-
Notifications
You must be signed in to change notification settings - Fork 4
/
quadedge.pyx
326 lines (246 loc) · 8.88 KB
/
quadedge.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Quadedge implementation based on Lischinski's code published in
# Graphics Gems IV: https://github.com/erich666/GraphicsGems/tree/master/gemsiv/delaunay
# Use real division everywhere
from __future__ import division
import numpy as np
cimport numpy as np
from cpython cimport array as c_array
from array import array
import sys
from numbers import Number
np.import_array()
DTYPE = np.int
ctypedef np.int_t DTYPE_t
from cython.operator cimport postincrement as postinc
import math
from libc.math cimport sqrt, fabs
cdef float eps = 1e-6
cdef float_min = -sys.float_info.max
cdef class Edge:
def __cinit__(self, origin = None):
self.origin = origin
def __str__(self):
return "(" + str(self.origin.x) + "," + str(self.origin.y) + \
") -- (" + str(self.destination.x) + "," + str(self.destination.y) + ")"
property destination:
def __get__(self): return self.sym.origin
def __set__(self, dest): self.sym.origin = dest
property rot:
def __get__(self): return self._rot
property sym:
def __get__(self): return self._rot._rot
property invRot:
def __get__(self): return self._rot._rot._rot
property oNext:
def __get__(self): return self.next
property oPrev:
def __get__(self): return self.rot.next.rot
property dNext:
def __get__(self): return self.sym.next.sym
property dPrev:
def __get__(self): return self.invRot.next.invRot
property lNext:
def __get__(self): return self.invRot.next.rot
property lPrev:
def __get__(self): return self.next.sym
property rNext:
def __get__(self): return self.rot.next.invRot
property rPrev:
def __get__(self): return self.sym.next
property length:
def __get__(self):
vec = self.origin - self.destination
return np.sqrt(vec.x**2 + vec.y**2)
property is_boundary:
def __get__(self):
return self.oPrev.destination.rightOf(self)
cpdef asLineSegment(self):
return [self.origin.pos, self.destination.pos]
cdef class QuadEdge:
cdef public list edges
def __cinit__(self, Vertex origin, Vertex destination):
self.edges = 4*[None]
self.edges[0] = Edge(origin)
self.edges[1] = Edge()
self.edges[2] = Edge(destination)
self.edges[3] = Edge()
self.edges[0]._rot = self.edges[1]
self.edges[1]._rot = self.edges[2]
self.edges[2]._rot = self.edges[3]
self.edges[3]._rot = self.edges[0]
self.edges[0].next = self.edges[0]
self.edges[1].next = self.edges[3]
self.edges[2].next = self.edges[2]
self.edges[3].next = self.edges[1]
property base:
def __get__(self): return self.edges[0]
cpdef Edge splice(Edge a, Edge b):
cdef Edge alpha, beta, t1, t2, t3, t4
alpha = a.oNext.rot
beta = b.oNext.rot
t1 = b.oNext
t2 = a.oNext
t3 = beta.oNext
t4 = alpha.oNext
a.next = t1
b.next = t2
alpha.next = t3
beta.next = t4
cpdef Edge connect(Edge a, Edge b):
e = QuadEdge(a.destination, b.origin).base
splice(e, a.lNext)
splice(e.sym, b)
return e
cpdef Edge makeEdge(Vertex origin, Vertex destination):
e = QuadEdge(origin, destination).base
return e
cpdef deleteEdge(Edge e):
splice(e, e.oPrev)
splice(e.sym, e.sym.oPrev)
del e
cpdef swap(Edge e):
cdef Edge a, b
a = e.oPrev
b = e.sym.oPrev
splice(e, a)
splice(e.sym, b)
splice(e, a.lNext)
splice(e.sym, b.lNext)
e.origin = a.destination
e.destination = b.destination
cpdef makeTriangle(Vertex v0, Vertex v1, Vertex v2):
e0 = makeEdge(v0, v1)
e1 = makeEdge(v1, v2)
e2 = makeEdge(v2, v0)
splice(e0.sym, e1)
splice(e1.sym, e2)
splice(e2.sym, e0)
return e0
cdef class Vertex:
def __cinit__(self, long x, long y, float z = 0):
self.x = x
self.y = y
self.z = z
property pos:
def __get__(self):
return (self.x, self.y, self.z)
def __set__(self, pos):
self.x = pos[0]
self.y = pos[1]
self.z = pos[2]
