forked from ndslusarz/formal_LDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ldl_capucci_quant.v
553 lines (494 loc) · 16.5 KB
/
ldl_capucci_quant.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
From HB Require Import structures.
Require Import Coq.Program.Equality.
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp Require Import lra.
From mathcomp Require Import all_classical reals ereal signed topology derive.
From mathcomp Require Import reals ereal signed.
From mathcomp Require Import topology derive normedtype sequences
exp measure lebesgue_measure lebesgue_integral hoelder.
Require Import mathcomp_extra analysis_extra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Num.Def Num.Theory GRing.Theory.
Import Order.TTheory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
(*
Reserved Notation "{[ e ]}" (format "{[ e ]}").
Reserved Notation "[[ e ]]_B" (at level 10, format "[[ e ]]_B").
*)
Section ldl_type.
Inductive ldl_type :=
| Fuzzy_T.
End ldl_type.
Section expr.
Context {d} {R : realType} {I : measurableType d} (P : probability I R).
Inductive expr : ldl_type -> Type :=
| ldl_true : expr Fuzzy_T
| ldl_false : expr Fuzzy_T
| ldl_and : expr Fuzzy_T -> expr Fuzzy_T -> expr Fuzzy_T
| ldl_or : expr Fuzzy_T -> expr Fuzzy_T -> expr Fuzzy_T
| ldl_dual : expr Fuzzy_T -> expr Fuzzy_T.
End expr.
Check expr Fuzzy_T.
Declare Scope ldl_scope.
Notation "`T" := (ldl_true).
Notation "`F" := (ldl_false).
Notation "a `/\ b" := (ldl_and a b) (at level 45).
Notation "a `\/ b" := (ldl_or a b) (at level 45).
Notation "`~ a" := (ldl_dual a) (at level 75). (* is the DUAL operator NOT negation -J*)
Notation "\ldl_or_ ( i <- r ) F" :=
(\big[ldl_or/(ldl_false)]_(i <- r) F ) (at level 45).
Section type_translation.
Context {R : realType} {I : realType}.
Definition type_translation (t : ldl_type) : Type:=
match t with
| Fuzzy_T => \bar R
end.
Definition bool_type_translation (t : ldl_type) : Type :=
match t with
| Fuzzy_T => bool
end.
End type_translation.
Section bool_translation.
Local Open Scope ring_scope.
Local Open Scope ldl_scope.
Local Open Scope ereal_dual_scope.
Context {d} {R : realType} {I : measurableType d} (P : probability I R).
Fixpoint bool_translation {t} (e : @expr t ) : bool_type_translation t := (*????*)
match e in expr t return bool_type_translation t with
| `T => true
| `F => false
| a `/\ b => << a >> && << b >>
| a `\/ b => << a >> || << b >>
| `~ a => ~~ << a >>
end
where "<< e >>" := (bool_translation e).
End bool_translation.
Notation "[[ e ]]_B" := (bool_translation e) : ldl_scope.
Section sc_mod.
Local Open Scope ring_scope.
Local Open Scope ldl_scope.
Local Open Scope ereal_scope.
Context {R : realType}.
Implicit Types (k : R) (a : \bar R).
Definition poweR' a k := if (a == 0%R) then 0%R else (a `^ k)%E.
End sc_mod.
Section fuzzy_translation.
Local Open Scope ring_scope.
Local Open Scope ldl_scope.
Local Open Scope ereal_scope.
Context {R : realType} {I : realType}.
Fixpoint translation {t} (e : @expr R I t) {struct e} : type_translation t :=
match e in expr t return type_translation t with
| `f [a] => `| << f >> a |(*???*)
| a `/\ b => mine << a >> << b >>
| a `\/ b => maxe << a >> << b >>
| `~ a =>
if << a >> is (v%:E) then
if v == 0 %R then +oo
else (v^-1%:E )
else 0
| a `+ b => << a >> + << b >>
| a `* b => << a >> * << b >>
| k `° a =>
if << k >> is v%:E then
poweR' << a >> v
else +oo * << a >>
| ldl_real r => r
| ldl_idx n i => i
| ldl_vec n t => t
| ldl_ffun f => f
| ldl_fun n m f => f
| ldl_app n m f v => << f >> << v >>
| ldl_lookup n v i => tnth << v >> << i >>
end
where "<< e >>" := (translation e).
End fuzzy_translation.
Section some_properties.
Local Open Scope ring_scope.
Local Open Scope ereal_scope.
Local Open Scope ldl_scope.
Context {R : realType} {I : realType}.
