-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_net.py
89 lines (73 loc) · 2.65 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from coStudents import add_teacher_config
from coStudents.engine.trainer_cos import CoSTrainer, BaselineTrainer
from coStudents.modeling.meta_arch.rcnn import DAobjTwoStagePseudoLabGeneralizedRCNN
from coStudents.modeling.proposal_generator.rpn import PseudoLabRPN
from coStudents.modeling.roi_heads.roi_head import StandardROIHeadsPseudoLab
import coStudents.data.datasets.builtin
from coStudents.modeling.meta_arch.ts_ensemble import EnsembleTSModel
from coStudents.engine.hooks import BestCheckpointer
def setup_config(args):
"""
Sets up the configuration from arguments.
"""
cfg = get_cfg()
add_teacher_config(cfg)
print("Config File:", args.config_file)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def select_trainer(cfg):
"""
Selects the trainer based on configuration.
"""
if cfg.SEMISUPNET.Trainer == "studentteacher":
return CoSTrainer
elif cfg.SEMISUPNET.Trainer == "baseline":
return BaselineTrainer
else:
raise ValueError(f"Unsupported Trainer: {cfg.SEMISUPNET.Trainer}")
def evaluate_model(cfg, args, Trainer):
"""
Evaluates the model.
"""
if cfg.SEMISUPNET.Trainer == "studentteacher":
model = Trainer.build_model(cfg)
model_teacher = Trainer.build_model(cfg)
ensemble_model = EnsembleTSModel(model_teacher, model)
DetectionCheckpointer(ensemble_model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return Trainer.test(cfg, ensemble_model.modelTeacher)
else:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return Trainer.test(cfg, model)
def main(args):
cfg = setup_config(args)
Trainer = select_trainer(cfg)
if args.eval_only:
return evaluate_model(cfg, args, Trainer)
trainer = Trainer(cfg)
trainer.register_hooks([BestCheckpointer()])
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)