forked from koyeongmin/PINet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
388 lines (336 loc) · 14.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#############################################################################################################
##
## Source code for testing
##
#############################################################################################################
import cv2
import json
import torch
import agent
import numpy as np
from copy import deepcopy
from data_loader import Generator
import time
from parameters import Parameters
import util
p = Parameters()
###############################################################
##
## Training
##
###############################################################
def Testing():
print('Testing')
#########################################################################
## Get dataset
#########################################################################
print("Get dataset")
loader = Generator()
##############################
## Get agent and model
##############################
print('Get agent')
if p.model_path == "":
lane_agent = agent.Agent()
else:
lane_agent = agent.Agent()
lane_agent.load_weights(640, "tensor(0.2298)")
##############################
## Check GPU
##############################
print('Setup GPU mode')
if torch.cuda.is_available():
lane_agent.cuda()
##############################
## testing
##############################
print('Testing loop')
lane_agent.evaluate_mode()
if p.mode == 0 : # check model with test data
for _, _, _, test_image in loader.Generate():
_, _, ti = test(lane_agent, np.array([test_image]))
cv2.imshow("test", ti[0])
cv2.waitKey(0)
elif p.mode == 1: # check model with video
cap = cv2.VideoCapture("video_path")
while(cap.isOpened()):
ret, frame = cap.read()
prevTime = time.time()
frame = cv2.resize(frame, (512,256))/255.0
frame = np.rollaxis(frame, axis=2, start=0)
_, _, ti = test(lane_agent, np.array([frame]))
curTime = time.time()
sec = curTime - prevTime
fps = 1/(sec)
s = "FPS : "+ str(fps)
cv2.putText(ti[0], s, (0, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
cv2.imshow('frame',ti[0])
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
elif p.mode == 2: # check model with a picture
test_image = cv2.imread(p.test_root_url+"clips/0530/1492720840345996040_0/20.jpg")
test_image = cv2.resize(test_image, (512,256))/255.0
test_image = np.rollaxis(test_image, axis=2, start=0)
_, _, ti = test(lane_agent, np.array([test_image]))
cv2.imshow("test", ti[0])
cv2.waitKey(0)
elif p.mode == 3: #evaluation
print("evaluate")
evaluation(loader, lane_agent)
############################################################################
## evaluate on the test dataset
############################################################################
def evaluation(loader, lane_agent, thresh = p.threshold_point, name = None):
result_data = deepcopy(loader.test_data)
for test_image, target_h, ratio_w, ratio_h, testset_index in loader.Generate_Test():
x, y, _ = test(lane_agent, np.array([test_image]), thresh)
x, y = util.convert_to_original_size(x[0], y[0], ratio_w, ratio_h)
x, y = find_target(x, y, target_h, ratio_w, ratio_h)
result_data = write_result_json(result_data, x, y, testset_index)
if name == None:
save_result(result_data, "test_result.json")
else:
save_result(result_data, name)
############################################################################
## linear interpolation for fixed y value on the test dataset
############################################################################
def find_target(x, y, target_h, ratio_w, ratio_h):
# find exact points on target_h
out_x = []
out_y = []
x_size = p.x_size/ratio_w
y_size = p.y_size/ratio_h
for i, j in zip(x,y):
min_y = min(j)
max_y = max(j)
temp_x = []
temp_y = []
for h in target_h:
temp_y.append(h)
if h < min_y:
temp_x.append(-2)