Notation "<< e >>" := (@translation R I _ e) : ldl_scope.
Notation "[[ e ]]" := (@bool_translation R I _ e) : ldl_scope.
Lemma total_cap : forall x : expr Fuzzy_T, exists y : \bar R, y = << x >>.
Proof.
dependent induction x; eapply ex_intro; auto.
Qed.
Lemma or_mine : forall x1 x2 : \bar R, mine x1 x2 = x1 \/ mine x1 x2 = x2.
Proof.
move => x1 x2. elim x1.
- move => a1. elim x2.
-- move => a2. unfold mine. simpl. induction (a1%:E < a2%:E).
--- left. reflexivity.
--- right. reflexivity.
-- unfold mine. rewrite (ltry a1). left. reflexivity.
-- unfold mine. simpl. right. reflexivity.
- elim x2.
-- move => a2. unfold mine. simpl. right. reflexivity.
-- unfold mine. simpl. left. reflexivity.
-- unfold mine. simpl. right. reflexivity.
- elim x2.
-- move => a2. unfold mine. rewrite (ltNyr a2). left. reflexivity.
-- unfold mine. simpl. left. reflexivity.
-- unfold mine. simpl. left. reflexivity.
Qed.
Lemma or_maxe : forall x1 x2 : \bar R, maxe x1 x2 = x1 \/ maxe x1 x2 = x2.
Proof.
move => x1 x2. elim x1.
- move => a1. elim x2.
-- move => a2. unfold maxe. simpl. induction (a1%:E < a2%:E).
--- right. reflexivity.
--- left. reflexivity.
-- unfold maxe. rewrite (ltry a1). right. reflexivity.
-- unfold maxe. simpl. left. reflexivity.
- elim x2.
-- move => a2. unfold maxe. simpl. left. reflexivity.
-- unfold maxe. simpl. right. reflexivity.
-- unfold maxe. simpl. left. reflexivity.
- elim x2.
-- move => a2. unfold maxe. rewrite (ltNyr a2). right. reflexivity.
-- unfold maxe. simpl. right. reflexivity.
-- unfold maxe. simpl. right. reflexivity.
Qed.
Lemma poweR'_ge0 : forall (x : \bar R) (r : R) , 0 <= poweR' x r.
Proof.
by move => x r; rewrite /poweR'; case (x == 0) eqn:H; rewrite H //= ?poweR_ge0.
Qed.
Lemma nneg_cap : forall x : expr Fuzzy_T, 0%:E <= << x >>.
Proof.
dependent induction x.
- (* x1 `/\ x2*)
by rewrite /= le_min IHx1 // IHx2.
- (* x1 `\/ x2*)
by rewrite /= le_max IHx1 // IHx2.
- (*`~ x*)
have /= := IHx x erefl JMeq_refl.
by case : << x >> => // r; case : ifP => H; rewrite ?leey // !lee_fin invr_ge0.
- (* x1 `+ x2 *)
rewrite /= lee_paddr //. rewrite IHx2 //. rewrite IHx1 //.
-- (* x1 `* x2 *)
rewrite /= mule_ge0 //. rewrite IHx1 //. rewrite IHx2 //.
-- (* <<x1 `° x2>> *)
by rewrite //=; case << x1 >> eqn:H; rewrite ?poweR'_ge0 // mule_ge0 // IHx2.
-- (* ` x [i] *)
by rewrite abse_ge0 //.
Qed.
Lemma maxe_id : forall x : \bar R, maxe x x = x.
Proof.
by move => x; destruct (or_maxe x x) as [H0 | H0]; rewrite !H0.
Qed.
Lemma eqF : forall x y : R, x != y -> x == y = false.
Proof.
move=> x y H.
apply : (contra_neqF _ H). move => H1. apply (eqP H1).
Qed.
Lemma EFin_fin_num : forall s : R, s%:E \is a fin_num.
Proof.
move => s.
apply fin_real.
apply/andP. split.
apply (ltNyr s).
apply (ltry s).
Qed.
Lemma maxeMr_nneg : forall k x1 x2 : \bar R,
0%:E <= k -> 0%:E <= x1 -> 0%:E <= x2 ->
k * (maxe x1 x2) = maxe (k * x1) (k * x2).
Proof.
move => k x1 x2 H H0 H1.
rewrite le_eqVlt in H;
rewrite le_eqVlt in H0;
rewrite le_eqVlt in H1.
destruct (orP H) as [H2 | H2].
- (*0%:E == k*)
by rewrite <- (eqP H2); rewrite !mul0e maxe_id.