cpdef inTriangle(self, Vertex v0, Vertex v1, Vertex v2):
return triangleArea(v0, v1, self) >= 0 and \
triangleArea(v1, v2, self) >= 0 and \
triangleArea(v2, v0, self) >= 0
cpdef inCircle(self, Vertex v0, Vertex v1, Vertex v2):
return ( v0.x ** 2 + v0.y ** 2) * triangleArea(v1, v2, self) - \
( v1.x ** 2 + v1.y ** 2) * triangleArea(v0, v2, self) + \
( v2.x ** 2 + v2.y ** 2) * triangleArea(v0, v1, self) - \
(self.x ** 2 + self.y ** 2) * triangleArea(v0, v1, v2) > eps
cpdef leftOf(self, Edge e):
return ccw(self, e.origin, e.destination)
cpdef rightOf(self, Edge e):
return ccw(self, e.destination, e.origin)
cpdef onEdge(self, Edge e):
cdef float t1, t2, t3
t1 = (self - e.origin).norm
t2 = (self - e.destination).norm
if (t1 < eps or t2 < eps):
return True
t3 = (e.origin - e.destination).norm
if t1 > t3 or t2 > t3:
return False
l = Line(e.origin, e.destination)
return fabs(l.evaluate(self)) < eps
property norm:
def __get__(self): return sqrt(self.x ** 2 + self.y ** 2)
def __add__(self, other):
return Vertex(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other):
return Vertex(self.x - other.x, self.y - other.y, self.z - other.z)
def __mul__(self, other):
if isinstance(other, Vertex):
return self.x * other.x + self.y * other.y
elif isinstance(other, Number):
return Vertex(self.x * other, self.y * other, self.z * other)
def __div__(self, other):
if isinstance(other, Number):
return Vertex(self.x / other, self.y / other, self.z / other)
def __richcmp__(self, other, operation):
if operation == 2:
return self.x == other.x and self.y == other.y and self.z == other.z
elif operation == 3:
return not(self.x == other.x and self.y == other.y and self.z == other.z)
else:
return False
def __str__(self):
return "({},{},{})".format(*self.pos)
cdef class Triangle:
def __cinit__(self, Edge e, anchor = True, ID = -1):
self.vertices = [e.origin, e.destination, e.lPrev.origin]
self.area = triangleArea(*self.vertices)
self.ID = ID
self.candidate = Vertex(-1, -1, 0)
self.candidate_error = float_min
if anchor:
self.anchor = e
self.reshape()
self.children = []
self.calculate_plane_equation()
cpdef reshape(self):
self.anchor.triangle = self
self.anchor.lNext.triangle = self
self.anchor.lPrev.triangle = self
cpdef calculate_plane_equation(self):
u = self.vertices[1] - self.vertices[0]
v = self.vertices[2] - self.vertices[0]
den = float(u.x * v.y - u.y * v.x)
self.a = (u.z * v.y - u.y * v.z) / den
self.b = (u.x * v.z - u.z * v.x) / den
self.c = self.vertices[0].z - \
self.a * self.vertices[0].x - \
self.b * self.vertices[0].y
cpdef interpolate(self, int x, int y):
return self.a * x + self.b * y + self.c
def __str__(self):
return "{} -- {} -- {}".format(self.vertices[0],
self.vertices[1],
self.vertices[2])
cpdef triangleArea(Vertex v0, Vertex v1, Vertex v2):
return (v1.x - v0.x) * (v2.y - v0.y) - (v1.y - v0.y) * (v2.x - v0.x);
cpdef ccw(Vertex v0, Vertex v1, Vertex v2):
return triangleArea(v0, v1, v2) > 0
cpdef list edgeRing(Edge e):
coordList = []
startEdge = e
coordList.append(tuple(e.origin.pos))
coordList.append(tuple(e.destination.pos))
e = e.lNext
while e != startEdge:
coordList.append(tuple(e.destination.pos))
e = e.lNext
return coordList
cdef class Line:
cdef public float a, b, c
def __cinit__(self, Vertex v0, Vertex v1):
cdef Vertex t = v1 - v0
cdef float l = t.norm
assert(l != 0)
self.a = t.y / l
self.b = -t.x / l
self.c = -(self.a * v0.x + self.b * v0.y)
cpdef evaluate(self, Vertex v):
return self.a * v.x + self.b * v.y + self.c
cpdef classify(self, Vertex v):
d = self.evaluate(v)
if d < -eps:
return -1
elif d > eps:
return 1
else:
return 0
cpdef Vertex intersect(self, Line l):
den = self.a * l.b - self.b * l.a
assert(den!=0)
return Vertex([(self.b * l.c - self.c * l.b) / den,
(self.c * l.a - self.a * l.c) / den])