This repository has been archived by the owner on Sep 15, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 338
/
Dispatcher.cpp
466 lines (380 loc) · 16.4 KB
/
Dispatcher.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#include "Dispatcher.hpp"
// Includes
#include <stdexcept>
#include <iostream>
#include <thread>
#include <sstream>
#include <iomanip>
#include <random>
#include <thread>
#include <algorithm>
#include "precomp.hpp"
static std::string toHex(const uint8_t * const s, const size_t len) {
std::string b("0123456789abcdef");
std::string r;
for (size_t i = 0; i < len; ++i) {
const unsigned char h = s[i] / 16;
const unsigned char l = s[i] % 16;
r = r + b.substr(h, 1) + b.substr(l, 1);
}
return r;
}
static void printResult(cl_ulong4 seed, cl_ulong round, result r, cl_uchar score, const std::chrono::time_point<std::chrono::steady_clock> & timeStart, const Mode & mode) {
// Time delta
const auto seconds = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
// Format private key
cl_ulong carry = 0;
cl_ulong4 seedRes;
seedRes.s[0] = seed.s[0] + round; carry = seedRes.s[0] < round;
seedRes.s[1] = seed.s[1] + carry; carry = !seedRes.s[1];
seedRes.s[2] = seed.s[2] + carry; carry = !seedRes.s[2];
seedRes.s[3] = seed.s[3] + carry + r.foundId;
std::ostringstream ss;
ss << std::hex << std::setfill('0');
ss << std::setw(16) << seedRes.s[3] << std::setw(16) << seedRes.s[2] << std::setw(16) << seedRes.s[1] << std::setw(16) << seedRes.s[0];
const std::string strPrivate = ss.str();
// Format public key
const std::string strPublic = toHex(r.foundHash, 20);
// Print
const std::string strVT100ClearLine = "\33[2K\r";
std::cout << strVT100ClearLine << " Time: " << std::setw(5) << seconds << "s Score: " << std::setw(2) << (int) score << " Private: 0x" << strPrivate << ' ';
std::cout << mode.transformName();
std::cout << ": 0x" << strPublic << std::endl;
}
unsigned int getKernelExecutionTimeMicros(cl_event & e) {
cl_ulong timeStart = 0, timeEnd = 0;
clWaitForEvents(1, &e);
clGetEventProfilingInfo(e, CL_PROFILING_COMMAND_START, sizeof(timeStart), &timeStart, NULL);
clGetEventProfilingInfo(e, CL_PROFILING_COMMAND_END, sizeof(timeEnd), &timeEnd, NULL);
return (timeEnd - timeStart) / 1000;
}
Dispatcher::OpenCLException::OpenCLException(const std::string s, const cl_int res) :
std::runtime_error( s + " (res = " + toString(res) + ")"),
m_res(res)
{
}
void Dispatcher::OpenCLException::OpenCLException::throwIfError(const std::string s, const cl_int res) {
if (res != CL_SUCCESS) {
throw OpenCLException(s, res);
}
}
cl_command_queue Dispatcher::Device::createQueue(cl_context & clContext, cl_device_id & clDeviceId) {
// nVidia CUDA Toolkit 10.1 only supports OpenCL 1.2 so we revert back to older functions for compatability
#ifdef PROFANITY_DEBUG
cl_command_queue_properties p = CL_QUEUE_PROFILING_ENABLE;
#else
cl_command_queue_properties p = NULL;
#endif
#ifdef CL_VERSION_2_0
const cl_command_queue ret = clCreateCommandQueueWithProperties(clContext, clDeviceId, &p, NULL);
#else
const cl_command_queue ret = clCreateCommandQueue(clContext, clDeviceId, p, NULL);
#endif
return ret == NULL ? throw std::runtime_error("failed to create command queue") : ret;
}
cl_kernel Dispatcher::Device::createKernel(cl_program & clProgram, const std::string s) {
cl_kernel ret = clCreateKernel(clProgram, s.c_str(), NULL);
return ret == NULL ? throw std::runtime_error("failed to create kernel \"" + s + "\"") : ret;
}
cl_ulong4 Dispatcher::Device::createSeed() {
#ifdef PROFANITY_DEBUG
cl_ulong4 r;
r.s[0] = 1;
r.s[1] = 1;
r.s[2] = 1;
r.s[3] = 1;
return r;
#else
// Randomize private keys
std::random_device rd;
std::mt19937_64 eng(rd());
std::uniform_int_distribution<cl_ulong> distr;
cl_ulong4 r;
r.s[0] = distr(eng);
r.s[1] = distr(eng);
r.s[2] = distr(eng);
r.s[3] = distr(eng);
return r;
#endif
}
Dispatcher::Device::Device(Dispatcher & parent, cl_context & clContext, cl_program & clProgram, cl_device_id clDeviceId, const size_t worksizeLocal, const size_t size, const size_t index, const Mode & mode) :
m_parent(parent),
m_index(index),
m_clDeviceId(clDeviceId),
m_worksizeLocal(worksizeLocal),
m_clScoreMax(0),
m_clQueue(createQueue(clContext, clDeviceId) ),
m_kernelInit( createKernel(clProgram, "profanity_init") ),
m_kernelInverse(createKernel(clProgram, "profanity_inverse")),
m_kernelIterate(createKernel(clProgram, "profanity_iterate")),
m_kernelTransform( mode.transformKernel() == "" ? NULL : createKernel(clProgram, mode.transformKernel())),
m_kernelScore(createKernel(clProgram, mode.kernel)),