elif min_y <= h and h <= max_y:
for k in range(len(j)-1):
if j[k] >= h and h >= j[k+1]:
#linear regression
if i[k] < i[k+1]:
temp_x.append(int(i[k+1] - float(abs(j[k+1] - h))*abs(i[k+1]-i[k])/abs(j[k+1]+0.0001 - j[k])))
else:
temp_x.append(int(i[k+1] + float(abs(j[k+1] - h))*abs(i[k+1]-i[k])/abs(j[k+1]+0.0001 - j[k])))
break
else:
if i[0] < i[1]:
l = int(i[1] - float(-j[1] + h)*abs(i[1]-i[0])/abs(j[1]+0.0001 - j[0]))
if l > x_size or l < 0 :
temp_x.append(-2)
else:
temp_x.append(l)
else:
l = int(i[1] + float(-j[1] + h)*abs(i[1]-i[0])/abs(j[1]+0.0001 - j[0]))
if l > x_size or l < 0 :
temp_x.append(-2)
else:
temp_x.append(l)
out_x.append(temp_x)
out_y.append(temp_y)
return out_x, out_y
############################################################################
## write result
############################################################################
def write_result_json(result_data, x, y, testset_index):
for i in x:
result_data[testset_index]['lanes'].append(i)
result_data[testset_index]['run_time'] = 1
return result_data
############################################################################
## save result by json form
############################################################################
def save_result(result_data, fname):
with open(fname, 'w') as make_file:
for i in result_data:
json.dump(i, make_file, separators=(',', ': '))
make_file.write("\n")
############################################################################
## test on the input test image
############################################################################
def test(lane_agent, test_images, thresh = p.threshold_point):
result = lane_agent.predict_lanes_test(test_images)
confidences, offsets, instances = result[-1]
num_batch = len(test_images)
out_x = []
out_y = []
out_images = []
for i in range(num_batch):
# test on test data set
image = deepcopy(test_images[i])
image = np.rollaxis(image, axis=2, start=0)
image = np.rollaxis(image, axis=2, start=0)*255.0
image = image.astype(np.uint8).copy()
confidence = confidences[i].view(p.grid_y, p.grid_x).cpu().data.numpy()
offset = offsets[i].cpu().data.numpy()
offset = np.rollaxis(offset, axis=2, start=0)
offset = np.rollaxis(offset, axis=2, start=0)
instance = instances[i].cpu().data.numpy()
instance = np.rollaxis(instance, axis=2, start=0)
instance = np.rollaxis(instance, axis=2, start=0)
# generate point and cluster
raw_x, raw_y = generate_result(confidence, offset, instance, thresh)
# eliminate fewer points
in_x, in_y = eliminate_fewer_points(raw_x, raw_y)
# sort points along y
in_x, in_y = util.sort_along_y(in_x, in_y)
in_x, in_y = eliminate_out(in_x, in_y, confidence, deepcopy(image))
in_x, in_y = util.sort_along_y(in_x, in_y)
in_x, in_y = eliminate_fewer_points(in_x, in_y)
result_image = util.draw_points(in_x, in_y, deepcopy(image))
out_x.append(in_x)
out_y.append(in_y)
out_images.append(result_image)
return out_x, out_y, out_images
############################################################################
## post processing for eliminating outliers
############################################################################
def eliminate_out(sorted_x, sorted_y, confidence, image = None):
out_x = []
out_y = []
for lane_x, lane_y in zip(sorted_x, sorted_y):
lane_x_along_y = np.array(deepcopy(lane_x))
lane_y_along_y = np.array(deepcopy(lane_y))
ind = np.argsort(lane_x_along_y, axis=0)
lane_x_along_x = np.take_along_axis(lane_x_along_y, ind, axis=0)
lane_y_along_x = np.take_along_axis(lane_y_along_y, ind, axis=0)
if lane_y_along_x[0] > lane_y_along_x[-1]: #if y of left-end point is higher than right-end
starting_points = [(lane_x_along_y[0], lane_y_along_y[0]), (lane_x_along_y[1], lane_y_along_y[1]), (lane_x_along_y[2], lane_y_along_y[2]),
(lane_x_along_x[0], lane_y_along_x[0]), (lane_x_along_x[1], lane_y_along_x[1]), (lane_x_along_x[2], lane_y_along_x[2])] # some low y, some left/right x
