-
-
Notifications
You must be signed in to change notification settings - Fork 253
/
example.py
796 lines (699 loc) · 37.9 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
#==========================================================#
# Shoreline extraction from satellite images
#==========================================================#
# Kilian Vos WRL 2018
#%% 1. Initial settings
# load modules
import os
import numpy as np
import pickle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from matplotlib import gridspec
plt.ion()
import pandas as pd
from scipy import interpolate
from scipy import stats
from datetime import datetime, timedelta
import pytz
from pyproj import CRS
from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_transects
# region of interest (longitude, latitude in WGS84)
polygon = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]]
# can also be loaded from a .kml polygon
# kml_polygon = os.path.join(os.getcwd(), 'examples', 'NARRA_polygon.kml')
# polygon = SDS_tools.polygon_from_kml(kml_polygon)
# or read from geojson polygon (create it from https://geojson.io/)
# geojson_polygon = os.path.join(os.getcwd(), 'examples', 'NARRA_polygon.geojson')
# polygon = SDS_tools.polygon_from_geojson(geojson_polygon)
# convert polygon to a smallest rectangle (sides parallel to coordinate axes)
polygon = SDS_tools.smallest_rectangle(polygon)
# date range
dates = ['1984-01-01', '2025-01-01']
# satellite missions
sat_list = ['L5','L7','L8','L9']
# name of the site
sitename = 'NARRA'
# filepath where data will be stored
filepath_data = os.path.join(os.getcwd(), 'data')
# put all the inputs into a dictionnary
inputs = {
'polygon': polygon,
'dates': dates,
'sat_list': sat_list,
'sitename': sitename,
'filepath': filepath_data,
# 'LandsatWRS': '089083',
# 'S2tile': '56HLH',
}
# before downloading the images, check how many images are available for your inputs
SDS_download.check_images_available(inputs);
#%% 2. Retrieve images
# option to skip L7 images affected by the Scan-Line-Correction error after 31st May 2003
# inputs['skip_L7_SLC'] = True
# only uncomment this line if you want Landsat Tier 2 images (not suitable for time-series analysis)
# inputs['include_T2'] = True
# retrieve satellite images from GEE
metadata = SDS_download.retrieve_images(inputs)
# if you have already downloaded the images, just load the metadata file
metadata = SDS_download.get_metadata(inputs)
#%% 3. Batch shoreline detection
# settings for the shoreline extraction
settings = {
# general parameters:
'cloud_thresh': 0.1, # threshold on maximum cloud cover
'dist_clouds': 300, # ditance around clouds where shoreline can't be mapped
'output_epsg': 28356, # epsg code of spatial reference system desired for the output
# quality control:
'check_detection': False, # if True, shows each shoreline detection to the user for validation
'adjust_detection': False, # if True, allows user to adjust the postion of each shoreline by changing the threhold
'save_figure': True, # if True, saves a figure showing the mapped shoreline for each image
# [ONLY FOR ADVANCED USERS] shoreline detection parameters:
'min_beach_area': 1000, # minimum area (in metres^2) for an object to be labelled as a beach
'min_length_sl': 500, # minimum length (in metres) of shoreline perimeter to be valid
'cloud_mask_issue': False, # switch this parameter to True if sand pixels are masked (in black) on many images
'sand_color': 'default', # 'default', 'latest', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches)
'pan_off': False, # True to switch pansharpening off for Landsat 7/8/9 imagery
's2cloudless_prob': 40, # threshold to identify cloud pixels in the s2cloudless probability mask
# add the inputs defined previously
'inputs': inputs,
}
# [OPTIONAL] preprocess images (cloud masking, pansharpening/down-sampling)
SDS_preprocess.save_jpg(metadata, settings, use_matplotlib=True)
# create MP4 timelapse animation
fn_animation = os.path.join(inputs['filepath'],inputs['sitename'], '%s_animation_RGB.gif'%inputs['sitename'])
fp_images = os.path.join(inputs['filepath'], inputs['sitename'], 'jpg_files', 'preprocessed')
fps = 4 # frames per second in animation
SDS_tools.make_animation_mp4(fp_images, fps, fn_animation)
# [OPTIONAL] create a reference shoreline (helps to identify outliers and false detections)
settings['reference_shoreline'] = SDS_preprocess.get_reference_sl(metadata, settings)
# set the max distance (in meters) allowed from the reference shoreline for a detected shoreline to be valid
settings['max_dist_ref'] = 100
# extract shorelines from all images (also saves output.pkl and shorelines.kml)
output = SDS_shoreline.extract_shorelines(metadata, settings)
# remove duplicates (images taken on the same date by the same satellite)
output = SDS_tools.remove_duplicates(output)
# remove inaccurate georeferencing (set threshold to 10 m)
output = SDS_tools.remove_inaccurate_georef(output, 10)
# for GIS applications, save output into a GEOJSON layer
geomtype = 'lines' # choose 'points' or 'lines' for the layer geometry
gdf = SDS_tools.output_to_gdf(output, geomtype)
