This repository has been archived by the owner on Nov 28, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
merkle-path.c
308 lines (269 loc) · 9.48 KB
/
merkle-path.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
* Copyright © [2024] Lita Inc. All Rights Reserved.
*
* This software and associated documentation files (the “Software”) are owned by Lita Inc. and are protected by copyright law and international treaties.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to use the Software for personal, non-commercial purposes only, subject to the following conditions:
*
* 1. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
* 2. The Software may not be used for commercial purposes without the express written permission of Lita Inc.
*
* For inquiries regarding commercial use, please contact us at: [email protected]
*
* THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// Merkle opening proof verification for binary Merkle hash trees, where the
// leaves are strings of 32 bytes and the hash is SHA-256. The input consists
// of the leaf (32 bytes), followed by whether the leaf is left or right (one byte,
// 1 = right), followed by the leaf's sibling (32 bytes), followed by whether their
// parent is left or right (one byte), followed by their parent's sibling (32 bytes),
// followed by whether the hash of the parent and the parent's sibling is left or
// right (one byte), etc.
// The below SHA256 code comes from https://github.com/B-Con/crypto-algorithms/
// , was originally written by Brad Conte, and has been modified
// to compile and run in Valida.
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
#ifdef __DELENDUM__
#define size_t unsigned int
void * memset ( void * b, int c, size_t len ) {
int i;
unsigned char *p = b;
i = 0;
while(len > 0)
{
*p = c;
p++;
len--;
}
return b;
}
#else
#include <stddef.h>
#endif
/**************************** DATA TYPES ****************************/
typedef unsigned char BYTE; // 8-bit byte
typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
BYTE data[64];
WORD datalen;
unsigned long long bitlen;
WORD state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len);
void sha256_final(SHA256_CTX *ctx, BYTE hash[]);
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const WORD k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const BYTE data[])
{
WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const BYTE data[], size_t len)
{
WORD i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, BYTE hash[])
{
WORD i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
for (unsigned j = 0; j < 56; j++)
ctx->data[j] = 0;
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
#define BUF_LEN 256
#ifdef __DELENDUM__
const unsigned EOF = 0xFFFFFFFF;
#else
#include <stdio.h>
#endif
unsigned read_byte() {
#ifdef __DELENDUM__
return __builtin_delendum_read_advice();
#else
return getc(stdin);
#endif
}
// Reads SHA256_BLOCK_SIZE many bytes (or as many as are available) into buf.
// Returns EOF if EOF was reached; otherwise, returns 0.
unsigned read_block(BYTE *buf) {
for (unsigned i = 0; i < SHA256_BLOCK_SIZE; i++) {
unsigned c = read_byte();
if (c == EOF) {
return EOF;
} else {
buf[i] = (BYTE)c;
}
}
return 0;
}
void write_block(BYTE *buf) {
for (unsigned i = 0; i < SHA256_BLOCK_SIZE; i++) {
#ifdef __DELENDUM__
__builtin_delendum_write(buf[i]);
#else
putc(buf[i], stdout);
#endif
}
}
int output(BYTE *leaf, BYTE *root) {
write_block(leaf);
write_block(root);
return 0;
}
void hash_blocks(SHA256_CTX *ctx, BYTE *buf_left, BYTE *buf_right, BYTE *hash) {
sha256_init(ctx);
sha256_update(ctx, buf_left, SHA256_BLOCK_SIZE);
sha256_update(ctx, buf_right, SHA256_BLOCK_SIZE);
sha256_final(ctx, hash);
}
void copy_block(BYTE *from, BYTE *to) {
for (unsigned i = 0; i < SHA256_BLOCK_SIZE; i++) {
to[i] = from[i];
}
}
int main() {
BYTE buf_left[SHA256_BLOCK_SIZE];
BYTE buf_right[SHA256_BLOCK_SIZE];
BYTE leaf[SHA256_BLOCK_SIZE];
BYTE hash[SHA256_BLOCK_SIZE];
SHA256_CTX ctx;
unsigned result = read_block(buf_left);
if (result == EOF) {
while (1) {}
}
copy_block(buf_left, leaf);
unsigned is_right = read_byte();
if (is_right == 1) {
copy_block(buf_left, buf_right);
} else if (is_right == EOF) {
while (1) {}
}
BYTE *buf_empty = is_right ? buf_left : buf_right;
result = read_block(buf_empty);
if (result == EOF) {
return output(leaf, leaf);
}
while (1) {
hash_blocks(&ctx, buf_left, buf_right, hash);
is_right = read_byte();
if (is_right == 1) {
copy_block(hash, buf_right);
} else {
copy_block(hash, buf_left);
}
BYTE *buf_empty = is_right ? buf_left : buf_right;
result = read_block(buf_empty);
if (result == EOF) {
return output(leaf, hash);
}
}
}