m_memPrecomp(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, sizeof(g_precomp), g_precomp),
m_memPointsDeltaX(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memInversedNegativeDoubleGy(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memPrevLambda(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS, size, true),
m_memResult(clContext, m_clQueue, CL_MEM_READ_WRITE | CL_MEM_HOST_READ_ONLY, PROFANITY_MAX_SCORE + 1),
m_memData1(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_memData2(clContext, m_clQueue, CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY, 20),
m_clSeed(createSeed()),
m_round(0),
m_speed(PROFANITY_SPEEDSAMPLES),
m_sizeInitialized(0),
m_eventFinished(NULL)
{
}
Dispatcher::Device::~Device() {
}
Dispatcher::Dispatcher(cl_context & clContext, cl_program & clProgram, const Mode mode, const size_t worksizeMax, const size_t inverseSize, const size_t inverseMultiple, const cl_uchar clScoreQuit)
: m_clContext(clContext), m_clProgram(clProgram), m_mode(mode), m_worksizeMax(worksizeMax), m_inverseSize(inverseSize), m_size(inverseSize*inverseMultiple), m_clScoreMax(mode.score), m_clScoreQuit(clScoreQuit), m_eventFinished(NULL), m_countPrint(0) {
}
Dispatcher::~Dispatcher() {
}
void Dispatcher::addDevice(cl_device_id clDeviceId, const size_t worksizeLocal, const size_t index) {
Device * pDevice = new Device(*this, m_clContext, m_clProgram, clDeviceId, worksizeLocal, m_size, index, m_mode);
m_vDevices.push_back(pDevice);
}
void Dispatcher::run() {
m_eventFinished = clCreateUserEvent(m_clContext, NULL);
timeStart = std::chrono::steady_clock::now();
init();
const auto timeInitialization = std::chrono::duration_cast<std::chrono::seconds>(std::chrono::steady_clock::now() - timeStart).count();
std::cout << "Initialization time: " << timeInitialization << " seconds" << std::endl;
m_quit = false;
m_countRunning = m_vDevices.size();
std::cout << "Running..." << std::endl;
std::cout << " Always verify that a private key generated by this program corresponds to the" << std::endl;
std::cout << " public key printed by importing it to a wallet of your choice. This program" << std::endl;
std::cout << " like any software might contain bugs and it does by design cut corners to" << std::endl;
std::cout << " improve overall performance." << std::endl;
std::cout << std::endl;
for (auto it = m_vDevices.begin(); it != m_vDevices.end(); ++it) {
dispatch(*(*it));
}
clWaitForEvents(1, &m_eventFinished);
clReleaseEvent(m_eventFinished);
m_eventFinished = NULL;
}
void Dispatcher::init() {
std::cout << "Initializing devices..." << std::endl;
std::cout << " This should take less than a minute. The number of objects initialized on each" << std::endl;
std::cout << " device is equal to inverse-size * inverse-multiple. To lower" << std::endl;
std::cout << " initialization time (and memory footprint) I suggest lowering the" << std::endl;
std::cout << " inverse-multiple first. You can do this via the -I switch. Do note that" << std::endl;
std::cout << " this might negatively impact your performance." << std::endl;
std::cout << std::endl;
const auto deviceCount = m_vDevices.size();
m_sizeInitTotal = m_size * deviceCount;
m_sizeInitDone = 0;
cl_event * const pInitEvents = new cl_event[deviceCount];
for (size_t i = 0; i < deviceCount; ++i) {
pInitEvents[i] = clCreateUserEvent(m_clContext, NULL);
m_vDevices[i]->m_eventFinished = pInitEvents[i];
initBegin(*m_vDevices[i]);
}
clWaitForEvents(deviceCount, pInitEvents);
for (size_t i = 0; i < deviceCount; ++i) {
m_vDevices[i]->m_eventFinished = NULL;
clReleaseEvent(pInitEvents[i]);
}
delete[] pInitEvents;
std::cout << std::endl;
}
void Dispatcher::initBegin(Device & d) {
// Set mode data
for (auto i = 0; i < 20; ++i) {
d.m_memData1[i] = m_mode.data1[i];
d.m_memData2[i] = m_mode.data2[i];
}
// Write precompute table and mode data
d.m_memPrecomp.write(true);
d.m_memData1.write(true);
d.m_memData2.write(true);
// Kernel arguments - profanity_begin
d.m_memPrecomp.setKernelArg(d.m_kernelInit, 0);
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInit, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelInit, 2);
d.m_memResult.setKernelArg(d.m_kernelInit, 3);
CLMemory<cl_ulong4>::setKernelArg(d.m_kernelInit, 4, d.m_clSeed);
// Kernel arguments - profanity_inverse
d.m_memPointsDeltaX.setKernelArg(d.m_kernelInverse, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelInverse, 1);
// Kernel arguments - profanity_iterate
d.m_memPointsDeltaX.setKernelArg(d.m_kernelIterate, 0);
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelIterate, 1);
d.m_memPrevLambda.setKernelArg(d.m_kernelIterate, 2);
// Kernel arguments - profanity_transform_*
if(d.m_kernelTransform) {
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelTransform, 0);
}
// Kernel arguments - profanity_score_*
d.m_memInversedNegativeDoubleGy.setKernelArg(d.m_kernelScore, 0);
d.m_memResult.setKernelArg(d.m_kernelScore, 1);
d.m_memData1.setKernelArg(d.m_kernelScore, 2);
d.m_memData2.setKernelArg(d.m_kernelScore, 3);
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax); // Updated in handleResult()
// Seed device
initContinue(d);
}
void Dispatcher::initContinue(Device & d) {
size_t sizeLeft = m_size - d.m_sizeInitialized;
const size_t sizeInitLimit = m_size / 20;
// Print progress
const size_t percentDone = m_sizeInitDone * 100 / m_sizeInitTotal;
std::cout << " " << percentDone << "%\r" << std::flush;
if (sizeLeft) {
cl_event event;
const size_t sizeRun = std::min(sizeInitLimit, std::min(sizeLeft, m_worksizeMax));
const auto resEnqueue = clEnqueueNDRangeKernel(d.m_clQueue, d.m_kernelInit, 1, &d.m_sizeInitialized, &sizeRun, NULL, 0, NULL, &event);
OpenCLException::throwIfError("kernel queueing failed during initilization", resEnqueue);
// See: https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clSetEventCallback.html
// If an application needs to wait for completion of a routine from the above list in a callback, please use the non-blocking form of the function, and
// assign a completion callback to it to do the remainder of your work. Note that when a callback (or other code) enqueues commands to a command-queue,
// the commands are not required to begin execution until the queue is flushed. In standard usage, blocking enqueue calls serve this role by implicitly
// flushing the queue. Since blocking calls are not permitted in callbacks, those callbacks that enqueue commands on a command queue should either call
// clFlush on the queue before returning or arrange for clFlush to be called later on another thread.
clFlush(d.m_clQueue);
std::lock_guard<std::mutex> lock(m_mutex);
d.m_sizeInitialized += sizeRun;
m_sizeInitDone += sizeRun;
const auto resCallback = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback during initialization", resCallback);
} else {
// Printing one whole string at once helps in avoiding garbled output when executed in parallell
const std::string strOutput = " GPU" + toString(d.m_index) + " initialized";
std::cout << strOutput << std::endl;
clSetUserEventStatus(d.m_eventFinished, CL_COMPLETE);
}
}
void Dispatcher::enqueueKernel(cl_command_queue & clQueue, cl_kernel & clKernel, size_t worksizeGlobal, const size_t worksizeLocal, cl_event * pEvent = NULL) {
const size_t worksizeMax = m_worksizeMax;
size_t worksizeOffset = 0;
while (worksizeGlobal) {
const size_t worksizeRun = std::min(worksizeGlobal, worksizeMax);
const size_t * const pWorksizeLocal = (worksizeLocal == 0 ? NULL : &worksizeLocal);
const auto res = clEnqueueNDRangeKernel(clQueue, clKernel, 1, &worksizeOffset, &worksizeRun, pWorksizeLocal, 0, NULL, pEvent);
OpenCLException::throwIfError("kernel queueing failed", res);
worksizeGlobal -= worksizeRun;
worksizeOffset += worksizeRun;
}
}
void Dispatcher::enqueueKernelDevice(Device & d, cl_kernel & clKernel, size_t worksizeGlobal, cl_event * pEvent = NULL) {
try {
enqueueKernel(d.m_clQueue, clKernel, worksizeGlobal, d.m_worksizeLocal, pEvent);
} catch ( OpenCLException & e ) {
// If local work size is invalid, abandon it and let implementation decide
if ((e.m_res == CL_INVALID_WORK_GROUP_SIZE || e.m_res == CL_INVALID_WORK_ITEM_SIZE) && d.m_worksizeLocal != 0) {
std::cout << std::endl << "warning: local work size abandoned on GPU" << d.m_index << std::endl;
d.m_worksizeLocal = 0;
enqueueKernel(d.m_clQueue, clKernel, worksizeGlobal, d.m_worksizeLocal, pEvent);
}
else {
throw;
}
}
}
void Dispatcher::dispatch(Device & d) {
cl_event event;
d.m_memResult.read(false, &event);
#ifdef PROFANITY_DEBUG
cl_event eventInverse;
cl_event eventIterate;
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize, &eventInverse);
enqueueKernelDevice(d, d.m_kernelIterate, m_size, &eventIterate);
#else
enqueueKernelDevice(d, d.m_kernelInverse, m_size / m_inverseSize);
enqueueKernelDevice(d, d.m_kernelIterate, m_size);
#endif
if (d.m_kernelTransform) {
enqueueKernelDevice(d, d.m_kernelTransform, m_size);
}
enqueueKernelDevice(d, d.m_kernelScore, m_size);
clFlush(d.m_clQueue);
#ifdef PROFANITY_DEBUG
// We're actually not allowed to call clFinish here because this function is ultimately asynchronously called by OpenCL.