if gdf is None:
raise Exception("output does not contain any mapped shorelines")
gdf.crs = CRS(settings['output_epsg']) # set layer projection
# save GEOJSON layer to file
gdf.to_file(os.path.join(inputs['filepath'], inputs['sitename'], '%s_output_%s.geojson'%(sitename,geomtype)),
driver='GeoJSON', encoding='utf-8')
# create MP4 timelapse animation
fn_animation = os.path.join(inputs['filepath'],inputs['sitename'], '%s_animation_shorelines.gif'%inputs['sitename'])
fp_images = os.path.join(inputs['filepath'], inputs['sitename'], 'jpg_files', 'detection')
fps = 4 # frames per second in animation
SDS_tools.make_animation_mp4(fp_images, fps, fn_animation)
# plot the mapped shorelines
plt.ion()
fig = plt.figure(figsize=[15,8], tight_layout=True)
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
# plt.legend()
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], 'mapped_shorelines.jpg'),dpi=200)
#%% 4. Shoreline analysis
# if you have already mapped the shorelines, load the output.pkl file
filepath = os.path.join(inputs['filepath'], sitename)
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'rb') as f:
output = pickle.load(f)
# remove duplicates (images taken on the same date by the same satellite)
output = SDS_tools.remove_duplicates(output)
# remove inaccurate georeferencing (set threshold to 10 m)
output = SDS_tools.remove_inaccurate_georef(output, 10)
# now we have to define cross-shore transects over which to quantify the shoreline changes
# each transect is defined by two points, its origin and a second point that defines its orientation
# there are 3 options to create the transects:
# - option 1: draw the shore-normal transects along the beach
# - option 2: load the transect coordinates from a .kml file
# - option 3: create the transects manually by providing the coordinates
# option 1: draw origin of transect first and then a second point to define the orientation
# transects = SDS_transects.draw_transects(output, settings)
# option 2: load the transects from a .geojson file
geojson_file = os.path.join(os.getcwd(), 'examples', 'NARRA_transects.geojson')
transects = SDS_tools.transects_from_geojson(geojson_file)
# option 3: create the transects by manually providing the coordinates of two points
# transects = dict([])
# transects['NA1'] = np.array([[16843142, -3989358], [16843457, -3989535]])
# transects['NA2'] = np.array([[16842958, -3989834], [16843286, -3989983]])
# transects['NA3'] = np.array([[16842602, -3990878], [16842955, -3990949]])
# transects['NA4'] = np.array([[16842596, -3991929], [16842955, -3991895]])
# transects['NA5'] = np.array([[16842838, -3992900], [16843155, -3992727]])
# plot the transects to make sure they are correct (origin landwards!)
fig = plt.figure(figsize=[15,8], tight_layout=True)
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
for i,key in enumerate(list(transects.keys())):
plt.plot(transects[key][0,0],transects[key][0,1], 'bo', ms=5)
plt.plot(transects[key][:,0],transects[key][:,1],'k-',lw=1)
plt.text(transects[key][0,0]-100, transects[key][0,1]+100, key,
va='center', ha='right', bbox=dict(boxstyle="square", ec='k',fc='w'))
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], 'mapped_shorelines.jpg'),dpi=200)
#%% Option 1: Compute intersections with quality-control parameters (recommended)
settings_transects = { # parameters for computing intersections
'along_dist': 25, # along-shore distance to use for computing the intersection
'min_points': 3, # minimum number of shoreline points to calculate an intersection
'max_std': 15, # max std for points around transect
'max_range': 30, # max range for points around transect
'min_chainage': -100, # largest negative value along transect (landwards of transect origin)
'multiple_inter': 'auto', # mode for removing outliers ('auto', 'nan', 'max')
'auto_prc': 0.1, # percentage to use in 'auto' mode to switch from 'nan' to 'max'
}
cross_distance = SDS_transects.compute_intersection_QC(output, transects, settings_transects)
#%% Option 2: Conpute intersection in a simple way (no quality-control)
# settings['along_dist'] = 25
# cross_distance = SDS_transects.compute_intersection(output, transects, settings)
#%% Plot the time-series of cross-shore shoreline change
fig = plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(len(cross_distance),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(cross_distance.keys()):
if np.all(np.isnan(cross_distance[key])):
continue
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.set_ylim([-50,50])
ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-o', ms=4, mfc='w')
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], 'time_series_raw.jpg'),dpi=200)
# save time-series in a .csv file
out_dict = dict([])
out_dict['dates'] = output['dates']
for key in transects.keys():
out_dict['Transect '+ key] = cross_distance[key]
df = pd.DataFrame(out_dict)
fn = os.path.join(settings['inputs']['filepath'],settings['inputs']['sitename'],
'transect_time_series.csv')
df.to_csv(fn, sep=',')
print('Time-series of the shoreline change along the transects saved as:\n%s'%fn)