else:
starting_points = [(lane_x_along_y[0], lane_y_along_y[0]), (lane_x_along_y[1], lane_y_along_y[1]), (lane_x_along_y[2], lane_y_along_y[2]),
(lane_x_along_x[-1], lane_y_along_x[-1]), (lane_x_along_x[-2], lane_y_along_x[-2]), (lane_x_along_x[-3], lane_y_along_x[-3])] # some low y, some left/right x
temp_x = []
temp_y = []
for start_point in starting_points:
temp_lane_x, temp_lane_y = generate_cluster(start_point, lane_x, lane_y, image)
temp_x.append(temp_lane_x)
temp_y.append(temp_lane_y)
max_lenght_x = None
max_lenght_y = None
max_lenght = 0
for i, j in zip(temp_x, temp_y):
if len(i) > max_lenght:
max_lenght = len(i)
max_lenght_x = i
max_lenght_y = j
out_x.append(max_lenght_x)
out_y.append(max_lenght_y)
return out_x, out_y
############################################################################
## generate cluster
############################################################################
def generate_cluster(start_point, lane_x, lane_y, image = None):
cluster_x = [start_point[0]]
cluster_y = [start_point[1]]
point = start_point
while True:
points = util.get_closest_upper_point(lane_x, lane_y, point, 3)
max_num = -1
max_point = None
if len(points) == 0:
break
if len(points) < 3:
for i in points:
cluster_x.append(i[0])
cluster_y.append(i[1])
break
for i in points:
num, shortest = util.get_num_along_point(lane_x, lane_y, point, i, image)
if max_num < num:
max_num = num
max_point = i
total_remain = len(np.array(lane_y)[np.array(lane_y) < point[1]])
cluster_x.append(max_point[0])
cluster_y.append(max_point[1])
point = max_point
if len(points) == 1 or max_num < total_remain/5:
break
return cluster_x, cluster_y
############################################################################
## remove same value on the prediction results
############################################################################
def remove_same_point(x, y):
out_x = []
out_y = []
for lane_x, lane_y in zip(x, y):
temp_x = []
temp_y = []
for i in range(len(lane_x)):
if len(temp_x) == 0 :
temp_x.append(lane_x[i])
temp_y.append(lane_y[i])
else:
if temp_x[-1] == lane_x[i] and temp_y[-1] == lane_y[i]:
continue
else:
temp_x.append(lane_x[i])
temp_y.append(lane_y[i])
out_x.append(temp_x)
out_y.append(temp_y)
return out_x, out_y
############################################################################
## eliminate result that has fewer points than threshold
############################################################################
def eliminate_fewer_points(x, y):
# eliminate fewer points
out_x = []
out_y = []
for i, j in zip(x, y):
if len(i)>2:
out_x.append(i)
out_y.append(j)
return out_x, out_y
############################################################################
## generate raw output
############################################################################
def generate_result(confidance, offsets,instance, thresh):
mask = confidance > thresh
#print(mask)
grid = p.grid_location[mask]
offset = offsets[mask]
feature = instance[mask]
lane_feature = []
x = []
y = []
for i in range(len(grid)):
if (np.sum(feature[i]**2))>=0:
point_x = int((offset[i][0]+grid[i][0])*p.resize_ratio)
point_y = int((offset[i][1]+grid[i][1])*p.resize_ratio)
if point_x > p.x_size or point_x < 0 or point_y > p.y_size or point_y < 0:
continue
if len(lane_feature) == 0:
lane_feature.append(feature[i])
x.append([])
x[0].append(point_x)
y.append([])
y[0].append(point_y)
else:
flag = 0
index = 0
for feature_idx, j in enumerate(lane_feature):
index += 1
if index >= 12:
index = 12
if np.linalg.norm((feature[i] - j)**2) <= p.threshold_instance:
lane_feature[feature_idx] = (j*len(x[index-1]) + feature[i])/(len(x[index-1])+1)
x[index-1].append(point_x)
y[index-1].append(point_y)
flag = 1
break
if flag == 0:
lane_feature.append(feature[i])
x.append([])
x[index].append(point_x)
y.append([])
y[index].append(point_y)
return x, y
if __name__ == '__main__':
Testing()