// However, this happens to work on my computer and it's not really intended for release, just something to aid me in
// optimizations.
clFinish(d.m_clQueue);
std::cout << "Timing: profanity_inverse = " << getKernelExecutionTimeMicros(eventInverse) << "us, profanity_iterate = " << getKernelExecutionTimeMicros(eventIterate) << "us" << std::endl;
#endif
const auto res = clSetEventCallback(event, CL_COMPLETE, staticCallback, &d);
OpenCLException::throwIfError("failed to set custom callback", res);
}
void Dispatcher::handleResult(Device & d) {
for (auto i = PROFANITY_MAX_SCORE; i > m_clScoreMax; --i) {
result & r = d.m_memResult[i];
if (r.found > 0 && i >= d.m_clScoreMax) {
d.m_clScoreMax = i;
CLMemory<cl_uchar>::setKernelArg(d.m_kernelScore, 4, d.m_clScoreMax);
std::lock_guard<std::mutex> lock(m_mutex);
if (i >= m_clScoreMax) {
m_clScoreMax = i;
if (m_clScoreQuit && i >= m_clScoreQuit) {
m_quit = true;
}
printResult(d.m_clSeed, d.m_round, r, i, timeStart, m_mode);
}
break;
}
}
}
void Dispatcher::onEvent(cl_event event, cl_int status, Device & d) {
if (status != CL_COMPLETE) {
std::cout << "Dispatcher::onEvent - Got bad status: " << status << std::endl;
}
else if (d.m_eventFinished != NULL) {
initContinue(d);
} else {
++d.m_round;
handleResult(d);
bool bDispatch = true;
{
std::lock_guard<std::mutex> lock(m_mutex);
d.m_speed.sample(m_size);
printSpeed();
if( m_quit ) {
bDispatch = false;
if(--m_countRunning == 0) {
clSetUserEventStatus(m_eventFinished, CL_COMPLETE);
}
}
}
if (bDispatch) {
dispatch(d);
}
}
}
// This is run when m_mutex is held.
void Dispatcher::printSpeed() {
++m_countPrint;
if( m_countPrint > m_vDevices.size() ) {
std::string strGPUs;
double speedTotal = 0;
unsigned int i = 0;
for (auto & e : m_vDevices) {
const auto curSpeed = e->m_speed.getSpeed();
speedTotal += curSpeed;
strGPUs += " GPU" + toString(e->m_index) + ": " + formatSpeed(curSpeed);
++i;
}
const std::string strVT100ClearLine = "\33[2K\r";
std::cerr << strVT100ClearLine << "Total: " << formatSpeed(speedTotal) << " -" << strGPUs << '\r' << std::flush;
m_countPrint = 0;
}
}
void CL_CALLBACK Dispatcher::staticCallback(cl_event event, cl_int event_command_exec_status, void * user_data) {
Device * const pDevice = static_cast<Device *>(user_data);
pDevice->m_parent.onEvent(event, event_command_exec_status, *pDevice);
clReleaseEvent(event);
}
std::string Dispatcher::formatSpeed(double f) {
const std::string S = " KMGT";
unsigned int index = 0;
while (f > 1000.0f && index < S.size()) {
f /= 1000.0f;
++index;
}
std::ostringstream ss;
ss << std::fixed << std::setprecision(3) << (double)f << " " << S[index] << "H/s";
return ss.str();
}