#%% 5. Tidal correction
# For this example, we can use the FES2022 global tide model to predict tides at our beach for all the image times.
# To setup FES2022, follow the instructions at https://github.com/kvos/CoastSat/blob/master/doc/FES2022_setup
# load coastsat.slope module
from coastsat import SDS_slope
# load pyfes and the global tide model (may take one minute)
import pyfes
# enter the location of where you downloaded the FES2022 data
filepath = os.path.join(os.pardir,'CoastSat.webgis','aviso-fes-main','data','fes2022b')
config = os.path.join(filepath, 'fes2022.yaml')
handlers = pyfes.load_config(config)
ocean_tide = handlers['tide']
load_tide = handlers['radial']
# get polygon centroid, coordinates to get tides from
centroid = np.mean(polygon[0], axis=0)
print(centroid)
# if longitude is negative add 180 (longitudes are from 0 to 360 in fes)
if centroid[0] < 0: centroid[0] += 180
# get tides time-series (15 minutes timestep)
date_range = [pytz.utc.localize(datetime(1984,1,1)),
pytz.utc.localize(datetime(2025,1,1))]
timestep = 900 # seconds
dates_ts, tides_ts = SDS_slope.compute_tide(centroid, date_range, timestep, ocean_tide, load_tide)
# get tide levels corresponding to the time of image acquisition
dates_sat = output['dates']
tides_sat = SDS_slope.compute_tide_dates(centroid, output['dates'], ocean_tide, load_tide)
# If you have measure tide levels you can also use those instead.
# When using your own file make sure that the dates are in UTC time, as the CoastSat shorelines are also in UTC
# and the datum for the water levels is approx. Mean Sea Level. Timestep should be 15 to 30 minutes.
# load your own file with measure tide data
# filepath = os.path.join(os.getcwd(),'examples','NARRA_tides.csv')
# tide_data = pd.read_csv(filepath, parse_dates=['dates'])
# dates_ts = [pd.to_datetime(_).to_pydatetime() for _ in tide_data['dates']]
# tides_ts = np.array(tide_data['tide'])
# get tide levels corresponding to the time of image acquisition
# dates_sat = output['dates']
# tides_sat = SDS_tools.get_closest_datapoint(dates_sat, dates_ts, tides_ts)
# plot the subsampled tide data
fig, ax = plt.subplots(1,1,figsize=(15,4), tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.plot(dates_ts, tides_ts, '-', color='0.6', label='all time-series')
ax.plot(dates_sat, tides_sat, '-o', color='k', ms=6, mfc='w',lw=1, label='image acquisition')
ax.set(ylabel='tide level [m]',xlim=[dates_sat[0],dates_sat[-1]], title='Tide levels at the time of image acquisition');
ax.legend();
# tidal correction along each transect
reference_elevation = 0.7 # elevation at which you would like the shoreline time-series to be
beach_slope = 0.1
cross_distance_tidally_corrected = {}
for key in cross_distance.keys():
correction = (tides_sat-reference_elevation)/beach_slope
cross_distance_tidally_corrected[key] = cross_distance[key] + correction
# store the tidally-corrected time-series in a .csv file
out_dict = dict([])
out_dict['dates'] = dates_sat
for key in cross_distance_tidally_corrected.keys():
out_dict['Transect '+ key] = cross_distance_tidally_corrected[key]
df = pd.DataFrame(out_dict)
fn = os.path.join(settings['inputs']['filepath'],settings['inputs']['sitename'],
'transect_time_series_tidally_corrected.csv')
df.to_csv(fn, sep=',')
print('Tidally-corrected time-series of the shoreline change along the transects saved as:\n%s'%fn)
# plot the time-series of shoreline change (both raw and tidally-corrected)
fig = plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(len(cross_distance),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(cross_distance.keys()):
if np.all(np.isnan(cross_distance[key])):
continue
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.set_ylim([-50,50])
ax.plot(output['dates'], cross_distance[key]- np.nanmedian(cross_distance[key]), '-o', ms=6, mfc='w', label='raw')
ax.plot(output['dates'], cross_distance_tidally_corrected[key]- np.nanmedian(cross_distance[key]), '-o', ms=6, mfc='w', label='tidally-corrected')
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
ax.legend()
fig.savefig(os.path.join(filepath,'%s_timeseries_corrected.jpg'%sitename),dpi=200)
#%% 6. Time-series post-processing
# load mapped shorelines from 1984 (mapped with the previous code)
filename_output = os.path.join(os.getcwd(),'examples','NARRA_output.pkl')
with open(filename_output, 'rb') as f:
output = pickle.load(f)
# plot the mapped shorelines
fig = plt.figure(figsize=[15,8], tight_layout=True)
plt.axis('equal')
plt.xlabel('Eastings')
plt.ylabel('Northings')
plt.grid(linestyle=':', color='0.5')
plt.title('%d shorelines mapped at Narrabeen from 1984'%len(output['shorelines']))
for i in range(len(output['shorelines'])):
sl = output['shorelines'][i]
