Skip to content

laitathei/YOLOv7-ONNX-RKNN-HORIZON-TensorRT-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv7-ONNX-RKNN-HORIZON-TensorRT-Detection

Remark: This repo only support 1 batch size !YOLOv7 ONNX RKNN Detection Picture !YOLOv7 ONNX RKNN Detection Video

Video source: https://www.youtube.com/watch?v=n3Dru5y3ROc&t=0s

git clone --recursive https://github.com/laitathei/YOLOv7-ONNX-RKNN-HORIZON-TensorRT-Detection.git

0. Environment Setting

torch: 1.10.1+cu102
torchvision: 0.11.2+cu102
onnx: 1.10.0
onnxruntime: 1.10.0

# For tensorrt
torch: 1.11.0+cu113
torchvision: 0.12.0+cu113
TensorRT: 8.6.1

1. Yolov7 Prerequisite

cd yolov7
pip3 install -r requirements.txt

2. Convert Pytorch model to ONNX

Remember to change the variable to your setting.

python3 pytorch2onnx.py --weights ./model/yolov7-tiny.pt --simplify --img-size 480 640 --max-wh 640 --topk-all 100 --end2end --grid

3. RKNN Prerequisite

Install the wheel according to your python version

cd rknn-toolkit2/packages
pip3 install rknn_toolkit2-1.5.0+1fa95b5c-cpxx-cpxx-linux_x86_64.whl

4. Modify ONNX network structure

Install ONNX modifier and start flask service

cd onnx-modifier
pip3 install -r requirements.txt
pip3 install onnx==1.10.0
python3 app.py

Enter http://127.0.0.1:5000/ Cut the below part of the network !YOLOv7 ONNX RKNN Detection Picture 1

Add the new output and download it !YOLOv7 ONNX RKNN Detection Picture 2

Move the modified newtork to replace the old one

mv ./onnx-modifier/modified_onnx/modified_{model_name}-{input_height}-{input_width}.onnx ./model/{model_name}-{input_height}-{input_width}.onnx

5. Convert ONNX model to RKNN

Remember to change the variable to your setting To improve perfermance, you can change ./config/yolov7-seg-xxx-xxx.quantization.cfg layer type. Please follow official document hybrid quatization part and reference to example program to modify your codes.

python3 onnx2rknn_step1.py
python3 onnx2rknn_step2.py

6. RKNN-Lite Inference

python3 rknn_lite_inference.py

7. Horizon Prerequisite

wget -c ftp://[email protected]/ai_toolchain/ai_toolchain.tar.gz --ftp-password=xj3ftp@123$%
tar -xvf ai_toolchain.tar.gz
cd ai_toolchain/
pip3 install h*

7. Convert ONNX model to Horizon

get onnx file with opset 11

python3 pytorch2onnx.py --weights ./model/yolov7-tiny.pt --simplify --img-size 480 640 --max-wh 640 --topk-all 100 --end2end --grid --opset 11

Follow Step 4 to delete part of model, and run remove_value_list.py to remove corresponding value in model Remember to change the variable to your setting include yolov7det_config.yaml

sh 01_check.sh
sh 02_preprocess.sh
sh 03_build.sh

8. Horizon Inference

python3 horizion_simulator_inference.py
python3 horizion_onboard_inference.py

9. Onnx Runtime Inference

python3 onnxruntime_inference.py

10. Convert ONNX model to TensorRT

Use the ONNX file come from Step 4
Remember to change the variable to your setting

python3 onnx2trt.py

11. TensorRT Inference

python3 tensorrt_inference.py

12. Blob Inference

Convert model from onnx to blob format via https://blobconverter.luxonis.com/

python3 blob_inference.py

Reference

https://blog.csdn.net/magic_ll/article/details/131944207
https://github.com/ibaiGorordo/ONNX-YOLOv8-Instance-Segmentation

About

Inference YOLOv7 tiny detection on ONNX, RKNN, Horizon and TensorRT

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published