- (*0%:E < k*)
destruct k.
-- (* k = s%:E*)
apply/maxeMr. apply/EFin_fin_num. apply/H2.
-- (*k = +oo*)
destruct (orP H0) as [H3 | H3].
--- (*0%:E == x1*)
rewrite <- (eqP H3); rewrite mule0.
destruct (orP H1) as [H4 | H4].
---- (*0%:E == x2 *)
rewrite <- (eqP H4); by rewrite mule0 maxe_id mule0.
---- (*0%:E < x2*)
rewrite !gt0_mulye /maxe. by rewrite lt0y //.
by rewrite H4.
by rewrite H4.
--- (*0%:E < x1*)
destruct (orP H1) as [H4 | H4].
---- (*0%:E == x2*)
rewrite <- (eqP H4).
by rewrite mule0 !gt0_mulye //= maxC /maxe H3 H3.
---- (*0%:E < x2*)
rewrite !gt0_mulye // lt_max.
by apply/orP; left.
-- (*k = -oo*)
by [].
Qed.
Lemma ldl_ten_dor : forall k a b : expr Fuzzy_T,
<< k `* (a `\/ b) >> = << (k `* a ) `\/ (k `* b ) >>.
Proof.
move => k a b. simpl. rewrite maxeMr_nneg. reflexivity.
- by rewrite nneg_cap.
- by rewrite nneg_cap.
- by rewrite nneg_cap.
Qed.
Lemma ldl_ten_big_dor : forall s : seq (expr Fuzzy_T), forall k : expr Fuzzy_T,
<< k `* (\ldl_or_ ( i <- s ) i) >> = << \ldl_or_ ( i <- s) (k `* i) >>.
Proof.
move => s k.
elim s.
-
by rewrite //= unlock //= normr0 mule0.
-
move => a l H.
rewrite !big_cons.
rewrite ldl_ten_dor //=.
by rewrite <- H; simpl.
Qed.
Lemma ldl_tenC : forall x1 x2 : expr Fuzzy_T, << x1 `* x2 >> = << x2 `* x1 >>.
Proof.
by move => x1 x2 /=; rewrite muleC.
Qed.
Lemma ldl_tenA : forall x1 x2 x3 : expr Fuzzy_T, << (x1 `* x2) `* x3 >> = << x1 `* (x2 `* x3) >>.
Proof.
by move => x1 x2 x3 //=; rewrite muleA.
Qed.
Lemma ldl_ten1 : forall y x : expr Fuzzy_T, (*multiplicative identities*) (* how do I make 'y' an explicit argument?*)
<< y >> = 1 -> << x `* y >> = << x >> /\ << y `* x >> = << x >>.
Proof.
move => x y H //=. split.
- (* prove <<x>> * <<y>> = <<x>> *)
by rewrite H; rewrite mule1.
- (* prove <<y>> * <<x>> = <<x>>*)
by rewrite H; rewrite muleC; rewrite mule1.
Qed.
Lemma ldl_ten_1_is_unit : forall u : expr Fuzzy_T, (*unit elements*)
<< u >> = 1 -> exists v : expr Fuzzy_T, << u `* v >> = 1 /\ << v `* u >> = 1.
Proof.
by move => u H; exists ldl_one; rewrite //= normr1 mule1 muleC mule1 H.
Qed.
Lemma ldl_ten_unitary : exists u : expr Fuzzy_T, exists v : expr Fuzzy_T,
<< u `* v >> = 1 /\ << v `* u >> = 1.
Proof.
exists ldl_one. exists ldl_one.
simpl.
by rewrite normr1 mule1 //=.
Qed.
Lemma le0e_lte0_EFin : forall a : \bar R, 0%R <= a < +oo -> exists s : R, a = s%:E.
Proof.
move => a H.
destruct (andP H) as [H0 H1].
destruct a eqn:H2.
- (*a = s%:E*)
exists s. reflexivity.
- (*a = +oo*)
rewrite ltey in H1.
rewrite <- contra.Internals.eqType_neqP in H1.
contradiction.
- (*a = -oo*)
remember (@ltNy0 R) as H3.
move : HeqH3; move => _.
simpl in H3.
apply ltW in H3.
remember (@le_anti_ereal R (0%R : \bar R) (-oo : \bar R) H0) as H4.
move : HeqH4; move => _.
rewrite <- H4. by exists 0%R.
Qed.