date = output['dates'][i]
plt.plot(sl[:,0], sl[:,1], '.', label=date.strftime('%d-%m-%Y'))
for i,key in enumerate(list(transects.keys())):
plt.plot(transects[key][0,0],transects[key][0,1], 'bo', ms=5)
plt.plot(transects[key][:,0],transects[key][:,1],'k-',lw=1)
plt.text(transects[key][0,0]-100, transects[key][0,1]+100, key,
va='center', ha='right', bbox=dict(boxstyle="square", ec='k',fc='w'))
# load long time-series (1984-2021)
filepath_ts = os.path.join(os.getcwd(),'examples','NARRA_time_series_tidally_corrected.csv')
df = pd.read_csv(filepath_ts, parse_dates=['dates'])
dates = [_.to_pydatetime() for _ in df['dates']]
cross_distance = dict([])
for key in transects.keys():
cross_distance[key] = np.array(df[key])
#%% 6.1 Remove outliers
# plot Otsu thresholds for the mapped shorelines
fig,ax = plt.subplots(1,1,figsize=[12,5],tight_layout=True)
ax.grid(which='major',ls=':',lw=0.5,c='0.5')
ax.plot(output['dates'],output['MNDWI_threshold'],'o-',mfc='w')
ax.axhline(y=-0.5,ls='--',c='r',label='otsu_threshold limits')
ax.axhline(y=0,ls='--',c='r')
ax.set(title='Otsu thresholds on MNDWI for the %d shorelines mapped'%len(output['shorelines']),
ylim=[-0.6,0.2],ylabel='otsu threshold')
ax.legend(loc='upper left')
fig.savefig(os.path.join(inputs['filepath'], inputs['sitename'], '%s_otsu_threhsolds.jpg'%sitename), dpi=200)
# remove outliers in the time-series (despiking)
settings_outliers = {'otsu_threshold': [-.5,0], # min and max intensity threshold use for contouring the shoreline
'max_cross_change': 40, # maximum cross-shore change observable between consecutive timesteps
'plot_fig': True, # whether to plot the intermediate steps
}
cross_distance = SDS_transects.reject_outliers(cross_distance,output,settings_outliers)
#%% 6.2 Seasonal averaging
fp_seasonal = os.path.join(filepath,'jpg_files','seasonal_timeseries')
if not os.path.exists(fp_seasonal): os.makedirs(fp_seasonal)
print('Outputs will be saved in %s'%fp_seasonal)
# compute seasonal averages along each transect
season_colors = {'DJF':'C3', 'MAM':'C1', 'JJA':'C2', 'SON':'C0'}
for key in cross_distance.keys():
chainage = cross_distance[key]
# remove nans
idx_nan = np.isnan(chainage)
dates_nonan = [dates[_] for _ in np.where(~idx_nan)[0]]
chainage = chainage[~idx_nan]
# compute shoreline seasonal averages (DJF, MAM, JJA, SON)
dict_seas, dates_seas, chainage_seas, list_seas = SDS_transects.seasonal_average(dates_nonan, chainage)
# plot seasonal averages
fig,ax=plt.subplots(1,1,figsize=[14,4],tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.set_title('Time-series at %s'%key, x=0, ha='left')
ax.set(ylabel='distance [m]')
ax.plot(dates_nonan, chainage,'+', lw=1, color='k', mfc='w', ms=4, alpha=0.5,label='raw datapoints')
ax.plot(dates_seas, chainage_seas, '-', lw=1, color='k', mfc='w', ms=4, label='seasonally-averaged')
for k,seas in enumerate(dict_seas.keys()):
ax.plot(dict_seas[seas]['dates'], dict_seas[seas]['chainages'],
'o', mec='k', color=season_colors[seas], label=seas,ms=5)
ax.legend(loc='lower left',ncol=6,markerscale=1.5,frameon=True,edgecolor='k',columnspacing=1)
fig.savefig(os.path.join(fp_seasonal,'%s_timeseries_seasonal.jpg'%key), dpi=200)
#%% 6.3 Monthly averaging
fp_monthly = os.path.join(filepath,'jpg_files','monthly_timeseries')
if not os.path.exists(fp_monthly): os.makedirs(fp_monthly)
print('Outputs will be saved in %s'%fp_monthly)
# compute monthly averages along each transect
month_colors = plt.get_cmap('tab20')
for key in cross_distance.keys():
chainage = cross_distance[key]
# remove nans
idx_nan = np.isnan(chainage)
dates_nonan = [dates[_] for _ in np.where(~idx_nan)[0]]
chainage = chainage[~idx_nan]
# compute shoreline seasonal averages (DJF, MAM, JJA, SON)
dict_month, dates_month, chainage_month, list_month = SDS_transects.monthly_average(dates_nonan, chainage)
# plot seasonal averages
fig,ax=plt.subplots(1,1,figsize=[14,4],tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.set_title('Time-series at %s'%key, x=0, ha='left')
ax.set(ylabel='distance [m]')
ax.plot(dates_nonan, chainage,'+', lw=1, color='k', mfc='w', ms=4, alpha=0.5,label='raw datapoints')
ax.plot(dates_month, chainage_month, '-', lw=1, color='k', mfc='w', ms=4, label='monthly-averaged')
for k,month in enumerate(dict_month.keys()):
ax.plot(dict_month[month]['dates'], dict_month[month]['chainages'],
'o', mec='k', color=month_colors(k), label=month,ms=5)
ax.legend(loc='lower left',ncol=7,markerscale=1.5,frameon=True,edgecolor='k',columnspacing=1)
fig.savefig(os.path.join(fp_monthly,'%s_timeseries_monthly.jpg'%key), dpi=200)
#%% 7. Beach slope estimation
# This section uses the same long-term time-series of shoreline change to demonstrate how to estimate the beach-face slope.
