-
Notifications
You must be signed in to change notification settings - Fork 310
/
preprocessing.hpp
227 lines (208 loc) · 8.78 KB
/
preprocessing.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#ifndef __PREPROCESSING_HPP__
#define __PREPROCESSING_HPP__
#include "ggml_extend.hpp"
#define M_PI_ 3.14159265358979323846
void convolve(struct ggml_tensor* input, struct ggml_tensor* output, struct ggml_tensor* kernel, int padding) {
struct ggml_init_params params;
params.mem_size = 20 * 1024 * 1024; // 10
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* ctx0 = ggml_init(params);
struct ggml_tensor* kernel_fp16 = ggml_new_tensor_4d(ctx0, GGML_TYPE_F16, kernel->ne[0], kernel->ne[1], 1, 1);
ggml_fp32_to_fp16_row((float*)kernel->data, (ggml_fp16_t*)kernel_fp16->data, ggml_nelements(kernel));
ggml_tensor* h = ggml_conv_2d(ctx0, kernel_fp16, input, 1, 1, padding, padding, 1, 1);
ggml_cgraph* gf = ggml_new_graph(ctx0);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, h, output));
ggml_graph_compute_with_ctx(ctx0, gf, 1);
ggml_free(ctx0);
}
void gaussian_kernel(struct ggml_tensor* kernel) {
int ks_mid = kernel->ne[0] / 2;
float sigma = 1.4f;
float normal = 1.f / (2.0f * M_PI_ * powf(sigma, 2.0f));
for (int y = 0; y < kernel->ne[0]; y++) {
float gx = -ks_mid + y;
for (int x = 0; x < kernel->ne[1]; x++) {
float gy = -ks_mid + x;
float k_ = expf(-((gx * gx + gy * gy) / (2.0f * powf(sigma, 2.0f)))) * normal;
ggml_tensor_set_f32(kernel, k_, x, y);
}
}
}
void grayscale(struct ggml_tensor* rgb_img, struct ggml_tensor* grayscale) {
for (int iy = 0; iy < rgb_img->ne[1]; iy++) {
for (int ix = 0; ix < rgb_img->ne[0]; ix++) {
float r = ggml_tensor_get_f32(rgb_img, ix, iy);
float g = ggml_tensor_get_f32(rgb_img, ix, iy, 1);
float b = ggml_tensor_get_f32(rgb_img, ix, iy, 2);
float gray = 0.2989f * r + 0.5870f * g + 0.1140f * b;
ggml_tensor_set_f32(grayscale, gray, ix, iy);
}
}
}
void prop_hypot(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
int n_elements = ggml_nelements(h);
float* dx = (float*)x->data;
float* dy = (float*)y->data;
float* dh = (float*)h->data;
for (int i = 0; i < n_elements; i++) {
dh[i] = sqrtf(dx[i] * dx[i] + dy[i] * dy[i]);
}
}
void prop_arctan2(struct ggml_tensor* x, struct ggml_tensor* y, struct ggml_tensor* h) {
int n_elements = ggml_nelements(h);
float* dx = (float*)x->data;
float* dy = (float*)y->data;
float* dh = (float*)h->data;
for (int i = 0; i < n_elements; i++) {
dh[i] = atan2f(dy[i], dx[i]);
}
}
void normalize_tensor(struct ggml_tensor* g) {
int n_elements = ggml_nelements(g);
float* dg = (float*)g->data;
float max = -INFINITY;
for (int i = 0; i < n_elements; i++) {
max = dg[i] > max ? dg[i] : max;
}
max = 1.0f / max;
for (int i = 0; i < n_elements; i++) {
dg[i] *= max;
}
}
void non_max_supression(struct ggml_tensor* result, struct ggml_tensor* G, struct ggml_tensor* D) {
for (int iy = 1; iy < result->ne[1] - 1; iy++) {
for (int ix = 1; ix < result->ne[0] - 1; ix++) {
float angle = ggml_tensor_get_f32(D, ix, iy) * 180.0f / M_PI_;
angle = angle < 0.0f ? angle += 180.0f : angle;
float q = 1.0f;
float r = 1.0f;
// angle 0
if ((0 >= angle && angle < 22.5f) || (157.5f >= angle && angle <= 180)) {
q = ggml_tensor_get_f32(G, ix, iy + 1);
r = ggml_tensor_get_f32(G, ix, iy - 1);
}
// angle 45
else if (22.5f >= angle && angle < 67.5f) {
q = ggml_tensor_get_f32(G, ix + 1, iy - 1);
r = ggml_tensor_get_f32(G, ix - 1, iy + 1);
}
// angle 90
else if (67.5f >= angle && angle < 112.5) {
q = ggml_tensor_get_f32(G, ix + 1, iy);
r = ggml_tensor_get_f32(G, ix - 1, iy);
}
// angle 135
else if (112.5 >= angle && angle < 157.5f) {
q = ggml_tensor_get_f32(G, ix - 1, iy - 1);
r = ggml_tensor_get_f32(G, ix + 1, iy + 1);
}
float cur = ggml_tensor_get_f32(G, ix, iy);
