : Shrink (Bvector n) :=
{| shrink := shrink_bvector' |}.
(* Uniformly randomly selected boolean *)
Definition gen_bool : G bool := elems_ false (false :: true :: nil).
(* Uniformly randomly selected Bvector *)
Fixpoint gen_bvector' {n} : G (Bvector n) :=
match n with
| 0 => ret Bnil
| S n' =>
bind gen_bool (fun b => bind gen_bvector' (fun v => ret (b :: v)))
end.
Instance gen_bvector n : Gen (Bvector n) := {| arbitrary := gen_bvector' |}.
(* The natural number represented in binary in the sequence of bits *)
Fixpoint bvector2n {n} : Bvector n -> N :=
match n with
| 0 => fun _ => N0
| S n' =>
fun v =>
let tl_n := bvector2n (tl v) in
if hd v
then N.succ_double tl_n
else N.double tl_n
end.
(* Represents the natural number in binary, trucating if necessary *)
Fixpoint n2bvector n : N -> Bvector n :=
match n with
| 0 => fun _ => Bnil
| S n' => fun i => N.odd i :: n2bvector n' (N.div2 i)
end.
Definition add_bvector {n} (v v' : Bvector n) :=
n2bvector n (bvector2n v + bvector2n v')%N.
Lemma bvector2n2bvector :
forall n v, n2bvector n (bvector2n v) = v.
Proof.
intros n.
induction n as [| n IH]; intros v; dependent destruction v; try reflexivity.
cbn - [ N.mul N.div ].
assert
(forall h h' (t t' : Bvector n), h = h' -> t = t' -> h :: t = h' :: t').
{ intros. subst. reflexivity. }
apply H; destruct h; auto using Ndouble_plus_one_bit0, Ndouble_bit0.
- rewrite N.div2_succ_double. apply IH.
- rewrite N.div2_double. apply IH.
Qed.
Definition bvector2nat {n} (v : Bvector n) := N.to_nat (bvector2n v).
Lemma double_size :
forall n, N.size_nat (N.double n) <= S (N.size_nat n).
Proof.
intros [].
- simpl. lia.
- reflexivity.
Qed.
Lemma succ_double_size :
forall n, N.size_nat (N.succ_double n) = S (N.size_nat n).
Proof. intros []; reflexivity. Qed.
Lemma size_bvector2n :
forall n (v : Bvector n), N.size_nat (bvector2n v) <= n.
Proof.
intros n. induction n as [| n IH]; intros v; simpl. try constructor.
dependent destruction v. simpl. destruct h.
- rewrite succ_double_size. auto using le_n_S.
- eauto using le_trans, double_size, le_n_S.
Qed.
Lemma n2bvector2n :
forall n i, N.size_nat i <= n -> bvector2n (n2bvector n i) = i.
Proof.
intros n. induction n as [| n IH]; try (intros [|[]]; simpl; lia).
intros [|[]] H; simpl; rewrite IH; simpl in *; try lia.
Qed.
(* A single-qubit state representing either |0> or |1> *)
Definition basis_val b := nval b 0.
(* The single-qubit state |0> *)
Definition zero_val := basis_val false.
(* A program state with all qubits set to |0>, used for initialization *)
Definition zero_state : state := M.empty val.
Notation "x |-> vx , st" :=
(M.add x vx st) (at level 100, vx at next level, right associativity).
Notation "x |-> vx" := (M.add x vx zero_state) (at level 100).
Definition next_pos : posi -> posi := fun '(x, i) => (x, S i).
Fixpoint update_var' {n} (st : state) (x : posi) : Bvector n -> state :=
match n with
| 0 => fun _ => st
| S n' =>
fun vx => (x |-> basis_val (hd vx), update_var' st (next_pos x) (tl vx))
end.
Definition update_var {n} st x : Bvector n -> state := update_var' st (x, 0).
Notation "x |=> vx , st" :=
(update_var st x vx) (at level 100, vx at next level, right associativity).
Infix "|=>" := (update_var zero_state) (at level 100).
Fixpoint get_statevector' n x st :=
match n with
| 0 => Some Bnil
| S n' => match get_state x st, get_statevector' n' (next_pos x) st with
| nval b 0, Some v => Some (Bcons b n' v)
| _, _ => None
end
end.
Definition get_statevector n x st := get_statevector' n (x, 0) st.
(* A finite set of variables (nats) *)
Definition var_set := VarSet.t.
(* Converts a decidable Prop to a boolean representing the decision *)
Definition dec2bool P `{H : Dec P} : bool :=
let '{| dec := d |} := H in
if d then true else false.
Lemma dec2bool_correct :
forall P `{Dec P}, P <-> dec2bool P = true.
Proof.
intros P H. destruct H as [[|]] eqn:E; simpl; split; auto.
discriminate.
Qed.
(* A For_all Prop is decidable if the sub-Prop is decidable for all variables *)
Instance dec_var_set_for_all {P : var -> Prop} `{forall x, Dec (P x)} :
forall vars, Dec (For_all P vars).
Proof.
intros vars. constructor.
replace P with (fun x => P x) by reflexivity.
destruct (for_all (fun x => dec2bool (P x)) vars) eqn:E.
- left. intros x Hi. rewrite for_all_spec in E.
+ specialize (E x Hi). simpl in E. apply dec2bool_correct in E. assumption.