# For a more detailed tutorial visit https://github.com/kvos/CoastSat.slope
# create folder to save outputs from slope estimation
fp_slopes = os.path.join(filepath,'slope_estimation')
if not os.path.exists(fp_slopes):
os.makedirs(fp_slopes)
print('Outputs will be saved in %s'%fp_slopes)
# load mapped shorelines from 1984 using Landsat 5, 7 and 8
filename_output = os.path.join(os.getcwd(),'examples','NARRA_output.pkl')
with open(filename_output, 'rb') as f:
output = pickle.load(f)
# remove duplicates (images taken on the same date by the same satellite)
output = SDS_tools.remove_duplicates(output)
# remove inaccurate georeferencing (set threshold to 10 m)
output = SDS_tools.remove_inaccurate_georef(output, 10)
# compute intersections
settings_transects = { # parameters for computing intersections
'along_dist': 25, # along-shore distance to use for computing the intersection
'min_points': 3, # minimum number of shoreline points to calculate an intersection
'max_std': 15, # max std for points around transect
'max_range': 30, # max range for points around transect
'min_chainage': -100, # largest negative value along transect (landwards of transect origin)
'multiple_inter': 'auto', # mode for removing outliers ('auto', 'nan', 'max')
'auto_prc': 0.1, # percentage of the time that multiple intersects are present to use the max
}
cross_distance = SDS_transects.compute_intersection_QC(output, transects, settings_transects)
# remove outliers in the time-series (coastal despiking)
settings_outliers = {'max_cross_change': 40, # maximum cross-shore change observable between consecutive timesteps
'otsu_threshold': [-.5,0], # min and max intensity threshold use for contouring the shoreline
'plot_fig': False, # whether to plot the intermediate steps
}
cross_distance = SDS_transects.reject_outliers(cross_distance,output,settings_outliers)
# plot time-series
SDS_slope.plot_cross_distance(output['dates'],cross_distance)
# slope estimation settings
days_in_year = 365.2425
seconds_in_day = 24*3600
settings_slope = {'slope_min': 0.035, # minimum slope to trial
'slope_max': 0.2, # maximum slope to trial
'delta_slope': 0.005, # slope increment
'n0': 50, # parameter for Nyquist criterium in Lomb-Scargle transforms
'freq_cutoff': 1./(seconds_in_day*30), # 1 month frequency
'delta_f': 100*1e-10, # deltaf for identifying peak tidal frequency band
'prc_conf': 0.05, # percentage above minimum to define confidence bands in energy curve
'plot_fig': True, # whether to plot the intermediary products during analysis
}
# range of slopes to test for
beach_slopes = SDS_slope.range_slopes(settings_slope['slope_min'], settings_slope['slope_max'], settings_slope['delta_slope'])
# range of dates over which to perform the analysis (2 Landsat satellites)
settings_slope['date_range'] = [1999,2022]
# re-write in datetime objects (same as shoreline in UTC)
settings_slope['date_range'] = [pytz.utc.localize(datetime(settings_slope['date_range'][0],5,1)),
pytz.utc.localize(datetime(settings_slope['date_range'][1],1,1))]
# clip the time-series between 1999 and 2022 as we need at least 2 Landsat satellites
idx_dates = [np.logical_and(_>settings_slope['date_range'][0],_<settings_slope['date_range'][1]) for _ in output['dates']]
dates_sat = [output['dates'][_] for _ in np.where(idx_dates)[0]]
for key in cross_distance.keys():
cross_distance[key] = cross_distance[key][idx_dates]
# plot timestep
SDS_slope.plot_timestep(dates_sat)
plt.gcf().savefig(os.path.join(fp_slopes,'0_timestep_distribution.jpg'),dpi=200)
# select sampling period [days]
settings_slope['n_days'] = 8
# get polygon centroid
centroid = np.mean(polygon[0], axis=0)
print(centroid)
# get tides time-series (15 minutes timestep)
date_range = [dates_sat[0], dates_sat[-1]]
timestep = 900 # seconds
