You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
result in eglInitialize failure.
2.
Starting from pytorch/pytorch:latest docker with wsl2 as backend and run into the same problem so I'm pretty sure it is a wsl specific issue.
- Operating system: Windows 11 64-bit running ubuntu22.04 using wsl2
- Python version: Python 3.10
- Open3D version: output from python: 0.18.0
- System architecture: x86
- Is this a remote workstation?: no
- How did you install Open3D?: pip
- Compiler version (if built from source): gcc 11.2.0
Additional information
No response
The text was updated successfully, but these errors were encountered:
In case your numpy version is >=2.0.0 consider downgrading it to e.g. 1.26.4, that's the cause for a lot of the seemingly random segfaults on Open3D builds <=0.18 (#6874). If the issue persists, maybe someone else with WSL experience will chime in.
Does any of this WSL specific info help you? Otherwise I'm also out of ideas, hope someone else with more WSL experience can help.
I've tried these settings and it didn't help. I was actually able to reproduce the error on ubuntu docker on a host ubuntu machine as well.
However native ubuntu works fine.
Checklist
main
branch).Describe the issue
I've been trying to render Gaussian Marbles using open3d. Run into a segfault pretty quickly.
What I've tried so far:
1.
result in eglInitialize failure.
2.
Starting from pytorch/pytorch:latest docker with wsl2 as backend and run into the same problem so I'm pretty sure it is a wsl specific issue.
Steps to reproduce the bug
Error message
[Open3D INFO] EGL headless mode enabled.
FEngine (64 bits) created at 0x7fed1ab43010 (threading is enabled)
eglInitialize failed
Fatal Python error: Segmentation fault
Current thread 0x00007fee064ca740 (most recent call first):
File "", line 1 in
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, markupsafe._speedups, zmq.backend.cython._zmq, tornado.speedups, psutil._psutil_linux, psutil._psutil_posix, zstandard.backend_c, simplejson._speedups, charset_normalizer.md, sklearn.__check_build._check_build, lz4._version, lz4.frame._frame, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, numexpr.interpreter, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, sklearn.utils._isfinite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, sklearn.metrics._pairwise_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn.utils.arrayfuncs, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, _loss, sklearn._loss._loss, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.linear_model._sag_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, yaml._yaml, PIL._imaging (total: 190)
Segmentation fault (core dumped)
Expected behavior
No response
Open3D, Python and System information
Additional information
No response
The text was updated successfully, but these errors were encountered: