Skip to content

Latest commit

 

History

History
 
 

merit

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

GammaGL Implementation of MERIT

This GammaGL example implements the model proposed in the paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning.

Author's code: https://github.com/GRAND-Lab/MERIT

Example Implementor

This example was implemented by Ziyu Zheng

Datasets

Unsupervised Node Classification Datasets:

'Cora', 'Citeseer' and 'Pubmed'

Dataset # Nodes # Edges # Classes
Cora 2,708 10,556 7
Citeseer 3,327 9,228 6
Pubmed 19,717 88,651 3

Arguments

--input_dim 			int		Input dimension.                       Default is 1433.
--out_dim				int		Output dimension.					   Default is 512.
--proj_size 			int		Encoder output dimension			   Default is 512.
--proj_hid 				int     Encoder hidden dimension			   Default is 4096.
--pred_size 			int		MLP output dimension			       Default is 512.
--pred_hid 				int		MLP hidden dimension			   	   Default is 4096.
--drop_edge_rate_1      float   Drop edge ratio 1.                     Default is 0.2. 
--drop_edge_rate_2      float   Drop edge ratio 2.                     Default is 0.2. 
--drop_feature_rate_1   float   Drop feature ratio 1.                  Default is 0.5. 
--drop_feature_rate_2   float   Drop feature ratio 2.                  Default is 0.5. 
--dataset_path          str     path to save dataset.                  Default is r'../'

How to run examples

In the paper(as well as authors' repo), the training set are full graph training

# use paddle backend
# Cora by GammaGL
TL_BACKEND=paddle python merit_trainer.py --dataset cora --epochs 500 --drop_edge_rate_1 0.2 --drop_edge_rate_2 0.2 --drop_feature_rate_1 0.5 --drop_feature_rate_2 0.5 --lr 3e-4 --beta 0.5
#Citeseer by GammaGL
TL_BACKEND=paddle python merit_trainer.py --dataset citeseer --epochs 500 --drop_edge_rate_1 0.4 --drop_edge_rate_2 0.4 --drop_feature_rate_1 0.5 --drop_feature_rate_2 0.5 --lr 3e-4 --beta 0.6

# use tensorflow backend
# Cora by GammaGL
TL_BACKEND=tensorflow python merit_trainer.py --dataset cora --epochs 500 --drop_edge_rate_1 0.2 --drop_edge_rate_2 0.2 --drop_feature_rate_1 0.5 --drop_feature_rate_2 0.5 --lr 3e-4 --beta 0.5
#Citeseer by GammaGL
TL_BACKEND=tensorflow python merit_trainer.py --dataset citeseer --epochs 500 --drop_edge_rate_1 0.4 --drop_edge_rate_2 0.4 --drop_feature_rate_1 0.5 --drop_feature_rate_2 0.5 --lr 3e-4 --beta 0.6

Performance

Dataset Cora Citeseer Pubmed
Author's Code 83.1 74.0 80.2
GammaGL(tf) 84.3 72.2 --.-
GammaGL(paddle) 83.1 --.- --.-