dates_ts, tides_ts = SDS_slope.compute_tide(centroid, date_range, timestep, ocean_tide, load_tide)
# get tide levels corresponding to the time of image acquisition
tides_sat = SDS_slope.compute_tide_dates(centroid, dates_sat, ocean_tide, load_tide)
# plot the subsampled tide data
fig, ax = plt.subplots(1,1,figsize=(15,4), tight_layout=True)
ax.grid(which='major', linestyle=':', color='0.5')
ax.plot(dates_ts, tides_ts, '-', color='0.6', label='all time-series')
ax.plot(dates_sat, tides_sat, '-o', color='k', ms=5, mfc='w',lw=1, label='image acquisition')
ax.set(ylabel='tide level [m]',xlim=[dates_sat[0],dates_sat[-1]], title='Tide levels at the time of image acquisition');
ax.legend()
fig.savefig(os.path.join(fp_slopes,'0_tide_timeseries.jpg'),dpi=200)
# find peak tidal frequency
settings_slope['freqs_max'] = SDS_slope.find_tide_peak(dates_sat,tides_sat,settings_slope)
plt.gcf().savefig(os.path.join(fp_slopes,'1_tides_power_spectrum.jpg'),dpi=200)
# estimate beach-face slopes along the transects
slope_est, cis = dict([]), dict([])
for key in cross_distance.keys():
# remove NaNs
idx_nan = np.isnan(cross_distance[key])
dates = [dates_sat[_] for _ in np.where(~idx_nan)[0]]
tide = tides_sat[~idx_nan]
composite = cross_distance[key][~idx_nan]
# apply tidal correction
tsall = SDS_slope.tide_correct(composite,tide,beach_slopes)
# estimate beach slope
slope_est[key],cis[key] = SDS_slope.integrate_power_spectrum(dates,tsall,settings_slope, key)
plt.gcf().savefig(os.path.join(fp_slopes,'2_energy_curve_%s.jpg'%key),dpi=200)
# plot spectrums
SDS_slope.plot_spectrum_all(dates,composite,tsall,settings_slope,slope_est[key])
plt.gcf().savefig(os.path.join(fp_slopes,'3_slope_spectrum_%s.jpg'%key),dpi=200)
print('Beach slope at transect %s: %.3f (%.4f - %.4f)'%(key, slope_est[key], cis[key][0], cis[key][1]))
#%% 8. Validation against survey data
# In this section we provide a comparison against in situ data at Narrabeen.
# See the Jupyter Notebook for information on hopw to downlaod the Narrabeen data from http://narrabeen.wrl.unsw.edu.au/
# read and preprocess downloaded csv file Narrabeen_Profiles.csv
fp_datasets = os.path.join(os.getcwd(),'examples','Narrabeen_Profiles.csv')
df = pd.read_csv(fp_datasets)
pf_names = list(np.unique(df['Profile ID']))
# select contour level
contour_level = 0.7
# initialise topo_profiles structure
topo_profiles = dict([])
for i in range(len(pf_names)):
# read dates
df_pf = df.loc[df['Profile ID'] == pf_names[i]]
dates_str = df['Date']
dates_unique = np.unique(dates_str)
# loop through dates
topo_profiles[pf_names[i]] = {'dates':[],'chainages':[]}
for date in dates_unique:
# extract chainage and elevation for that date
df_date = df_pf.loc[dates_str == date]
chainages = np.array(df_date['Chainage'])
elevations = np.array(df_date['Elevation'])
if len(chainages) == 0: continue
# use interpolation to extract the chainage at the contour level
f = interpolate.interp1d(elevations, chainages, bounds_error=False)
chainage_contour_level = f(contour_level)
topo_profiles[pf_names[i]]['chainages'].append(chainage_contour_level)
date_utc = pytz.utc.localize(datetime.strptime(date,'%Y-%m-%d'))
topo_profiles[pf_names[i]]['dates'].append(date_utc)
# plot time-series
fig = plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(len(topo_profiles),1)
gs.update(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.05)
for i,key in enumerate(topo_profiles.keys()):
ax = fig.add_subplot(gs[i,0])
ax.grid(linestyle=':', color='0.5')
ax.plot(topo_profiles[key]['dates'], topo_profiles[key]['chainages'], '-o', ms=4, mfc='w')
ax.set_ylabel('distance [m]', fontsize=12)
ax.text(0.5,0.95, key, bbox=dict(boxstyle="square", ec='k',fc='w'), ha='center',
va='top', transform=ax.transAxes, fontsize=14)
# save a .pkl file
with open(os.path.join(os.getcwd(), 'examples', 'Narrabeen_ts_07m.pkl'), 'wb') as f:
