-
Notifications
You must be signed in to change notification settings - Fork 0
/
myBackProp2.py
103 lines (81 loc) · 2.57 KB
/
myBackProp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import pandas as pd
from matplotlib import pyplot as ply
#%%
data = pd.read_csv("D:\\eafit\\2021 2\\opt1\\proyecto\\train.csv")
#%%
data = np.array(data)
m, n = data.shape
np.random.shuffle(data)
data_dev = data[0:1000].T
Y_dev = data_dev[0]
X_dev = data_dev[1:n]
X_dev = X_dev / 255.
data_train = data[1000:m].T
Y_train = data_train[0]
X_train = data_train[1:n]
X_train = X_train / 255.
_,m_train = X_train.shape
#%%
def init_params(n_features = 784, hidden_layers = 1):
W1 = np.random.rand(10, n_features) - 0.5
b1 = np.random.rand(10, 1) - 0.5
hiddenList = [[
np.random.rand(10, 10) - 0.5,
np.random.rand(10, 1) - 0.5
]
for i in hidden_layers]
return W1, b1, hiddenList
def forward_prop(W1, b1, hiddenList, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
for i in range(hiddenList.length):
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
def ReLU(Z):
return np.maximum(Z, 0)
def softmax(Z):
return np.exp(Z) / sum(np.exp(Z))
# m is the number of rows or examples
def backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y):
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
return dW1, db1, dW2, db2
def ReLU_deriv(Z):
return Z > 0
def one_hot(Y):
one_hot_Y = np.zeros((Y.size, Y.max() + 1))
one_hot_Y[np.arange(Y.size), Y] = 1
one_hot_Y = one_hot_Y.T
return one_hot_Y
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
def get_predictions(A2):
return np.argmax(A2, 0)
def get_accuracy(predictions, Y):
print(predictions, Y)
return np.sum(predictions == Y) / Y.size
def gradient_descent(X, Y, alpha, iterations, hiddenLayers = 1):
n_features, _ = X.shape
W1, b1, layersList = init_params(n_features)
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 10 == 0:
print("Iteration: ", i)
predictions = get_predictions(A2)
print(get_accuracy(predictions, Y))
return W1, b1, W2, b2
#%%
W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 0.10, 500)