Lemma ldl_dual_dten : forall a b : expr Fuzzy_T,
0 < << a >> < +oo /\ 0 < << b >> < +oo ->
<< `~ (a `* b) >> = << (`~ a) `* (`~ b) >>.
Proof.
move => a b H.
destruct H as [H H0].
destruct (andP H) as [H1 H2].
destruct (andP H0) as [H3 H4].
assert (H5 : exists s : R, << a >> = s%:E).
{apply/le0e_lte0_EFin. apply/andP. split. apply (ltW H1). apply H2. }
assert (H6 : exists s : R, << b >> = s%:E).
{apply/le0e_lte0_EFin. apply/andP. split. apply (ltW H3). apply H4. }
destruct H5 as [s H5].
destruct H6 as [v H6].
rewrite //= H5 H6.
rewrite H6 in H3.
case (s == 0%R) eqn:H7.
- (*s == 0%R = true*)
rewrite (eqP H7) mul0e /= eq_refl.
case (v == 0%R) eqn:H8.
-- (*v == 0%R = true*)
by rewrite mulyy.
-- (*v == 0%R = false*)
rewrite /Order.lt /= in H3.
by rewrite gt0_mulye //= /Order.lt /= invr_gt0 H3.
- (*s == 0%R = false*)
rewrite [v == _]eq_sym.
apply lt_eqF in H3 as H8.
rewrite eqe in H8.
rewrite //= H8.
rewrite eqF.
rewrite invrM' /mule //.
(*prove s != 0%R*)
rewrite H7 //.
(*prove (s * v)%R != 0%R*)
rewrite mulf_neq0 //=.
(*prove s != 0%R*)
by rewrite H7.
(*prove v != 0%R*)
by rewrite eq_sym H8.
Qed.
Lemma ldl_dual_le : forall a b c : expr Fuzzy_T,
<< a `* b >> <= << `~ c >> <-> << a >> <= << `~ (b `* c) >>.
Proof.
move => a b c /=.
have a_nneg := nneg_cap a.
have b_nneg := nneg_cap b.
have c_nneg := nneg_cap c.
case << c >> eqn:H.
- (*<<c>> = s%:E*)
case (s == 0%R) eqn:H0.
-- (*(s == 0%R) = true*)
by rewrite (eqP H0) /= leey mule0 /= eq_refl leey.
-- (*(s == 0%R) = false*)
case << b >> eqn:H1.
--- (*<<b>> = s0%:E*)
rewrite /=.
case (s0 == 0%R) eqn:H2.
---- (*(s0 == 0%R) = true*)
rewrite (eqP H2) mule0 mul0r eq_refl leey /Order.le /= invr_ge0 //.
---- (*(s0 == 0%R) = false*)
rewrite eqF. rewrite <- (lee_pdivlMr << a >> ).
rewrite muleC invrM' /mule //=.
(*prove s0 != 0%R*)
by rewrite H2.
(*prove (0 < s0)%R*)
rewrite lt_neqAle.
apply/andP. split.
----- (*prove 0%R != s0*)
by rewrite eq_sym H2.
----- (*prove 0%R <= s0*)
apply /b_nneg.
(*prove (s0 * s)%R != 0%R*)
apply /mulf_neq0.
(*prove s0 != 0%R*)
by rewrite H2.
(*prove s != 0%R*)
by rewrite H0.
-- (*(s == 0%R) = false*)
case (<< a >> == 0%R) eqn:H2.
--- (*(<<a>> == 0%R) = true*)
unfold "*". unfold "==". simpl.
rewrite //= lt0y H0 !lt_neqAle (eq_sym 0 s%:E).
unfold "==". simpl. rewrite H0 //= c_nneg a_nneg.
by rewrite (eqP H2) //= eq_refl le_refl /Order.le //= invr_ge0.
--- (*(<<a>> == 0%R) = false*)
assert (H3 : 0 < << a >> ).
{rewrite lt_neqAle. apply/andP. split. rewrite eq_sym H2 //. rewrite a_nneg //. }
rewrite (gt0_muley H3).
unfold "*". unfold "==". simpl.
rewrite H0 lt_neqAle. unfold "!=". simpl. unfold "==". simpl.
rewrite eq_sym H0 c_nneg //=.
rewrite {1}/Order.le //=.
apply lt_geF in H3 as H4. rewrite H4 //.
--- (*<<b>> = -oo *)
by [].
- (*<<c>> = +oo*)
case (<< b >> == 0%R) eqn:H0.
-- (*(<<b>> == 0%R) = true*)
by rewrite (eqP H0) mule0 mul0e /= eq_refl le_refl leey.