+ intros y y' Hy. subst. reflexivity.
- right. intros Hc. rewrite <- not_true_iff_false in E. apply E.
apply for_all_spec.
+ intros y y' Hy. subst. reflexivity.
+ intros x Hx. apply dec2bool_correct. apply Hc. assumption.
Defined.
(* An environment mapping variables to their sizes *)
Definition f_env := var -> nat.
(* A Prop is true for every position in an environment *)
Definition for_all_env (P : posi -> Prop) (vars : var_set) (env : f_env) :=
For_all (fun x => forall i, i < env x -> P (x, i)) vars.
Instance dec_val_eq :
forall v v' : val, Dec (v = v').
Proof.
intros v v'. constructor.
destruct v as [b z | z0 z1 ], v' as [b' z' | z0' z1'];
try (right; intros H; inversion H; discriminate).
- destruct (bool_dec b b'); try (right; intros H; inversion H; contradiction).
subst. bdestruct (z =? z'); subst.
+ left. reflexivity.
+ right. congruence.
- bdestruct (z0 =? z0'); bdestruct (z1 =? z1'); subst;
try (right; congruence).
left. reflexivity.
Defined.
(* States are equivalent if all values in the environment are equivalent *)
Definition st_equiv vars env (st st' : state) :=
for_all_env (fun x => (get_state x st) = (get_state x st')) vars env.
Fixpoint var_equivb (st st' : state) var n :=
match n with
| 0 => true
| S n' =>
if dec (P:=(get_state (var, n') st = get_state (var, n') st'))
then var_equivb st st' var n'
else false
end.
Definition st_equivb vars env (st st' : state) :=
for_all (fun x => var_equivb st st' x (env x)) vars.
(* Get the variables in an exp *)
Fixpoint get_vars e :=
match e with
| SKIP p => singleton (fst p)
| X p => singleton (fst p)
| CU p e' => add (fst p) (get_vars e')
| RZ _ p => singleton (fst p)
| RRZ _ p => singleton (fst p)
| SR _ x => singleton x
| SRR _ x => singleton x
(*| HCNOT p1 p2 => add (fst p1) (singleton (fst p2)) *)
| Lshift x => singleton x
| Rshift x => singleton x
| Rev x => singleton x
| QFT x b => singleton x
| RQFT x b => singleton x
(*| H x => singleton x *)
| e1; e2 => union (get_vars e1) (get_vars e2)
end.
(* Get the maximum precision in rotations of an exp *)
Fixpoint get_prec (env : f_env) e :=
match e with
| SKIP _ => 0
| X _ => 0
| CU _ e' => get_prec env e'
| RZ n _ => n
| RRZ n _ => n
| SR n _ => n
| SRR n _ => n
(*| HCNOT _ _ => 0 *)
| Lshift _ => 0
| Rshift _ => 0
| Rev _ => 0
| QFT x b => env x
| RQFT x b => env x
(* | H _ => 0 *)
| e1; e2 => max (get_prec env e1) (get_prec env e2)
end.
Definition ospec m n := Bvector m -> Bvector n -> Prop.
Definition fun_adheres {m n} f (s : ospec m n) :=
forall vx, s vx (f vx).
Definition ospec_fun {m n} f : ospec m n :=
fun vx vy => f vx = vy.
Lemma ospec_fun_adheres :
forall m n (f : Bvector m -> Bvector n), fun_adheres f (ospec_fun f).
Proof. congruence. Qed.
Definition ospec_bool {n} (s : Bvector n -> bool -> Prop) : ospec n 1 :=
fun vx vy => s vx (hd vy).
Definition bool_fun_adheres {n} f (s : ospec n 1) :=
forall vx, s vx (f vx :: Bnil).
Definition ospec_bool_fun {n} f : ospec n 1 :=
ospec_bool (fun vx b => f vx = b).
Lemma ospec_bool_fun_adheres :
forall n (f : Bvector n -> bool), bool_fun_adheres f (ospec_bool_fun f).
Proof.
intros n f vx. unfold ospec_bool_fun, ospec_bool. reflexivity.
Qed.
Definition ospec_n m n (s : N -> N -> Prop) : ospec m n :=
fun vx vy => s (bvector2n vx) (bvector2n vy).
Definition n_fun_adheres {m n} f (s : ospec m n) :=
forall vx,
let ny := f (bvector2n vx) in N.size_nat ny <= n /\ s vx (n2bvector n ny).
Definition ospec_n_fun m n f : ospec m n :=
ospec_n m n (fun nx ny => f nx = ny).
Lemma ospec_n_fun_adheres :
forall m n (f : N -> N),
(forall nx, N.size_nat nx <= m -> N.size_nat (f nx) <= n) ->
n_fun_adheres f (ospec_n_fun m n f).
Proof.
intros m n f H vx. simpl. split.
- auto using size_bvector2n.
- unfold ospec_n_fun, ospec_n. rewrite n2bvector2n; auto using size_bvector2n.
Qed.
Definition ospec_n_bool n (s : N -> bool -> Prop) : ospec n 1 :=
fun vx vy => s (bvector2n vx) (hd vy).
Definition ospec_n_bool_fun n f : ospec n 1 :=
ospec_n_bool n (fun nx b => f nx = b).
Definition dec2checker P `{Dec P} := checker (dec2bool P).