pickle.dump(topo_profiles, f)
#%% 8.1. Compare time-series along each transect
# load survey data
with open(os.path.join(os.getcwd(), 'examples', 'Narrabeen_ts_07m.pkl'), 'rb') as f:
gt = pickle.load(f)
# change names to mach surveys
for i,key in enumerate(list(cross_distance.keys())):
key_gt = list(gt.keys())[i]
cross_distance[key_gt] = cross_distance.pop(key)
# set parameters for comparing the two time-series
sett = {'min_days':3, # numbers of days difference under which to use nearest neighbour interpolation
'max_days':10, # maximum number of days difference to do a comparison
'binwidth':3, # binwidth for histogram plotting
'lims':[-50,50] # cross-shore change limits for plotting purposes
}
# initialise variables
chain_sat_all = []
chain_sur_all = []
satnames_all = []
for key in cross_distance.keys():
# remove nans
chainage = cross_distance[key]
idx_nan = np.isnan(chainage)
dates_nonans = [output['dates'][k] for k in np.where(~idx_nan)[0]]
satnames_nonans = [output['satname'][k] for k in np.where(~idx_nan)[0]]
chain_nonans = chainage[~idx_nan]
chain_sat_dm = chain_nonans
chain_sur_dm = gt[key]['chainages']
# plot the time-series
fig= plt.figure(figsize=[15,8], tight_layout=True)
gs = gridspec.GridSpec(2,3)
ax0 = fig.add_subplot(gs[0,:])
ax0.grid(which='major',linestyle=':',color='0.5')
ax0.plot(gt[key]['dates'], chain_sur_dm, '-',mfc='w',ms=5,label='in situ')
ax0.plot(dates_nonans, chain_sat_dm,'-',mfc='w',ms=5,label='satellite')
ax0.set(title= 'Transect ' + key, xlim=[output['dates'][0]-timedelta(days=30),
output['dates'][-1]+timedelta(days=30)])#,ylim=sett['lims'])
ax0.legend()
# interpolate surveyed data around satellite data
chain_int = np.nan*np.ones(len(dates_nonans))
for k,date in enumerate(dates_nonans):
# compute the days distance for each satellite date
days_diff = np.array([ (_ - date).days for _ in gt[key]['dates']])
# if nothing within 10 days put a nan
if np.min(np.abs(days_diff)) > sett['max_days']:
chain_int[k] = np.nan
else:
# if a point within 3 days, take that point (no interpolation)
if np.min(np.abs(days_diff)) < sett['min_days']:
idx_closest = np.where(np.abs(days_diff) == np.min(np.abs(days_diff)))
chain_int[k] = float(gt[key]['chainages'][idx_closest[0][0]])
else: # otherwise, between 3 and 10 days, interpolate between the 2 closest points
if sum(days_diff > 0) == 0:
break
idx_after = np.where(days_diff > 0)[0][0]
idx_before = idx_after - 1
x = [gt[key]['dates'][idx_before].toordinal() , gt[key]['dates'][idx_after].toordinal()]
y = [gt[key]['chainages'][idx_before], gt[key]['chainages'][idx_after]]
f = interpolate.interp1d(x, y,bounds_error=True)
chain_int[k] = float(f(date.toordinal()))
# remove nans again
idx_nan = np.isnan(chain_int)
chain_sat = chain_nonans[~idx_nan]
chain_sur = chain_int[~idx_nan]
dates_sat = [dates_nonans[k] for k in np.where(~idx_nan)[0]]
satnames = [satnames_nonans[k] for k in np.where(~idx_nan)[0]]
chain_sat_all = np.append(chain_sat_all,chain_sat)
chain_sur_all = np.append(chain_sur_all,chain_sur)
satnames_all = satnames_all + satnames
# error statistics
slope, intercept, rvalue, pvalue, std_err = stats.linregress(chain_sur, chain_sat)
R2 = rvalue**2
ax0.text(0,1,'R2 = %.2f'%R2,bbox=dict(boxstyle='square', facecolor='w', alpha=1),transform=ax0.transAxes)
chain_error = chain_sat - chain_sur
rmse = np.sqrt(np.mean((chain_error)**2))
mean = np.mean(chain_error)
std = np.std(chain_error)
q90 = np.percentile(np.abs(chain_error), 90)
# 1:1 plot
ax1 = fig.add_subplot(gs[1,0])
ax1.axis('equal')
ax1.grid(which='major',linestyle=':',color='0.5')
for k,sat in enumerate(list(np.unique(satnames))):
idx = np.where([_ == sat for _ in satnames])[0]
ax1.plot(chain_sur[idx], chain_sat[idx], 'o', ms=4, mfc='C'+str(k),mec='C'+str(k), alpha=0.7, label=sat)
ax1.legend(loc=4)