if ((cur >= q) && (cur >= r)) {
ggml_tensor_set_f32(result, cur, ix, iy);
} else {
ggml_tensor_set_f32(result, 0.0f, ix, iy);
}
}
}
}
void threshold_hystersis(struct ggml_tensor* img, float high_threshold, float low_threshold, float weak, float strong) {
int n_elements = ggml_nelements(img);
float* imd = (float*)img->data;
float max = -INFINITY;
for (int i = 0; i < n_elements; i++) {
max = imd[i] > max ? imd[i] : max;
}
float ht = max * high_threshold;
float lt = ht * low_threshold;
for (int i = 0; i < n_elements; i++) {
float img_v = imd[i];
if (img_v >= ht) { // strong pixel
imd[i] = strong;
} else if (img_v <= ht && img_v >= lt) { // strong pixel
imd[i] = weak;
}
}
for (int iy = 0; iy < img->ne[1]; iy++) {
for (int ix = 0; ix < img->ne[0]; ix++) {
if (ix >= 3 && ix <= img->ne[0] - 3 && iy >= 3 && iy <= img->ne[1] - 3) {
ggml_tensor_set_f32(img, ggml_tensor_get_f32(img, ix, iy), ix, iy);
} else {
ggml_tensor_set_f32(img, 0.0f, ix, iy);
}
}
}
// hysteresis
for (int iy = 1; iy < img->ne[1] - 1; iy++) {
for (int ix = 1; ix < img->ne[0] - 1; ix++) {
float imd_v = ggml_tensor_get_f32(img, ix, iy);
if (imd_v == weak) {
if (ggml_tensor_get_f32(img, ix + 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix + 1, iy) == strong ||
ggml_tensor_get_f32(img, ix, iy - 1) == strong || ggml_tensor_get_f32(img, ix, iy + 1) == strong ||
ggml_tensor_get_f32(img, ix - 1, iy - 1) == strong || ggml_tensor_get_f32(img, ix - 1, iy) == strong) {
ggml_tensor_set_f32(img, strong, ix, iy);
} else {
ggml_tensor_set_f32(img, 0.0f, ix, iy);
}
}
}
}
}
uint8_t* preprocess_canny(uint8_t* img, int width, int height, float high_threshold, float low_threshold, float weak, float strong, bool inverse) {
struct ggml_init_params params;
params.mem_size = static_cast<size_t>(10 * 1024 * 1024); // 10
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context* work_ctx = ggml_init(params);
if (!work_ctx) {
LOG_ERROR("ggml_init() failed");
return NULL;
}
float kX[9] = {
-1, 0, 1,
-2, 0, 2,
-1, 0, 1};
float kY[9] = {
1, 2, 1,
0, 0, 0,
-1, -2, -1};
// generate kernel
int kernel_size = 5;
struct ggml_tensor* gkernel = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, kernel_size, kernel_size, 1, 1);
struct ggml_tensor* sf_kx = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
memcpy(sf_kx->data, kX, ggml_nbytes(sf_kx));
struct ggml_tensor* sf_ky = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 3, 3, 1, 1);
memcpy(sf_ky->data, kY, ggml_nbytes(sf_ky));
gaussian_kernel(gkernel);
struct ggml_tensor* image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
struct ggml_tensor* image_gray = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
struct ggml_tensor* iX = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* iY = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* G = ggml_dup_tensor(work_ctx, image_gray);
struct ggml_tensor* tetha = ggml_dup_tensor(work_ctx, image_gray);
sd_image_to_tensor(img, image);
grayscale(image, image_gray);
convolve(image_gray, image_gray, gkernel, 2);
convolve(image_gray, iX, sf_kx, 1);
convolve(image_gray, iY, sf_ky, 1);
prop_hypot(iX, iY, G);
normalize_tensor(G);
prop_arctan2(iX, iY, tetha);
non_max_supression(image_gray, G, tetha);
threshold_hystersis(image_gray, high_threshold, low_threshold, weak, strong);
// to RGB channels
for (int iy = 0; iy < height; iy++) {
for (int ix = 0; ix < width; ix++) {
float gray = ggml_tensor_get_f32(image_gray, ix, iy);
gray = inverse ? 1.0f - gray : gray;
ggml_tensor_set_f32(image, gray, ix, iy);
ggml_tensor_set_f32(image, gray, ix, iy, 1);
ggml_tensor_set_f32(image, gray, ix, iy, 2);
}
}
free(img);
uint8_t* output = sd_tensor_to_image(image);
ggml_free(work_ctx);
return output;
}
#endif // __PREPROCESSING_HPP__