-- (*(<<b>> == 0%R) = false*)
assert (H1 : 0 < << b >> ).
{rewrite lt_neqAle. apply/andP. split. rewrite eq_sym H0 //. rewrite b_nneg //. }
rewrite (gt0_muley H1).
case (<< a >> == 0%R) eqn:H2.
--- (*(<<a>> == 0%R) = true*)
rewrite (eqP H2) mul0e //=.
--- (*(<<a>> == 0%R) = false*)
assert (H3 : 0 < << a >> ).
{rewrite lt_neqAle. apply/andP. split. rewrite eq_sym H2 //. rewrite a_nneg //. }
rewrite (lt_geF H3).
rewrite lt_geF //.
(*prove 0%R < <<a>> * <<b>>*)
rewrite (mule_gt0 H3 H1) //.
- (*<<c>> = +oo*)
by [].
Qed.
Definition is_cap b (x : \bar R) := if b then x == +oo else x == 0.
Lemma ldl_cap_sound : forall e : expr Fuzzy_T, forall b : bool,
is_cap b << e >> -> [[ e ]] = b.
Proof.
Definition is_cap_range b (x : \bar R) := if b then 1 <= x else x < 1.
Lemma ldl_cap_sound_range : forall e : expr Fuzzy_T, forall b : bool,
is_cap_range b << e >> -> [[ e ]] = b.
Proof.
move => e. dependent induction e; rewrite //=; move => b.
- (*and*)
case b eqn:H0;
have H1 := IHe1 _ erefl JMeq_refl b; rewrite H0 //= in H1;
have H2 := IHe2 _ erefl JMeq_refl b; rewrite H0 //= in H2;
rewrite //=; rewrite //= ?le_min ?gt_min; move => H3.
-- (*true*)
destruct (andP H3) as [H4 H5]; rewrite (H1 H4) (H2 H5) //.
-- (*false*)
destruct (orP H3) as [H4 | H4];
rewrite ?(H1 H4) //= ?(H2 H4) Bool.andb_comm //=.
- (*or*)
case b eqn:H0;
have H1 := IHe1 _ erefl JMeq_refl b; rewrite H0 //= in H1;
have H2 := IHe2 _ erefl JMeq_refl b; rewrite H0 //= in H2;
rewrite //=; rewrite //= ?le_max ?gt_max; move => H3.
-- (*true*)
destruct (orP H3) as [H4 | H4]; rewrite ?(H1 H4) //= ?(H2 H4) orbC //=.
-- (*false*)
destruct (andP H3) as [H4 H5]; rewrite ?(H1 H4) //= ?(H2 H5) //=.
- (*neg*)
admit.
(*
case b eqn:H0;
have H1 := IHe _ erefl JMeq_refl (~~ b); rewrite H0 //= in H1;
rewrite //=.
-- (*true*)
case << e >> eqn:H2.
--- (*<<e>> = s%:E*)
case (s == 0%R) eqn:H3.
---- (*(s == 0%R) = true*)
rewrite (eqP H3) lte01 //= in H1.
rewrite H1 //.
---- (*(s == 0%R) = true*)
move => H4.
assert (H5 : 1 <= (s^-1)%:E * 1). {rewrite mule1. apply H4. } (*???*)
rewrite lee_pdivlMl in H5. rewrite mule1 in H5.
have H6 := (lt_def s%:E 1). (*impossible to assert s != 1*)
*)
- (*add*)
admit. (*not sound*)
- (*mul*)
(*
move => e b. case b eqn:H; rewrite /=.
- (*b = true*)
dependent induction e; rewrite /=.
-- (*and*)
have H1 := IHe1 _ erefl JMeq_refl _ erefl;
have H2 := IHe2 _ erefl JMeq_refl _ erefl.
rewrite le_min; move => H0.
destruct (andP H0) as [H3 H4]; rewrite (H1 H3) (H2 H4) //.
-- (*or*)
have H1 := IHe1 _ erefl JMeq_refl _ erefl;
have H2 := IHe2 _ erefl JMeq_refl _ erefl.
rewrite le_max; move => H0.
destruct (orP H0) as [H3 | H4]; rewrite ?(H1 H3) //= ?(H2 H4) orbC //=.
-- (*not*)
have H1 := IHe _ erefl JMeq_refl _ erefl.
case << e >> eqn:H2.
--- (*<<e>> = s%:E*)
case (s == 0%R) eqn:H3.
---- (*true*)
Search "orbC".
*)
Admitted.
Search "expR".
End some_properties.