ax1.plot([ax1.get_xlim()[0], ax1.get_ylim()[1]],[ax1.get_xlim()[0], ax1.get_ylim()[1]],'k--',lw=2)
ax1.set(xlabel='survey [m]', ylabel='satellite [m]')
# boxplots
ax2 = fig.add_subplot(gs[1,1])
data = []
median_data = []
n_data = []
ax2.yaxis.grid()
for k,sat in enumerate(list(np.unique(satnames))):
idx = np.where([_ == sat for _ in satnames])[0]
data.append(chain_error[idx])
median_data.append(np.median(chain_error[idx]))
n_data.append(len(chain_error[idx]))
bp = ax2.boxplot(data,0,'k.', labels=list(np.unique(satnames)), patch_artist=True)
for median in bp['medians']:
median.set(color='k', linewidth=1.5)
for j,boxes in enumerate(bp['boxes']):
boxes.set(facecolor='C'+str(j))
ax2.text(j+1,median_data[j]+1, '%.1f' % median_data[j], horizontalalignment='center', fontsize=12)
ax2.text(j+1+0.35,median_data[j]+1, ('n=%.d' % int(n_data[j])), ha='center', va='center', fontsize=12, rotation='vertical')
ax2.set(ylabel='error [m]', ylim=sett['lims'])
# histogram
ax3 = fig.add_subplot(gs[1,2])
ax3.grid(which='major',linestyle=':',color='0.5')
ax3.axvline(x=0, ls='--', lw=1.5, color='k')
binwidth=sett['binwidth']
bins = np.arange(min(chain_error), max(chain_error) + binwidth, binwidth)
density = plt.hist(chain_error, bins=bins, density=True, color='0.6', edgecolor='k', alpha=0.5)
mu, std = stats.norm.fit(chain_error)
pval = stats.normaltest(chain_error)[1]
xlims = ax3.get_xlim()
x = np.linspace(xlims[0], xlims[1], 100)
p = stats.norm.pdf(x, mu, std)
ax3.plot(x, p, 'r-', linewidth=1)
ax3.set(xlabel='error [m]', ylabel='pdf', xlim=sett['lims'])
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
ax3.text(0, 0.98, str_stats,va='top', transform=ax3.transAxes)
# save plot
fig.savefig(os.path.join(os.getcwd(),'examples','comparison_transect_%s.jpg'%key), dpi=150)
#%% 8.2. Comparison for all transects
# calculate statistics for all transects together
chain_error = chain_sat_all - chain_sur_all
slope, intercept, rvalue, pvalue, std_err = stats.linregress(chain_sur, chain_sat)
R2 = rvalue**2
rmse = np.sqrt(np.mean((chain_error)**2))
mean = np.mean(chain_error)
std = np.std(chain_error)
q90 = np.percentile(np.abs(chain_error), 90)
fig,ax = plt.subplots(1,2,figsize=(15,5), tight_layout=True)
# histogram
ax[0].grid(which='major',linestyle=':',color='0.5')
ax[0].axvline(x=0, ls='--', lw=1.5, color='k')
binwidth=sett['binwidth']
bins = np.arange(min(chain_error), max(chain_error) + binwidth, binwidth)
density = ax[0].hist(chain_error, bins=bins, density=True, color='0.6', edgecolor='k', alpha=0.5)
mu, std = stats.norm.fit(chain_error)
pval = stats.normaltest(chain_error)[1]
xlims = ax3.get_xlim()
x = np.linspace(xlims[0], xlims[1], 100)
p = stats.norm.pdf(x, mu, std)
ax[0].plot(x, p, 'r-', linewidth=1)
ax[0].set(xlabel='error [m]', ylabel='pdf', xlim=sett['lims'])
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
ax[0].text(0, 0.98, str_stats,va='top', transform=ax[0].transAxes,fontsize=14)
# boxplot
data = []
median_data = []
n_data = []
ax[1].yaxis.grid()
for k,sat in enumerate(list(np.unique(satnames_all))):
idx = np.where([_ == sat for _ in satnames_all])[0]
data.append(chain_error[idx])
median_data.append(np.median(chain_error[idx]))
n_data.append(len(chain_error[idx]))
bp = ax[1].boxplot(data,0,'k.', labels=list(np.unique(satnames_all)), patch_artist=True)
for median in bp['medians']:
median.set(color='k', linewidth=1.5)
for j,boxes in enumerate(bp['boxes']):
boxes.set(facecolor='C'+str(j))
ax[1].text(j+1,median_data[j]+1, '%.1f' % median_data[j], horizontalalignment='center', fontsize=14)
ax[1].text(j+1+0.35,median_data[j]+1, ('n=%.d' % int(n_data[j])), ha='center', va='center', fontsize=12, rotation='vertical')
ax[1].set(ylabel='error [m]', ylim=sett['lims']);
fig.savefig(os.path.join(os.getcwd(),'examples','comparison_all_transects.jpg'), dpi=150)