Skip to content

Commit

Permalink
Update index.rst
Browse files Browse the repository at this point in the history
  • Loading branch information
larslenssen authored and kno10 committed Dec 10, 2023
1 parent 5d2924e commit c6dd3c9
Show file tree
Hide file tree
Showing 4 changed files with 12 additions and 15 deletions.
6 changes: 5 additions & 1 deletion .readthedocs.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,11 @@ version: 2
sphinx:
configuration: docs/conf.py

build:
os: ubuntu-22.04
tools:
python: "3.8"

python:
version: 3.8
install:
- requirements: docs/requirements.txt
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ For further details on medoid Silhouette clustering with automatic cluster numbe

> Lars Lenssen, Erich Schubert:
> **Medoid silhouette clustering with automatic cluster number selection**
> Information Systems (120), 2024, 102290
> Information Systems (120), 2024, 102290
> <https://doi.org/10.1016/j.is.2023.102290>
an earlier version was published as:
Expand Down
18 changes: 5 additions & 13 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -125,10 +125,10 @@ Choose the optimal number of clusters
X, _ = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
X = X[:10000]
diss = euclidean_distances(X)
bk = kmedoids.bestk(diss, 100)
print("Optimal number of clusters according to the Medoid Silhouette:", bk.bestk)
print("Medoid Silhouette over range of k:", bk.losses)
print("Range of k:", bk.rangek)
dm = kmedoids.dynmsc(diss, 100)
print("Optimal number of clusters according to the Medoid Silhouette:", dm.bestk)
print("Medoid Silhouette over range of k:", dm.losses)
print("Range of k:", dm.rangek)
Memory Requirements
-------------------
Expand All @@ -151,10 +151,9 @@ Implemented Algorithms
* :ref:`FasterMSC<fastermsc>` (Lenssen and Schubert, 2022)
* :ref:`FastMSC<fastmsc>` (Lenssen and Schubert, 2022)
* :ref:`DynMSC<dynmsc>` (Lenssen and Schubert, 2023)
* :ref:`Bestk<bestk>` (Lenssen and Schubert, 2023)
* :ref:`PAMSIL<pamsil>` (Van der Laan and Pollard, 2003)
* :ref:`PAMMEDSIL<pammedsil>` (Van der Laan and Pollard, 2003)
* :ref:`Medoid Silhouette<medoid_silhouette>` (Van der Laan and Pollard, 2003)
* :ref:`MedoidSilhouette<medoid_silhouette>` (Van der Laan and Pollard, 2003)

Note that the k-means style "alternating" algorithm yields rather poor result quality
(see Schubert and Rousseeuw 2021 for an example and explanation).
Expand Down Expand Up @@ -215,13 +214,6 @@ DynMSC

.. autofunction:: dynmsc

.. _Bestk:

DynMSC
=========

.. autofunction:: bestk

.. _PAMSIL:

PAMSIL
Expand Down
1 change: 1 addition & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
kmedoids
scikit-learn
sphinx-rtd-theme

0 comments on commit c6dd3c9

Please sign in to comment.